2 一元线性回归模型(计量经济学)
《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。
2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。
计量经济学的2.2 一元线性回归模型的参数估计

基于样本数据,所得到的总体回归函数的一个估 计函数称为样本回归函数。
问题:当我们设定总体回归模型的函数形式后, 如何通过样本数据得到总体回归函数的一个估计 (即样本回归函数)?--参数估计问题
E (Y | X i ) 0 1 X i
ˆ ˆ ˆ Yi f ( X i ) 0 1 X i
Xi确定
作此假设的理由:当我们把PRF表述为 时,我们假定了X和u(后者代表所有被省略的变量的影 响)对Y有各自的(并且可加的)影响。但若X和u是相关 25 的,就不可能评估它们各自对Y的影响。
线性回归模型的基本假设(4)
假设4、服从零均值、同方差、零协方差的正态分布 i~N(0, 2 ) i=1,2, …,n 意为:ui服从正态分布且相互独立。因为对两个正态 分布的变量来说,零协方差或零相关意为这两个变量 独立。 作该假设的理由:i代表回归模型中末明显引进的许多解释
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
3
回归分析的主要目的是要通过样本回归函 数(模型)SRF尽可能准确地估计总体回归函 数(模型)PRF。
ˆ ˆ ˆ Yi 0 1 X i
ˆ ˆ ˆ Yi 0 1 X i ui
同方差假设表明:对应于不同X值的全部Y值具有同 样的重要性。
22
线性回归模型的基本假设(2-3)
假设2、随机误差项具有零均值、同方差和不自相关 性(不序列相关): (2.3) 不自相关: Cov(i, j|Xi, Xj)=0 i≠j i,j= 1,2, …,n 或记为 Cov(i, j)=0 i≠j i,j= 1,2, …,n 意为:相关系数为0, i, j非线性相关。 几何意义如下
计量经济学第二章--一元线性回归模型

2 、同方差假定:每一个随机误差项的方差为常数,即:
经 济
Var(Yi ) Var(i ) 2 (常数)
学
该假定表明:给定X对应的每个条件
分布都是同方差的,每个Y值以相同
的分布方式在它的期望值E(Y)附近波
动
10
3、无自相关假定:任意两个随机误差项之间不相关,用数学
形式表示为:
Cov(i, j ) E (i E(i ))( j E( j )) 0
)
xiYi Y xi2
xi
xi 0
bˆ1
xiYi xi2
(bˆi
x12
x1Y1 x22
xn2
x12
x2Y2 x22
xn2
...
x12
xnYn x22
xn2
)
19
令
ki
xi xi2
则
bˆi
kiYi
(1) k i
(
xi xi2
)
xi xi2
0
计 量 经 ki的性质 济 学
2 n
2k1k21 2
2kn1kn n1 n
)
量
经
k12
E
(12
)
k22
E
(
2 2
)
kn2
E
(
2 n
)
2k1k2
E
(1
2
)
2kn
1kn
E
(
n1
n
)
济
学 由古典线性回归模型的假定可知,对每一个随机变量,有
E(i2) 2, E(i j ) 0(当i j时)
Var(bˆ1)
k12 E (12
计量经济学复习

第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。
2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。
但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。
通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。
3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。
Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。
Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。
Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。
(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。
该值越大说明拟合得越好。
而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。
5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。
第二章 一元线性回归模型(本科生计量经济学)

即:正规方程组揭示的是残差的性质。
26
普通最小二乘估计有关 的其他性质(课后习题)
Y Y
^
e Y e y
i ^ i
^
i
0 0
27
i
2、由普通最小二乘估计系数的性质可证
得普通最小二乘估计与参数的关系如下:
1 1 k i u i
^
0 0 wi ui
( 1) ( 2)
( 1)
0 Y 1 X
^
^
Y
1 n
Y , X X
i 1 i 1 n i 1
n
n
i
18
参数的普通最小二乘估计量
ˆ ˆ X )0 (Yi 0 1 i ˆ ˆ X )X 0 ( Y i 0 1 i i
^
33
三、一元线性回归模型参数的最大似 然法(Maximum Likehood,ML)估计
• 基本原理:似然原理
• 一元线性回归模型ML使用的条件:已知随机扰动 项的分布。
34
Y1 , Y2 ,...,Yn
1 f (Yi ) e 2
1 2
1 2
2
Yi ~ N (0 1 X i , 2 )
w 1
i
22
普通最小二乘估计的例
年份
1991 1992 1993 1994
ED(X)
708 793 958 1278
FI(Y)
3149 3483 4349 5218
ed(x)
-551 -466 -301 19
fi(y)
-2351 -2017 -1151 -282
2 一元线性回归模型

4、回归分析
(1)“回归”一词的古典意义 英国生物学家F.高尔顿(Francis 遗传学研究中首先提出的。
Galton)在
(2)“回归”一词的现代意义: 回归分析是研究一个被解释变量(或因变量)对一 个或多个解释变量(或自变量)数量依赖关系的数 学分析方法。 目的:通过解释变量的已知值或设定值,去估计被 解释变量的平均值,或分析解释变量变动对被解释 变量产生的影响。
相关关系:非确定现象随机变量间的关系。
函数关系:
圆面积 f , 半径 半径2
欧姆定律(电流C=V/k, V为电压)
相关关系: 农作物产量 f 气温, 降雨量, 阳光, 施肥量
高档消费品的销售量与城镇居民收入之间的关 系 储蓄额与居民收入之间的关系 广告支出与商品销售额 工业增加值与能源消耗量 数学成绩与统计学成绩 „„
问:能否从该样本估计总体回归函数PRF?
可支配收入X 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 消费支出Y 888 1121 1340 1650 2179 2210 2398 2650 3021 3288
回答:of course
该样本的散点图: 样本散点图近 似于一条直线,画 一条直线以尽可能 地拟合该散点图, 由于样本取自总体, 该线可以近似地代 表总体回归线。该 线称为样本回归线
上例
ui Yi -E(Y Xi ) Yi 0 1X i 总体回归函数 Yi 0 1X i ui 个别值表现形式
引入随机扰动项的主要原因: 1、作为未知影响因素的代表
2、作为无法取得数据的已知因素的代表 3、作为众多细小影响因素的综合代表 4、模型的设定误差 5、变量的观测误差 6、变量的内在随机性
计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。
计量经济学第2章 一元线性回归模型

ˆ2 ˆ2
) )
ˆ2
0 0
6
Q(ˆ1, ˆ2 ˆ1
Q(ˆ1, ˆ2 ) ˆ2
) [ [
(Yi
ˆ1 ˆ1
ˆ2
X
i
)2
]
2
(Yi
ˆ1 ˆ2
ˆ2
X
i
)2
]
2
Yi ˆ1 ˆ2 X i Yi ˆ1 ˆ2 X i X i
Yi ˆ1 ˆ2 X i 0 Yi ˆ1 ˆ2 X i X i 0
全为零,线性性得证。 i
• ˆ的1 线性性可利用 的ˆ2线性性得到。
ˆ1
Y
ˆ2 X
1 n
i
Yi X
i
biYi
i
(
1 n
Xbi
)Yi
• 可记为
ˆ1 WiYi
i
这表明 同ˆ1 样是Yi的线性组合,其中Wi也不全为零,线性
性也得到证明。
12
• 2.无偏性
• 无偏性指ˆ1和的ˆ2数学期望分别等于总体回归系数的值β1和
5
• 下面用最小二乘法求总体回归系数β1、β2的估计 值 ˆ1和。ˆ2 即令
min Q(ˆ1, ˆ2 ) ei2 (Yi Yˆi )2 [Yi (ˆ1 ˆ2 Xi )]2
i
i
i
• 根据微积分多元函数极值原理,要使上式达到最
小,对ˆ1和ˆ2 的一阶偏导数都等于零,即
Q(ˆ1,
ˆ1 Q(ˆ1,
归模型的基本假定。
4
§2.2 一元线性回归模型的参数估计
• 1.普通最小二乘法(OLS)
• 总体回归模型:
Yi 1 2 X i ui
• 总体回归方程:
E(Yi ) 1 2 X i
计量经济学实验二-一元线性回归模型的估计、检验和预测

目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。
实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。
实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。
实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。
实验二~实验十二主要都是用这些数据来完成一系列工作。
表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。
二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。
1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。
图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。
但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。
所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。
计量经济学一元线性回归模型总结

计量经济学⼀元线性回归模型总结第⼀节两变量线性回归模型⼀.模型的建⽴1.数理模型的基本形式y x αβ=+ (2.1)这⾥y 称为被解释变量(dependent variable),x 称为解释变量(independent variable)注意:(1)x 、y 选择的⽅法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进⾏合理选择。
(2)变量之间是否是线性关系可先通过散点图来观察。
2.例如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的⼈均可⽀配收⼊和⼈均消费性⽀出数据(见表1),能否⽤两变量线性函数进⾏分析?表1.上海居民收⼊消费情况年份可⽀配收⼊消费性⽀出年份可⽀配收⼊消费性⽀出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 19861293.24117019957171.91586819871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.168662.⼀些⾮线性模型向线性模型的转化⼀些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。
例3-2 如果认为⼀个国家或地区总产出具有规模报酬不变的特征,那么采⽤⼈均产出y与⼈均资本k的形式,该国家或者说地区的总产出规律可以表⽰为下列C-D⽣产函数形式y Akα=(2.2)也就是⼈均产出是⼈均资本的函数。
能不能⽤两变量线性回归模型分析这种总量⽣产规律?3.计量模型的设定(1)基本形式:y x αβε=++ (2.3)这⾥ε是⼀个随机变量,它的数学期望为0,即(2.3)中的变量y 、x 之间的关系已经是不确定的了。
计量经济学实验二 一元线性回归模型

实验二一元线性回归模型2.1 实验目的掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。
2.2 实验内容建立中国消费函数模型。
以表2.1中国的收入与消费的总量数据为基础,建立中国消费函数的一元线性回归模型。
表2.1数据来源:2004年中国统计年鉴,中国统计出版社2.3 实验步骤2.3.1 散点相关图分析将表1.1的GDP设为变量X,总消费设为Y,建立变量X和Y的相关图,如图2.1所示。
可以看X和Y之间呈现良好的线性关系。
可以建立一元线性回归模型。
2.3.2 估计线性回归模型在数组窗口中点击Proc\Make Equation ,如果不需要重新确定方程中的变量或调整样本区间,可以直接点击OK 进行估计。
也可以在EViews 主窗口中点击Quick\Estimate Equation ,在弹出的方程设定框(见图2.2)内输入模型:Y C X 或 Y = C (1) + C (2) * X图2.2图2.3还可以通过在EViews 命令窗口中键入LS 命令来估计模型,其命令格式为:LS 被解释变量 C 解释变量系统将弹出一个窗口来显示有关估计结果(如图2.3 所示)。
因此,我国消费函数的估计式为:ˆY2329.4010.547*X =+St 1191.923 0.014899t 1.95 36.71R 2=0.99 s.e.=2091s.e .是回归函数的标准误差,即σˆ=)216(ˆ2-∑t u。
R 2是可决系数。
R 2 = 0.99,说明上式的拟合情况好,y t 变差的99%由变量x t 解释。
因为t = 36.71> t 0.05 (15) = 2.13,所以检验结果是拒绝原假设β1 = 0,即总消费和GDP 之间存在线性回归关系。
上述模型的经济解释是,GDP 每增长1 亿元,我国消费将总额将增加0.547亿元。
图2.42.3.3 残差图在估计方程的窗口选择View\ Actual, Fitted,Residual\Actual, Fitted,Residual Table,得到相应的残差图2.4。
2 一元线性回归模型

负线性相关
不相关
正线性相关
3、常用的两种相关关系的分析方法 对变量间(不确定性的)相关关系(统计依赖关系)
的考察主要是通过相关分析(correlation analysis)或
回归分析(regression analysis)来完成的。
• ……
• E(Y|X=3500)=2585
• 问题4:收入X与平均消费支出E(Y|X)之 间是什么关系?如何用方程式来表现这两种 关系?
图形说明:平均来说,随着收入的增加,消费支出也
在线性增加。即每一个消费支出的(条件)期望均落
在一根正斜率的直线上。这条直线称为总体回归线。
3500
每 月 消 费 支 出 Y (元) 3000 2500 2000 1500 1000 500 0 500 1000 1500 2000 2500 3000 3500 4000 每月可支配收入X(元)
答:E(Y|X=800)=2420/4=561×1/4+ 594 ×1/4+ 627 ×1/4+ 638 ×1/4=605 • 知识点及注意点4: • 期望也称均值,描述一个随机变量的平均值 • 条件期望(条件均值):给定X的Y的期望值, 记为E(Y|X)。
• 对于每一个给定的X,都对应有且只有一个Y 的条件均值。 • E(Y|X=800)=561×1/4+ 594 ×1/4+ 627 ×1/4+ 638 ×1/4=605 • E(Y|X=1100)=825 • E(Y|X=1400)=1045
量。 • 记为
Y E (Y | X )
• 随机误差项主要包括下列因素(P27书中 六点综合为四点) –在解释变量中被忽略的因素的影响 P27; 说明:模型中被省略了的影响Y的那些 因素包含在随机扰动项中。
第二章 一元线性回归模型

∂Q ˆ ˆ = −2∑ (Yi − β 0 − β1 X i ) = 0 ∂β ˆ0 ˆ ˆ ∂Q = −2∑ (Y − β − β X )X = 0 i 0 1 i i ˆ ∂β1
化简得: 化简得:
ˆ ˆ ∑ (Yi − β 0 − β1 X i ) = 0 ˆ ˆ ∑ (Yi − β 0 − β1 X i )X i = 0
2.总体回归方程(线)或回归函数 总体回归方程( 总体回归方程 即对( )式两端取数学期望: 即对(2.8)式两端取数学期望:
E y i)= β 0 + β 1 x i (
(2.9)
(2.9)为总体回归方程。由于随机项的影响,所 )为总体回归方程。由于随机项的影响, 有的点( )一般不在一条直线上; 有的点(x,y)一般不在一条直线上;但所有的点 (x,Ey)在一条直线上。总体回归线描述了 与y )在一条直线上。总体回归线描述了x与 之间近似的线性关系。 之间近似的线性关系。
Yi = β X i + ui
需要估计, 这个模型只有一个参数 需要估计,其最 小二乘估计量的表达式为: 小二乘估计量的表达式为:
∑XY ˆ β= ∑X
i i 2 i
例2.2.1:在上述家庭可支配收入-消费支出例中,对 :在上述家庭可支配收入-消费支出例中, 于所抽出的一组样本数据, 于所抽出的一组样本数据,参数估计的计算可通过下面 的表2.2.1进行。 进行。 的表 进行
二、一元线性回归模型 上述模型中, 为线性的, 上述模型中, 若f(Xi)为线性的,这时的模型 为线性的 一元线性回归模型: 即为 一元线性回归模型:
yi = β 0 + β1 xi + ui 其中:yi为被解释变量,xi为解释变量,ui为随机误 差项,β 0、β1为回归系数。
计量经济学——一元回归模型

§2.1 回归分析概述 (Regression Analysis)
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
一、变量间的关系及回归分析的基本概念 1、变量间的关系
• 确定性关系或函数关系:研究的是确定性现象 非随机变量间的关系。
圆面积 f ,半径 半径 2
称为(双变量)总体回归函数(population regression function, PRF)。
• 含义:
回归函数(PRF)说明被解释变量Y 的平均状态 (总体条件期望)随解释变量X 变化的规律。
• 函数形式:
可以是线性或非线性的。
例2.1中,将居民消费支出看成是其可支配收 入的线性函数时:
2、回归分析的基本概念
• 回归分析(regression analysis)是研究一个变量 关于另一个(些)变量的具体依赖关系的计算 方法和理论。
• 其目的在于通过后者的已知或设定值,去估计 和(或)预测前者的(总体)均值。
• 两类变量;
–被解释变量(Explained Variable)或因变量 (Dependent Variable)。
• 下面的假设主要是针对采用普通最小二乘法 (Ordinary Least Squares, OLS)估计而提出的。 所以,在有些教科书中称为“The Assumption Underlying the Method of Least Squares”。
• 在不同的教科书上关于基本假设的陈述略有不同, 下面进行了重新归纳。
1012 1045 1078 1122 1155 1188 1210
11495
1700 1023 1100 1144 1155 1210 1243 1254 1298 1331 1364 1408 1430 1485
计量经济学 第二章 一元线性回归模型

计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。
其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。
其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。
一般说来,随机项来自以下几个方面:1、变量的省略。
由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。
2、统计误差。
数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。
3、模型的设定误差。
如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。
4、随机误差。
被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。
若相互依赖的变量间没有因果关系,则称其有相关关系。
对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。
他们各有特点、职责和分析范围。
相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。
回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。
一元线性回归模型(计量经济学)

回归分析是一种统计方法,用于研究变量之间的关系。它基于最小二乘法,寻找最合适的直线来描述变 量间的线性关系。通过回归分析,我们可以理解变量之间的因果关系和预测未知数据。
一元线性回归模型的假设
1 线性关系
2 独立误差
一元线性回归模型假设自变量和因变量之 间存在线性关系。
模型的残差项是独立的,不受其他因素的 影响。
3 常数方差
4 正态分布
模型的残差项具有恒定的方差,即方差齐 性。
模型的残差项服从正态分布。
一元线性回归模型的估计和推断
1
模型估计
使用最小二乘法估计模型的回归系数。
2
参数推断
进行参数估计的显著性检验和置信区间估计。
3
模型拟合程度
使用残差分析和R平方评估模型的拟合程度。
模型评估和解释结果
通过残差分析和R平方等指标评估模型的拟合程度,并解释模型中回归系数的 含义。了解如何正确使用模型的结果,并识别异常值和离群点对模型的影响。
一元线性回归模型(计量 经济学)
在本节中,我们将介绍一元线性回归模型,探讨回归分析的基本概念和原理, 了解一元线性回归模型所做的假设,并学习模型的估计和推断方法。我们还 将探讨模型评估和解释结果的技巧,并通过实例应用和案例分析进一步加深 对该模型的理解。最后,我们将总结和得出结论。
回归分析的基本概念和原理
实例应用和案例分析
汽车价格预测Байду номын сангаас
使用一元线性回归模型预 测汽车价格,考虑车龄、 里程等因素。
销售趋势分析
通过一元线性回归模型分 析产品销售的趋势,并预 测未来销售。
学术成绩预测
应用一元线性回归模型预 测学生的学术成绩,考虑 学习时间、背景等因素。
计量经济学第二章经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极人似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”, 第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包扌舌两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成:第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则oGoss-niarkov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包扌舌被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为kids= 00 + P i educ+ “(1)随机扰动项〃包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变卞的影响吗?请解释。
第二章 一元线性回归模型

__
__
2
/n
★样本相关系数r是总体相关系数 的一致估计
相关系数有以下特点:
• • • • 相关系数的取值在-1与1之间。 (2)当r=0时,线性无关。 (3)若r>0 ,正相关,若r<0 ,负相关。 (4)当0<|r|<1时,存在一定的线性相关 关系, 越接近于1,相关程度越高。 • (5)当|r|=1时,表明x与y完全线性相关 (线性函数),若r=1,称x与y完全正相关; 若r=-1,称x与y完全负相关。 • 多个变量之间的线性相关程度,可用复相 关系数和偏相关系数去度量。
●假定解释变量X在重复抽样中取固定值。 但与扰动项u是不相关的。(从变量X角度看是外生的)
注意: 解释变量非随机在自然科学的实验研究中相对
Yi 1 2 X i ui
●假定解释变量X是非随机的,或者虽然X是随机的,
容易满足,经济领域中变量的观测是被动不可控的, X非随机的假定并不一定都满足。
E( y xi ) 0 1xi
11
• 可以看出,虽然每个家庭的消费支出存在差 异,但平均来说,家庭消费支出是随家庭可 支配收入的递增而递增的。当x取各种值时, y的条件均值的轨迹接近一条直线,该直线称 为y对x的回归直线。(回归曲线)。 • 把y的条件均值表示为x的某种函数,可写 为:
E( y xi ) 0 1xi
Var ( y xi ) 2
Cov( yi , y j ) 0
y | xi ~ N (0 1xi , )
2
22
第三节 参数估计
• 一、样本回归方程
• 对于
yi 0 1 xi ui
• 在满足古典假定下,两边求条件均值,得到总体 回归函数:
第二章 经典单方程计量经济学模型:一元线性回归模型

同学问题(西经教材55页):21()()00,d d d d d dd d d d TE TE TE P P Q Q PQ P Q P Q P Q P Q P Q dTE dP Q P dQ ∆=-=+∆+∆-=∆+∆+∆∆∆→∆→∆∆∴=+ 时,也,为更高阶无穷小抹掉高阶无穷小F X Y ,()X 2Y2-:=F华尔街200809-10月流行语:假设去年您有1000美元,如果买了达美航空的股票,现在还能剩下49美元; 如果买了AIG 的股票,剩下约12美元; 如果买了房地美股票,剩下约2.5美元; 如果买1000美元的啤酒,喝光后再把易拉罐送去回收站,还能换回214美元!美国经济学家克鲁格曼获得2008年诺贝尔经济学奖 08-10-13 斯德哥尔摩10月13日电 瑞典皇家科学院13日宣布,将2008年诺贝尔经济学奖授予美国普林斯顿大学经济学家保罗·克鲁格曼,以表彰他在分析国际贸易模式和经济活动的地域等方面所作的贡献。
瑞典皇家科学院发表声明说,克鲁格曼整合了此前经济学界在国际贸易和地理经济学方面的研究,在自由贸易、全球化以及推动世界范围内城市化进程的动因方面形成了一套理论。
根据瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·伯恩哈德·诺贝尔(1833-1896)1895年立下的遗嘱,诺贝尔奖项只包括化学奖、物理学奖、文学奖、医学奖与和平奖。
诺贝尔经济学奖是瑞典中央银行在1968年为纪念诺贝尔而增设的,1969年首次颁奖。
诺贝尔经济学奖可以颁发给单个人,也可以最多由3人分享,其主要目的是表彰有关人员在宏观经济学、微观经济学、新经济分析方法等领域所作的贡献。
今年诺贝尔奖每项奖金仍(金融危机对奖金没有影响)为1000万瑞典克朗(约合140万美元)。
信计03吴丽然:苏老师:你好,我是03信计的吴丽然,现在在西南交大读研,我现在学的是交通运输,跨专业考得好多铁路专业知识都不懂,好在数学基础还有学起什么来都不太难,尤其是一些模型看起来要比本专业的容易懂些,现在发现咱们以前学的好多课都很有用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元线性回归模型:只有一个解释变量
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项。
回归分析的主要目的是要通过样本回归 函数(模型)SRF尽可能准确地估计总 体回归函数(模型)PRF。
为保证参数估计量具有良好的性质,通 常对模型提出若干基本假设。
后者称为解释变量(Explanatory Variable)或 自变量(Independent Variable)。
课堂思考题
回归分析构成计量经济学的方法论基础,其 主要内容包括:
(1)根据样本观察值对经济计量模型参数
进行估计,求得回归方程;
(2)对回归方程、参数估计值进行显著性
检验;
随机误差项主要包括下列因素:
在解释变量中被忽略的因素的影响;
变量观测值的观测误差的影响;
模型关系的设定误差的影响;
其它随机因素的影响。
四、样本回归函数
由于总体回归函数所需全部数据的获取往 往是非常困难的,有时甚至是不可能的, 于是我们关心:
能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息?
共计
2420
21450 21285
15510
一个抽样
由于调查的完备性,给定收入水平 X的消费
支出Y的分布是确定的。即以X的给定值为条 件的 Y 的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入 Xi ,可得消费支出 Y 的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值, 见表2.1.2.
由于方程中引入了随机项,成为计量经济模型, 因此也称为样本回归模型。
课堂思考题
▼回归分析的主要目的,就是根据样本回 归函数SRF,估计总体回归函数PRF。
ˆ ˆ X e ˆ e 即,由 Yi Y i i 0 1 i i
估计 Yi E(Y | X i ) i 0 1 X i i
课堂思考题
2、回归分析的基本概念
回归分析(regression analysis)是研究一个变量 关于另一个(些)变量的具体依赖关系的计算方 法和理论。其目的在于通过后者的已知或设定值, 去估计和(或)预测前者的(总体)均值。 前者称为被解释变量(Explained Variable)或 应变量(Dependent Variable)。
一、变量间的关系及回归分析的基本概念
1、变量间的关系
(1)确定性关系或函数关系:研究的是确定现 象非随机变量间的关系。
圆面积 f , 半径 半径2
(2)统计依赖或相关关系:研究的是非确定现 象随机变量间的关系。
农作物产量 f 气温, 降雨量, 阳光, 施肥量
对变量间统计依赖关系的考察主要是通过 相关分析(correlation analysis)或回归分 析(regression analysis)来完成的。 相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。 具有相关关系的变量有时存在因果关系, 这时,我们可以通过回归分析来研究它们 之间的具体依存关系。
例2.1中,给定收入水平Xi ,个别家庭的支出可 表示为两部分之和:
(1)该收入水平下所有家庭的平均消费支出 E(Y|Xi),称为系统性或确定性部分; (2)其他随机或非确定性部分i。
称为总体回归函数(PRF)的随机设定 形式。表明被解释变量除了受解释变 量的系统性影响外,还受其他因素的 随机性影响。 由于方程中引入了随机项,成为计量 经济学模型,因此也称为总体回归模 型。
第二节课堂思考题
一元线性回归模型的基本假设有哪些?
§2.3 一元线性回归模型的参数估 计
一、参数的普通最小二乘估计(OLS) 二、最小二乘估计量的性质 三、参数估计量的概率分布及随机干扰项 方差的估计 四、某城市消费规律研究
一元线性回归模型的参数估计,是在一组 样本观测值(xi,yi ),i=1,2,…,n下,通过一定 的参数估计方法,估计出样本回归线。 最常用的是普通最小二乘法( Ordinary least squares, OLS)估计。 除此之外,还有其他的估计方法,如最大 似然法(ml )和矩法(mm ),有兴趣的 同学可自学。
仍以例2.1.1(回顾)为例,假设总体中有如下 一个样本,能否从该样本估计总体回归函数?
表2.1.3 家庭消费支出与可支配收入的一个随机样本
X Y 800 638 1100 1400 1700 2000 2300 2600 2900 3200 3500 935 1155 1254 1408 1650 1925 2068 2266 2530
每月可支配收入X(元)
在给定解释变量Xi条件下被解释变量Yi的期望 轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲线。 相应的函数:
E (Y | X i ) f ( X i )
称为(双变量)总体回归函数(population regression function, PRF)。
E(i|Xi)=0 Var
(i|Xi)=2 Cov(i, j|Xi,, …,n i≠j i,j= 1,2, …,n
假设5:随机误差项与解释变量之间不相关。 假设6:随机误差项服从零均值、同方差的 正态分布。
课堂思考题
以上假设称为线性回归模型的经典假设。 满足该假设的线性回归模型称为经典线性 回归模型。
假设1:回归模型是正确设定的。 假设2:解释变量X是确定性变量,不是随 机变量。 假设3:解释变量X在所抽取的样本中具有 变异性,而且随着样本容量的无限增加, 解释变量X的样本方差趋于一个非零的有限 常数。
课堂思考题
假设4:随机误差项具有给定X条件下的零 均值、同方差和不序列相关性:
一、参数的普通最小二乘估计
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要求 样本回归函数尽可能好地拟合这组值.
描出散点图可以发现:随着收入的增加,消费 “平均地说”也在增加,且 Y的条件均值均落在 一根正斜率的直线上,这条直线称为总体回归线。
课堂思考题
3500
3000 每 月 消 费 支 出 Y (元) 2500 2000 1500 1000 500 0 500 1000 1500 2000 2500 3000 3500 4000
课堂思考题
两者的区别
一方面,相关分析仅关注变量间的联系程 度,不关注具体的依赖关系;而回归分析 则关注变量间的具体依赖关系(因果关系 ),研究如何通过解释变量的变化来估计 或预测被解释变量的变化。 另一方面,在相关分析中,变量的地位是 对称的。而在回归分析中,变量的地位是 不对称的,有解释变量与被解释变量之分 。
三、随机扰动项
总体回归函数说明在给定的收入水平Xi下,该 社区家庭的平均消费支出水平。 但对某一个别的家庭,其消费支出可能与该平 均水平有偏差。对每个个别家庭,记
i Yi E (Y | X i )
为观察值Yi围绕它的期望值E(Y|Xi)的离差。它 是一个不可观测的随机变量,称为随机误差项 或随机干扰项。
称为样本回归函数。
样本回归模型
课堂思考题
将样本回归线看成总体回归线的近似替代,则有
于是
同样地,样本回归函数也有如下的随机形式:
ˆ ˆ X e ˆ ˆ Yi Y i i 0 1 i i
式中,ei 称为 (样本)残差 (或剩余)项 ( residual) ,代表
ˆi 。 i 的估计量 了其他影响 Yi 的随机因素的集合,可看成是
注意:这里PRF (总体回归函数) 可能永远无法知道
第一节课堂思考题
什么是回归分析?回归分析和相关分析是 一回事吗,为什么? 以例2.1.1为例,概述总体回归函数和样本 回归函数有什么区别(提示:Y,家庭个 数)。 样本(总体)回归函数和样本(总体)回 归模型有什么区别?
§2.2 一元线性回归模型的基本假 设
总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。 在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函 数为: E (Y | X i ) 0 1 X i
它是一个线性函数。其中,0,1是未知 参数,称为回归系数(regression coefficients)。
回答:能。
课堂思考题
在例2.3.1中的应用
该样本的散点图(scatter diagram):
画一条直线以尽好地拟合该散点图,由 于样本取自总体,可以该直线近似地代表 总体回归线。该直线称为样本回归线。
记样本回归线的函数形式为:
ˆ ˆX ˆ f (X ) Y i i 0 1 i
表2.1.2 各收入水平组家庭消费支出的条件均值
收入 800 水平
1100 1400 1700 2000 2300 2600 2900 3200 3500
条件 1/4 概率
条件 605 均值
1/6
825
1/11 1/13 1/13 1/14 1/13 1/10 1/9
1/6
1045 1265 1485 1705 1925 2145 2365 2585
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入 X(元) 800 每 月 家 庭 消 费 支 出 Y (元) 561 594 627 638 1100 638 748 814 847 935 968 1400 869 913 924 979 1012 1045 1078 1122 1155 1188 1210 1700 1023 1100 1144 1155 1210 1243 1254 1298 1331 1364 1408 1430 1485 2000 1254 1309 1364 1397 1408 1474 1496 1496 1562 1573 1606 1650 1716 2300 2600 2900 1969 1991 2046 2068 2101 2189 2233 2244 2299 2310 3200 2090 2134 2178 2266 2354 2486 2552 2585 2640 3500 2299 2321 2530 2629 2860 2871 1408 1650 1452 1738 1551 1749 1595 1804 1650 1848 1672 1881 1683 1925 1716 1969 1749 2013 1771 2035 1804 2101 1870 2112 1947 2200 2002 4950 11495 16445 19305 23870 25025