调节阀选型指南

合集下载

调节阀选型指南

调节阀选型指南

调节阀选型指南◆气动ZMA□型,电动ZKZ□为什么应用越来越少?1)应用水平落后(60年代的老产品);2)笨重、体积大3)流路复杂,Kv小、易堵;4)可靠性较差。

建议不推荐使用。

◆为什么电子式阀将取代配DKZ、DKJ的电动阀?电子式阀较DKZ、DKJ的电动阀有以下几个优点:1)可靠性高、外观美、2)重量轻、体积小、3)伺服放大器一体化、调整方便。

◆为什么角行程阀的应用将成为一种趋势?直行程阀与角行程阀相比较存在9个方面的不足,其表现在:1.从流路上分析,直行程阀流路复杂,导致4个不足:1) Kv值小;2)防堵差;3)尺寸大,笨重;4)外观差;2.直行程阀阀杆上下运动,滑动摩擦大,导致2个不足:1)阀杆密封差,寿命短;2)抗振动差;3.从结构上分析,导致3个不足:1)单密封允许压差小;2)双密封泄露大;3)阀芯在中间,无法避开高速介质(汽蚀、颗粒)的直接冲刷,寿命短。

所以,角行程阀的广泛应用将成为一种必然,成为二十一世纪的主流。

◆为什么电动阀比气动阀应用越来越广泛?电动阀比气动阀有如下优势:1.用电源经济方便,省去建立气源站,从经济上看,与“气动阀+定位器+电磁阀+气源”组合方式价格差不多;2.用气动阀环节较多,增加不可靠因素和维修量;3.电动阀的推力、刚度、精度、重量、安装尺寸都优于气动阀,但防爆价格高。

所以,防爆要求不高的场合,尽可能选电动阀。

◆为什么说精小型阀、Cv3000是第一代产品的改进型?精小型阀较老产品,重量下降30%,体积和高度下降30%,Kv值提高30%,仅此三个30%,其功能、结构没有质的突破,只能配称改进型。

◆Cv3000为什么成为二十世纪末调节阀的主流?Cv3000较老式产品比较有以下三个优点:1)重量轻30%;2)体积和高度下降30%;3) Kv值提高30%。

较原来老产品是一种改进,所以成为20世纪末的主流,但这种主导位置,很快将由角行程阀所替代。

◆选择单密封和双密封选型注意事项:1)单密封泄漏小,允许压差小(小口径除外),如小流量阀,单座阀、角型阀、单密封套筒阀等;2)双密封泄漏大,允许压差大,如双座阀、双密封套筒阀等。

单座调节阀选型流程

单座调节阀选型流程

单座调节阀选型流程
单座调节阀的选型流程包括以下几个步骤:
1.确定工况条件:包括流体特性,允许噪音,P1、△P、Q、T1等参数。

2.选择阀体和阀内件要求的合适的ANSI压力等级。

3.计算要求的初始Cv值:检查噪音和气蚀水平。

4.选择调节阀阀内件类型:如果没有噪音或气蚀的提示,就选择标准的阀内件;
如果有气相噪音很高,就选择降噪阀内件;如果气相噪音很高或提示有气蚀,就选择相关应对的阀内件。

5.选择阀体阀内件尺寸:根据要求的Cv值,选择阀体和阀内件尺寸。

注意行程、
阀内件组别和关闭等级可选项。

6.选择调节阀阀内件材料:为应用场合而选择阀内件材料。

确保所选阀内件可以
在用于所选阀门口径的阀内件组别里找到。

7.可选项:考虑有关关闭等级,阀杆填料等可选项。

在选择调节阀时,还需要考虑驱动方式,根据工况条件选择电动执行器或气动执行器。

电动执行器适用于有电源或现场电源的情况,而气动执行器则适用于防爆、带气源等场合。

此外,根据调节阀的cv计算到阀的口径确定,一般需经以下步骤:计算流量的确定、阀前后压差的确定、计算cv、选用cv、调节阀开度验算、调节阀实际可调比的验算、润座直径和公称直径的确定等。

总的来说,单座调节阀的选型需要综合考虑多个因素,包括工况条件、压力等级、流体特性、噪音水平、执行方式等。

在具体选型过程中,还需要根据实际情况进行计算和验算,以确保选择的调节阀能够满足实际需求。

调节阀的选型

调节阀的选型

调节阀的选型0 引言调节阀是调节系统中非常重要的一个环节,在生产实践中控制系统的正常与否,常常涉及到调节阀的问题。

调节阀所反应出来的问题又多集中在调节阀的工作特性和结构参数上,如流通能力、公称通径、阀芯引程及流量特性等。

在这些参数中,流通能力更重要,它的大小直接反映调节阀的容量,它是设计选型中的主要参数。

因此,调节阀的选择主要从以下几个因素进行考虑。

1 选择原则(1)满足自控系统的要求;(2)满足经济性的要求。

2 调节阀流量系数Cv及口径的计算(1) 流量系数C v(流通能力)的定义为:调节阀前后的压差为1Kg/cm2,重度为1g/cm2流体,每小时通过阀门的体积流量(m3/h)。

调节阀流量系数C v的计算方法很多,也比较繁琐,以下列出几种主要流通介质的C v值的计算方法。

表1 液体阻塞流:当阀前压力P1保持一定而阀后压力P2逐渐降低时,流经调节阀的流体流量会增加到一个极限值,这时即使P2再继续降低,流量也不会再增加,此极限流量即为阻塞流。

显然,形成阻塞流之后,相当于流量已达到饱和状态(临界状态),这时流经调节阀的流量不再随调节阀前后的压差△P的增加而增加。

因此,流体在阀内是否形成阻塞流,调节阀C值的计算公式将不一样。

判断是否是属于阻塞流的情况,就可以决定取用相应的C值计算公式。

(表2)情况相同。

表2 气体和蒸汽上表2中:C v—调节阀流量系数C f—临界流量系数G f—流体流动温度下的比重(水G f=1,15℃;空气G f=288G/T)G—气体比重(空气G=1.0)P1—调节阀进口压力,0.1MPa(绝对)P2—调节阀出口压力,0.1MPa(绝对)P v—液体流动温度下的饱和蒸汽压力,0.1MPa(绝对)P c—热力学临界压力,0.1MPa(绝对)Δp—压降,100kPa(ΔP=P1- P2)Δp s—口径计算用最大压降,0.1MPaΔp s=P1-(0.96- 0.28P v/P c)P v若P v<0.5P1,ΔP s=P1- P vq—液体流量,m3/hQ—气体流量,标准m3/h(15℃,绝对压力为101.3kPa时)T—绝对温度,K(K=273+℃)T sh—蒸汽过热温度,℃(饱和蒸汽T sh=0)W—流量,t/h(2) 阀口径的计算,根据生产能力、设备负荷、以被控介质的工况决定流通能力计算所需的数据,求得最大、最小流量时的C v max和C v min。

调节阀的选型依据

调节阀的选型依据

调节阀的选型依据
调节阀是工业现场不可或缺的流量调节设备之一,那么如何选择
一款适合自己需要的调节阀呢?下面就为大家介绍调节阀的选型依据:首先,根据流体介质的特性选型。

流体包括气体、液体和蒸汽,
在选型前需要了解流体的温度、粘度、密度、压力变化等参数,以便
进行匹配选择。

其次,根据流量变化情况选型。

通常,流量调节阀的调节范围是10:1或20:1,而超调范围在±5%~±10%之间,因此在选型前,需要
清楚了解实际工况下的流量范围,以便选择合适的调节阀。

第三,考虑阀门的执行机构。

阀门的执行机构根据不同的使用环
境可以分为手动、气动、电动等多种,需要根据现场实际情况进行选择。

如果环境复杂,需要远程控制,那么选择气动或电动阀门会更为
便捷。

第四,考虑安装环境。

调节阀的安装环境通常需要考虑阀门的防
爆等级、密封性、承压能力、安装方式等因素。

例如,在液化气体工
况下,需选用防爆等级较高的调节阀,比如说防爆设计的角行程式控
制阀。

第五,考虑配套件的选择。

配套的附件包括阀门定位器、阀门位
置传感器、防爆限位器、加热器等,也需要根据实际情况选择。

综上所述,对于调节阀的选型,需要综合考虑流体介质的特性、流量变化情况、阀门执行机构、安装环境、配套附件等多重因素,以达到最佳匹配。

电动调节阀如何选型

电动调节阀如何选型

电动调节阀如何选型
1、电动调节阀选用主要控制参数为:公称直径、设计公称压力、介质允许温度范围、流量系数等。

2、对于要求流量和开启高度成正比例关系的严格场合,应选用合适的调节阀。

球阀和蝶阀一般粗调时可以选用。

3、阀门的密封性能是考核阀门质量优劣的主要指标之一。

阀门的密封性能主要包括两个方面,即内漏和外漏。

内漏是指阀座与关闭件之间对介质达到的密封程度。

外漏是指阀杆填料部位的泄露,中口垫片部位的泄露以及阀体因铸造缺陷造成的泄露。

外漏是不允许发生。

4、调节阀理想流量特性有快开、抛物线、线性、等百分比四种,需根据实际工作流量特性选择具有合适流量特性的调节阀。

5、调节阀公称直径的选取应根据所需阀门流通能力确定。

调节阀公称直径不应过大或过小。

过大,增加工程成本,并且阀门处于低百分比范围内,调节精度降低,使控制性能变差。

过小,增加系统阻力,甚至会出现阀门全开启时,系统仍无法达到设定的容量要求。

6、调节阀的调节压差和关断压差对于调节阀,其允许的调节压差和关断压差是其选型的重要指标。

实际压差如高于调节阀允许的调节压差,阀门会出现不能准确调节的问题,严重的会损伤阀门执行器。

调节阀的型式选择

调节阀的型式选择

调节阀的型式选择1、根据工艺变量(温度、压力、压降和流速等)、流体特性(粘度、腐蚀性、毒性、含悬浮物或纤维等)以及调节系统的要求(可调比、泄漏量和噪音等)、调节阀管道连结形式来综合选择调节阀型式。

2、一般情况下优先选用体积小,通过能力大,技术先进的直通单、双座调节阀和普通套筒阀。

也可以选用低S值节能阀和精小型调节阀。

3、根据不同场合,可选用下列型式调节阀。

1)直通单座阀一般适用于工艺要求泄漏量小、流量小、阀前后压差较小的场合。

但口径小于20mm的阀也广泛用于较大差压的场合;不适用于高粘度或含悬浮颗粒流体的场合。

2)直通双座阀一般适用于对泄漏量要求不严、流量大和阀前后压差较大的场合;但不适用于高粘度或含悬浮颗粒流体的场合。

3)套筒阀一般适用于流体洁净,不含固体颗粒的场合。

阀前后压差大和液体可能出现闪蒸或空化的场合。

4)球型阀适用于高粘度、含纤维、颗粒状和污秽流体的场合。

调节系统要求可调范围很宽(R可达200:1;300:1)的场合。

阀座密封垫采用软质材料时,适用于要求严密封的场合。

“0”型球阀一般适用两位式切断的场合。

“V”型球阀一般适用于连续调节系统,其流量特性近似于等百分比。

5)角型阀一般适用于下列场合:高粘度或悬浮物的流体(必要时,可接冲洗液管);气-液混相或易闪蒸的流体;管道要求直角配管的场合。

6)高压角型阀除适用5)中各种场合外,还适用于高静压、大压差的场合。

但一定要合理选择阀内件的材质和结构形式以延长使用寿命。

7)阀体分离型调节阀一般适用于高粘度、含颗粒、结晶以及纤维流体的场合;用于强酸、强碱或强腐蚀流体的场合时,阀体应选用耐腐蚀衬里,阀盖、阀芯和阀座应采用耐腐蚀压垫或相应的耐腐蚀材料。

其流量特性比隔膜阀好。

8)偏心旋转阀适用于流通能力较大,可调比宽(R可达50:1或100:1)和大压差,严密封的场合。

9)蝶型阀适用于大口径、大流量和低压差的场合;一般适用于浓浊液及含悬浮颗粒的流体场合;用于要求严密封的场合,应采用橡胶或聚四氟乙烯软密封结构;对腐蚀性流体,需要使用相应的耐蚀衬里。

建议收藏——调节阀选型方法总结

建议收藏——调节阀选型方法总结

建议收藏——调节阀选型方法总结自动控制系统是通过执行器对被控对象进行作用的。

调节阀是生产过程自动化控制系统中最常见的一种执行器。

调节阀直接与流体接触控制流体的压力或流量。

正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程对于自动控制系统的稳定性起着十分重要的作用。

如果计算错误,选择不当,将直接影响控制系统的性能,使得自动控制系统产生震荡甚至不能正常运行。

因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑的重要环节。

1调节阀结构形式的选择常用的调节阀结构形式有直通单座阀、直通双座阀、套筒阀、偏心旋转阀、蝶阀、全功能超轻型调节阀、球阀,应当根据不同的使用情况,结合不同结构形式阀门各自的特点,从调节性能、适用温度、适用口径、耐压、适用介质条件、切断差压、泄流量、压力损失、重量、外观、成本等方面对调节阀的结构形式进行选择。

对调节阀进行结构的选择时,要根据相应的管路及介质条件,按照如下优选顺序进行选择①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→⑦球阀,只有当前一优选级别的阀门再某一方面不合适时,才考虑选择下一级类型的阀门。

注:关于调节阀的调节特性的评定调节阀的流量调节性能一般通过流量特性、可调比、小开度工作性能、Kv值和动作速度进行综合评价。

调节性能以其流量特性曲线进行衡定,一般认为等百分比特性为最优,其调节稳定,调节性能好,最利于流量压力调节。

而抛物线特性又比线性特性的调节性能好,快开特性为最不利于流量调节的流量特性。

因此在选用调节阀时,一般希望调节阀流量特性曲线为等百分比型。

可调比反映了调节阀的可调节流量范围,调节阀的可调比就是调节阀所能控制的最大流量与最小流量之比。

可调比也称可调范围,以R来表示,即R=Qmax/Qmin,Qmax为调节阀的最大可控流量,Qmin为调节阀的最小可控流量。

一般认为R的值越大,则调节阀的可调节范围越。

调节阀选择指南

调节阀选择指南

系数 R 的计算公式 (英制)
R= 1000Q ……(A) Cv ⋅ Mcs
(公制)
R= 44000Q ……(A') Cv ⋅ Mcs
R= 46500Q ……(B) Cv ⋅ Mssu
R= 204600Q ……(B') Cv ⋅ Mssu
式中
Q = 最大流量 gpm(美加仑/分)
Q = 最大流量 m3/h
B-试验压力为阀的最大工作压差。
表2
阀座直径(mm)
20 25 40 50 65 80 100 150 200 250 300 350 400
ml/min
0.1 0.15 0.3 0.45 0.60 0.90 1.70 4.00 6.75 11.1 16.0 21.6 28.4
泄漏量
每分钟气泡数 —
P1-进口绝对压力(kgf/cm2 abs)
P2-出口绝对压力(lbs/in2 abs)
P2-出口绝对压力(kgf/cm2 abs)
ΔP=P1-P2 (lbs/in2 abs)
ΔP=P1-P2(kgf/cm2 abs)
(注:P1 和 P2 为最大流量时的压力)
公称通径的选择
调节阀公称通径选择,是由最大 Cv 值、最小 Cv 值、额定 Cv 值、可调范围以及调节阀是否有足够的调 节余量等因素来决定的。
调节阀常在小开度下工作,阀芯容易磨损,再从控制性能上考虑, 希望阀在 50~80%开度范围内工作。 3、 最小 Cv 值 调节阀的最小 Cv 值应在固有的可调范围之内,实际上大多数调节 阀控制流体时,随着开度的变化,阀上压差也相应的变化。开度 与流量之间的固有流量特性,变成了实际的流量特性,可调范围 也变小了。阀达到最小 Cv 值时,希望阀在 10~20%开度范围内工 作,如果要使阀在更小的开度范围内工作,应选择可调范围较大 的调节阀,或者改用一台大、一台小的调节阀,用这两台阀分程 控制流量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

调节阀选型指南之—弹簧范围的选择一、“标准弹簧范围”的错误说法应予纠正弹簧是气动调节阀的主要零件。

弹簧范围是指一台调节阀在静态启动时的膜室压力到走完全行程时的膜室压力,字母用Pr表示。

如Pr为20~100KPa,表示这台调节阀静态启动时膜室压力是20KPa,关闭时的膜室压力是100KPa。

常用的弹簧范围有20~100KPa、20~60KPa、60~100KPa、60~180KPa、40~200KPa…由于气动仪表的标准信号是20~100KPa,因此传统的调节阀理论把与气动仪表标准信号一致的弹簧范围(20~100KPa)定义成标准弹簧范围。

调节阀厂家按20~100KPa作为标准来出厂,这是十分错误的。

为了保证调节阀正常关闭和启动,就必须用执行机构的输出力克服压差对阀芯产生的不平衡力,我们知道对气闭阀膜室信号压力首先保证阀的关闭到位,然后再继续增加的这部分力,才把阀芯压紧在阀座上克服压差把阀芯顶开。

我们又知道,不带定位器调节阀的最大信号压力是100KPa,它所对应的20~100KPa的弹簧范围只能保证阀芯走到位,再也没有一个克服压差的力量,阀门工作时必然关不严造成内漏。

为此,就必须调整或改变弹簧范围,但是,把它说成“标准弹簧范围”就出问题了,因为是标准就不能改动。

如果我们坚持标准,按“标准弹簧范围”来调整,那么,它又怎么能投用呢?在现实中,却有许多使用厂家和安装公司;都坚持按“标准弹簧范围”20~100KPa来调整和验收调节阀,又确实发生阀门关不严的问题。

错误的根源就在此。

正确的提法应该是“设计弹簧范围”,是我们设计生产弹簧的零件参数。

工作时根据气开气闭还要作出相应的调整,我们称为工作弹簧范围。

仍以上述为例,设计弹范围20~100KPa,对气闭阀我们可以将工作弹簧范围调到10~90KPa,这样就有10KPa,作用在膜室的有效面积Ae 上;又如气开阀,有气打开,无气时阀关闭,此时克服压差靠的是弹簧的预紧力。

为了克服更大的压差,需调紧预紧力,还需带定位器,若定位器气源为140KPa,我们可以将设计弹簧范围20~100KPa调紧到50~130KPa,此时输出力为50Kpa×Ae。

如果把20~100KPa作为标准弹簧固定的话,就只有20Kpa×Ae,带定位器也失去作用。

由此可见,气开阀带定位器也必须调高弹簧范围的起点压力才能提高执行机构的输出力。

对不带定位器的场合,气闭阀我们还可以设计20~80KPa,这样不带定位器仍有20KPa.Ae的输出力。

所以弹簧范围应根据气开气闭、带定位器与否、压差产生的不平衡力作用的方向,三者结合起来才能设计出相适应的弹簧。

为什么国外设计的弹簧很多,高达十几种,就是此道理。

由此可见,标准弹簧范围的提法是错误的,它让人们在“标准”二字上而不能改动,误导人们死套20~100KPa来调校,结果造成无输出力或输出力不够。

正确的提法应是:将“标准弹簧范围”提法取消,改为“设计弹簧范围”。

其中20~100KPa的弹簧范围称为常用弹簧范围。

二、弹簧范围的选择弹簧范围的选择主要从调节阀的稳定性、输出力两方面考虑。

1) 调节阀的稳定性上选择从调节阀的稳定性上选择,弹簧应该是越硬越好,如选用40~200KPa、60~180KPa的弹簧,它不仅克服轻微振荡、克服摩擦力,而且能使阀芯住复运动自如。

2) 从输出力上选择由于执行机构的输出力是执行机构总的合力减去弹簧的张力、摩擦力、弹簧越软,其输出力就越大。

所以,从输出力上考虑应该选择软弹簧(即小的弹簧范围)。

3) 从综合性能上选定弹簧范围若从稳定性上选择,要选用弹簧范围大的硬弹簧;若从输出力来看,又应该选用弹簧范围小的软弹簧,两者互为矛盾,因此应予以综合考虑。

在满足输出力的情况下,尽量选用范围大的硬弹簧。

笔者建议,对薄膜调节阀充分利用定位器250KPa的气源,选用60~180KPa 的弹簧。

它对气开阀有60KPa的输出力,对气闭阀有250-180=70KPa的输出力,其弹簧范围Pr为180-60=120KPa。

再看传统的20~100KPa的弹簧配140KPa的气源时的输出力;气开阀为20KPa,气闭阀与140-100=40KPa,其弹簧范围Pr=100-20=80KPa。

由此不难看出,无论从输出力、刚度上讲,我们建议选择60~180KPa的弹簧范围远远优越于常规弹簧范围。

4) 特殊情况弹簧范围的选择若遇大口径、大压差、含颗粒等场合时,其弹簧范围的选定通过详细计算来满足。

供热系统中调节阀选型与计算近年来,为解决供热、空调系统中的水力失调、冷热不均等问题,自动控制系统应用得越来越多,因而调节阀得到广泛的应用,同时对电动调节阀性能特别是其流量特性的要求也越来越高。

气动调节阀的流量特性,即流量随调节阀开度变化的关系,取决于阀芯的型线及其在系统中的位置。

目前,在调节阀设计时,即使流量特性为百分比型的调节阀,在实际工作中也会变成快开特性,使系统无法进行正常的调节。

其原因是多方面的,但有个重要原因是现有调节阀阀芯型线设计中存在某些问题,使得调节阀的工作参数与设计参数不一致,在很多情况下满足不了运行调节的要求。

为些,需要对阀芯的型线设计进行修正。

此外,调节阀的规格或口径选择也非常重要,它直接影响到调节系统效果的好坏,因此需根据调节对象的特性、调节阀的使用场合和流通能力来正确选用调节阀。

2、阀芯型线的计算公式调节阀阀芯形状基本上可分为3类:柱塞式、开口式和套筒式。

但无论何种阀芯,都可以具有相同的流量特性,每一种流量特性都有相同的数学模型和数学方程。

目前应用最为广泛的有直线流量特性的直线方程和等百分比流量特性的对数方程。

直线流量特性和等百分比流量特性均指调节阀的理想流量特性,理想流量特性是在阀前后压差恒定的情况下得到的。

显然,在实际工况下阀前后的压差不是恒定的。

因此研究调节阀最主要的是研究其工作特性,即实际工况下流量与调节阀开度变化的关系。

由文献[1]可知:直线流量特性的数学方程:(1)式中:G/Gmax--相对流量,即调节阀在某一开度下的流量与全开流量之比;L/Lmax--相对开度,即调节阀某一开度下的行程与全开时行程之比;k--常数,即调节阀的放大系数。

进而可得:式中R为可调比,即调节所能控制的最大流量与最小流量之比,R = Gmax/Gmin。

由等百分比流量特性的数学方程(3)可得(4)式(2)、(4)只适用于计算机流量特性为直线型和等百分比型的调节阀各个开度下的流量,不能用于计算各个开度的流通截面积,而这正是现有调节阀阀芯设计的问题所在,文献[2]等即认为:G/Gmax=F/Fmax。

为了计算各开度下的流通截面积,由文献[3]可得:(5)式中:G--流量,kg/s;α--流量系数;F--调节阀的流通截面积,m2;ρ--介质的密度,kg/m3;Δp--调节阀前后的压差,Pa。

由式(5)可得:(6)下角标max是指调节阀最大行程时的各参数。

分别联立式(2)、(6)和式(5)、(6)可得:(7)(8)式(7)、(8)分别为流量特性曲线是直线型和等百分比型调节阀的流通截面积计算公式。

其中流量系数α可依据文献[3]查得近似值,亦可以据其所述原理进行标定。

3、Δpmax、Δp值的确定3.1 为了更好地应用(7)、(8)两式,需确定Δpmax、Δp值。

Δpmax为调节阀全开时阀上的压差,它与调节系统总压差的比值称为阀权度PV[1],亦称调节阀能力。

(9)式中PV为调节阀的阀权度;Δpx为系统的阻力压降,Δpmax+Δpx=Δps。

参见图1。

图1PV值的大小将关系到系统的调节质量,如图2[1]所示。

在实际的工作中,理想的直线特性趋于快开特性,理想的等百分比特性趋向于直线特性,PV值越小,系统的调节质量越差。

因此,在实际使用中,一般希望PV值最小不低于0.3[1]。

图2 调节阀的工作特性3.2、Δp的计算Δp是指调节阀在某一开度下的压差。

其值在Δpmax和Δpmin(Δpx为调节阀最小可调量流量时的压差,可取0.95Δps)之间的波动,可以采用内插法来进行估算,即视调节阀的压差随流量成比例变化,则有:(10)综合以上公式可得:(11)式中Φ为与阀权度PV值有关的系数,当PV=0.3时,Φ=0.217; PV=0.5,Φ=0.9。

将式(11)代入式(7)、(8)即可计算出各个开度下的流通截面积,从而可以进行阀芯型线设计。

对于等百分比特性的柱塞式调节阀,假设PV=0.3,L/Lmax=0.5,R=30,则可得出Φ=2.17 ,G/Gmax=0.138,α/αmax=0.875,代入式(8)、(11)得:F/Fmax=1.4 G/Gmax。

显然,F/Fmax≠G/Gmax,而且偏差很大(与阀权度PV值的大小有很大关系)。

这表明:在理想情况下设计的等百分比型调节阀不是等百分比型,而是直线型,甚至是快开型(指相对开度从0到很小的一段范围内,相对流量就从0达到80%以上),何况在实际工作中呢?这是调节阀阀芯型线设计的"先天性"缺陷,更加导致了调节阀在实际工作中调节性能变差。

4、供热系统中调节阀的选用4.1 选用原则供热系统最终目的是热力工况的平衡,要求在流量改变的同时,散热器(或换热器)散热量适应负荷的变化。

就是说,调节阀的开度变化与散热器散热量的变化成线性关系,这才是供热系统调节的最佳原则。

亦即文献[1]所述在调节过程中,调节阀的放大系数和调节对象的放大系数乘积维持不变。

从文献[4]可得出散热器的流量与散热量之间的关系,如图3所示。

Q为相对散热量,指散热器某一流量下的散热量与额定流量(设计流量)下的散热量的比值,G为散热器相对流量,曲线1、2、3、4分别表示供回水温差为10、20、30、40℃时散热器流量与散热量之间的关系。

从图中可以看出:流量小时流量变化对散热器的散热量影响大;流量大时影响小,即散热器的散热量随流量变化的放大系数逐渐减小。

图3分析图2、图3中得:为了得到散热器的相对散热量Q/Qmax和调节阀的相对开度L/Lmax的线性关系,必须选择等百分比性能的调节阀。

这一点对于散热器和换热器,只要其介质为热水,都是如此,而直线型的调节阀将达不到线性关系的要求。

对于不同的供回水温差,散热器放大系数(曲线的斜率)的变化率不一样;调节阀在不同的安装地点,阀权度PV值不同,放大系数的变化率不一样。

为保证两个放大系数的乘积为一常数,在选用调节阀时使其调节阀全开时的阻力应不一样。

由此可得出:在目前供热系统中大流量、小温差运行方式下,调节系统调节质量变差。

通过以上分析,笔者认为热水供暖系统应选用等百分比型调节阀,此外还应考虑调节阀阻力,这一点对于调节阀用在不同场合非常重要。

一般而言,系统的阻力数在热源的分、集水器(注:对于热源的分、集水器处的调节阀,其调节对象为整个供热系统,其散热量与流量的关系也类似图3的形状[5])、热力站处为最大,干线分支处和用户的热力入口次之。

相关文档
最新文档