人教版九年级数学上册期末试卷(含答案)
人教版九年级数学上册期末测试题(附参考答案)
人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。
人教版九年级上册数学期末考试试题及答案
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列图形中不是..中心对称图形的是()A .B .C .D .2.如图,AB 是O 的直径,弦CD AB ⊥于点E ,30CDB ∠=︒,O 的半径为3cm ,则CD 弦长为()A .32cmB C .D .6cm3.已知,⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,则点P 在⊙O 的()A .外部B .内部C .圆上D .不能确定4.抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是A .y =12(x +1)2﹣2B .y =12(x ﹣1)2+2C .y =12(x ﹣1)2﹣2D .y =12(x +1)2+25.有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张点数为偶数的概率是()A .16B .14C .13D .126.下列事件中,属于必然事件的是()A .小明买彩票中奖B .投掷一枚质地均匀的骰子,掷得的点数是奇数C .等腰三角形的两个底角相等D .a 是实数,0a <7.已知一元二次方程280x x c --=有一个根为2,则另一个根为()A .10B .6C .8D .2-8.若关于x 的一元二次方程2320kx x -+=有实数根,则字母k 的取值范围是()A .98k <且0k ≠B .98k ≤C .98x <D .98k ≤且0k ≠9.下列说法错误的是()A .等弧所对的弦相等B .圆的内接平行四边形是矩形C .90︒的圆周角所对的弦是直径D .平分一条弦的直径也垂直于该弦10.如果a 0,b 0,c 0<>>,那么二次函数2y ax bx c =++的图象大致是()A .B .C .D .二、填空题11.方程(x -1)(x +2)=0的两根分别为________.12.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率为23,则n=_____.13.在半径为6的圆中,一个扇形的圆心角是120︒,则这个扇形的弧长等于__________.14.如果m 是一元二次方程2220x x --=的一个根,那么2242m m --的值是__________.15.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.16.如图,将△ABC 绕点A 旋转到△AEF 的位置,点E 在BC 边上,EF 与AC 交于点G .若∠B =70°,∠C =25°,则∠FGC =___°.17.如图,等边三角形ABC 中,点O 是ABC 的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S = ;③四边形ODBE 的面积始终等于定值;④当OE BC ⊥时,BDE 周长最小.上述结论中正确的有__________(写出序号).三、解答题18.解方程:2320x x --=.19.已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式.20.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上.(1)画出ABC 绕B 点顺时针旋转90︒后的111A B C △,并写出1A 的坐标;(2)画出ABC 关于原点O 对称的222A B C △.21.已知抛物线2y x bx c =++经过点()0,3C -和点()4,5D .(1)求抛物线的解析式;(2)设抛物线与x 轴的交点A 、B 的坐标(注:点A 在点B 的左边),求ABC 的面积.22.小李和小王两位同学做游戏,在一个不透明的口袋中放入1个红球、2个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是多少?(2)两人约定:从袋中一次摸出两个球,若摸出的两个球是-红一黑,则小李获胜:若摸出的两个球都是白色,则小王获胜,请用列举法(画树状图或列表)分析游戏规则是否公平.23.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,//OC BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =6,∠CBD =30°,求图中阴影部分的面积.24.某地区2018年投入教育经费2000万元,2020年投入教育经费2880万元.(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2021年该地区将投入教育经费多少万元.25.已知二次函数y =x 2-6x+8.求:(1)抛物线与x 轴和y 轴相交的交点坐标;(2)抛物线的顶点坐标;(3)画出此抛物线图象,利用图象回答下列问题:①方程x 2-6x +8=0的解是什么?②x 取什么值时,函数值大于0?③x 取什么值时,函数值小于0?26.如图,ABC 内接于O ,且AB 为O 的直径,过圆心O 作⊥OD AB ,交AC 于点E ,连接DC ,已知2D A ∠=∠.(1)求证:CD 是O 的切线;(2)求证:DE DC =;(3)若5OD =,3CD =,求AC 的长.参考答案1.D 【分析】根据中心对称图形的概念求解.【详解】A 、是中心对称图形,故本选项错误;B 、是中心对称图形,故本选项错误;C 、是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项正确.故选:D .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C 【分析】根据圆周角定理可求出∠COB 的度数,再利用特殊角的三角函数值及垂径定理即可解答.【详解】解:30CDB ∠=︒ ,60COB ∴∠=︒,又3cm OC = ,CD AB ⊥于点E ,·sin 60CE OC ∴=︒=,2CD CE ∴==.故选:C .【点睛】本题考查了垂径定理、勾股定理以及解直角三角形.此题难度不大,注意数形结合思想的应用.3.B 【解析】试题分析:∵⊙O 的半径为5cm ,点P 到圆心O 的距离为4cm ,5cm >4cm ,∴点P在圆内.故选B.点睛:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.4.D【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【详解】抛物线y=12x2向左平移1个单位,再向上平移2个单位得y=12(x+1)2+2.故选:D.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.5.D【分析】用点数为偶数的张数除以总张数即可得出答案.【详解】有6张扑克牌面数字分别是3,4,5,7,8,10从中随机抽取一张一共有6中情形,其中偶数4,8,10三张,由概率公式随机抽取一张点数为偶数的概率P=31= 62,故选择:D.【点睛】本题考查概率公式P(A)=mn求简单事件的概率,关键是应先确定所有结果中的可能性都相同,然后确定所有可能的结果总数n和事件A在总数中的结果数m是解题关键.6.C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A.小明买彩票中奖,是随机事件;B.投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C.等腰三角形的两个底角相等,是必然事件;D.a 是实数,0a <,是不可能事件;故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.B 【分析】设方程的另一根为m ,由根与系数的关系可得:28,m +=解方程可得答案.【详解】解: 一元二次方程280x x c --=有一个根为2,设另一根为m ,828,1m -∴+=-=6,m ∴=故选:.B 【点睛】本题考查的是一元二次方程的根与系数的关系,掌握一元二次方程的根与系数的关系是解题的关键.8.D 【分析】根据一元二次方程根的判别式,b 2-4ac≥0,且二次项系数不为0,即可求出k 的范围.【详解】∵方程有实数根∴b 2-4ac=()23420k --⨯⨯≥解得:98k ≤又∵原方程是一元二次方程∴0k ≠∴k 的取值范围是98k ≤且0k ≠【点睛】本题考查了根的判别式,牢记“当0∆≥时,方程有两个实数根”是解题的关键,且切记不要漏掉二次项系数不为0.9.D 【分析】根据圆的性质逐项判断即可.【详解】A .等弧所对的弦相等,故A 正确,不符合题意.B .根据圆的内接四边形对角互补和平行四边形邻角互补,即可知圆的内接平行四边形是矩形.故B 正确,不符合题意.C .90︒的圆周角所对的弦是直径,故C 正确,不符合题意.D .平分一条弦(非直径)的直径也垂直于该弦.故D 错误,符合题意.故选:D .【点睛】本题考查圆周角定理,垂径定理,圆心角、弧、弦的关系以及圆内接平行四边形的性质.熟练掌握这些知识是判断此题的关键.10.D 【分析】根据a 、b 、c 的符号,可判断抛物线的开口方向,对称轴的位置,与y 轴交点的位置,作出选择.【详解】由a <0可知,抛物线开口向下,排除.D ;由a <0,b>0可知,对称轴x=-b2a-b2a >0,在y 轴右边,排除B ;由c <0可知,抛物线与y 轴交点(0,c)在x 轴下方,排除C ;故答案为:D .【点睛】本题考查的是二次函数,熟练掌握二次函数的图像是解题的关键.11.121,2x x ==-根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程.【详解】解:(x -1)(x +2)=0x -1=0或x +2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.12.4【分析】根据白球的概率公式列出关于n 的方程,解方程即可得.【详解】由题意得22123n =-+,解得n=4,经检验n=4是方程的根,故答案为4.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.4π【分析】利用扇形的弧长公式:l =180n rπ代入计算即可.【详解】扇形的圆心角为120°.r=6,则扇形弧长l =1206=4180180n r πππ⨯=,故答案为:4π.【点睛】本题主要考查扇形的弧长公式,解题的关键是熟知扇形的弧长公式的运用.14.2【分析】利用一元二次方程的解的定义得到m 2-2m=2,再把2m 2-4m-2变形为2(m 2-2m )-2,然后利用整体代入的方法计算.【详解】解:∵m 为一元二次方程x 2-2x-2=0的一个根.∴m 2-2m-2=0,即m 2-2m=2,∴2m 2-4m-2=2(m 2-2m )-2=2×2-2=2.故答案为:2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.4s 【分析】把二次函数的一般式写成顶点式,找出顶点坐标,即可知道多长时间后得到最高点.【详解】解:252012h t t =-++=52-(t-4)2+41,∵52-<0,∴这个二次函数图象开口向下,∴当t=4时,升到最高点,∴从点火升空到引爆需要的时间为4s .故答案为:4s .【点睛】本题考查了二次函数解析式的相互转化,以及二次函数的性质,二次函数的表达式有三种形式,一般式,顶点式,交点式.要求最高(低)点,或者最大(小)值,需要先写成顶点式.烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h (m )与飞行时间t (s )的关系式是h=t2+20t+1252012h t t =++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为16.65【分析】根据旋转前后的图形全等,可推出∠BAE=∠FAG=40°,∠F=∠C=25°,根据三角形外角的性质即可求解.【详解】解:由旋转的性质可得:AB=AE ,∠BAC=∠EAF ,又∵∠B =70°,∴∠BAE=180°-2×70°=40°,∵∠BAC=∠EAF ,∴∠BAE=∠FAG=40°,∵△ABC ≌△AEF ,∴∠F=∠C=25°,∴∠FGC=∠FAG+∠F=40°+25°=65°,故答案为:65.【点睛】本题考查了旋转的性质,把握对应相等的关系是解题关键.17.①③④【分析】连接OB 、OC ,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE ,于是可判断△BOD ≌△COE ,所以BD=CE ,OD=OE ,则可对①进行判断;利用S △BOD =S △COE 得到四边形ODBE 的面积=13S △ABC ,则可对③进行判断;作OH ⊥DE ,如图,则DH=EH ,计算出S △ODE 2,利用S △ODE 随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于△BDE 的周长,根据垂线段最短,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,计算出此时OE 的长则可对④进行判断.【详解】解:连接OB 、OC ,如图,∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°,∵点O 是△ABC 的中心,∴OB=OC ,OB 、OC 分别平分∠ABC 和∠ACB ,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE ,在△BOD 和△COE 中,BOD COE BO COOBD OCE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△BOD ≌△COE (ASA ),∴BD=CE ,OD=OE ,∴①正确;作OH ⊥DE 于H ,如图,则DH=EH ,∵∠DOE=120°,∴∠ODE=∠OEH=30°,∴OH=12OE ,332OE ,∴3,∴S △ODE =12×123342,即S △ODE 随OE 的变化而变化,而四边形ODBE 的面积为定值,∴S △ODE ≠S △BDE ;设等边三角形ABC 的边长为a ,∵△BOD ≌△COE ,∴S △BOD =S △COE ,∴四边形ODBE 的面积=S △OBC ═13S △ABC =13×24a ,∴四边形ODBE 的面积始终等于定值;故③正确;∵BD=CE ,∴△BDE 的周长,当OE ⊥BC 时,OE 最小,△BDE 的周长最小,此时OE=6a ,∴△BDE 周长的最小值=a+1322a a =,为定值∴④正确.故答案为:①③④.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.18.123x =-,21x =【分析】选用因式分解法求解.【详解】(32)(1)0x x +-= ,123x ∴=-,21x =.【点睛】本题考查了一元二次方程的解法,根据题目特点灵活选择解法是解题的关键.19.2441999y x x =-+.【解析】根据()1,1-、()2,1两点纵坐标相同可得,抛物线的对称轴为直线x=12,因为函数图象与x 轴仅有一个交点,则抛物线的顶点为(12,0),可设二次函数解析式为y=a (x ﹣12)2,再将(2,1)代入求解即可.【详解】解:∵二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,∴抛物线的顶点为(12,0),则可设二次函数解析式为y=a (x ﹣12)2,将(2,1)代入得a=49,故二次函数的解析式为:224144192999y x x ⎛⎫=-=-+ ⎪⎝⎭.【点睛】本题主要考查二次函数图象的性质,利用待定系数法求函数解析式,解此题的关键在于熟练掌握其知识点.20.(1)见解析,1A 坐标为(3,1)-;(2)见解析.【分析】(1)分别在网格中找到点A 、C 绕点B 顺时针旋转90︒后的点1A 、1C ,再连接111A B C △,即可解题;(2)分别在网格中找到点A 、B 、C 关于原点O 对称的2A 、2B 、2C ,再连接即可解题.【详解】解:(1)所画图形如下:1A 坐标为(3,1)-;(2)所画图形如下所示:【点睛】本题考查网格作图、坐标与图形变换,是重要考点,难度较易,掌握相关知识是解题关键.21.(1)223y x x =--;(2)6【分析】(1)把点C 和点D 的坐标分别代入抛物线解析式可以得到关于b 、c 的二元一次方程组,解方程组即可得到b 、c 的值,从而得到抛物线的解析式;(2)令抛物线解析式中y=0,可以得到关于x 的一元二次方程,解方程可得A 、B 的坐标,从而得到线段AB 的长度,由题意即得△ABC 的面积为AB 与OC (长度等于C 点纵坐标绝对值)积的一半.【详解】(1)把点()0,3C -和点()4,5D .代入2y x bx c =++得35164cb c-=⎧⎨=++⎩解得23b c =-⎧⎨=-⎩所以抛物线的解析式为:223y x x =--;(2)把0y =代入223y x x =--,得2230x x --=解得11x =-,23x =,∵点A 在点B 的左边,∴点()1,0A -,点()3,0B 由题意得4AB =,3OC =,1143622ABC S AB OC =⨯=⨯⨯=△【点睛】本题考查二次函数与一元二次方程的综合运用,熟练掌握二次函数解析式的求法、通过求解一元二次方程计算二次函数与坐标轴交点坐标、利用函数图象与坐标轴的交点计算直线与坐标轴所围图形的面积是解题关键.22.(1)14;(2)见解析【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到-红一黑,以及两个球都是白色的情况数,求出它们的概率,即可做出判断.【详解】解:(1)4个小球中有1个红球,则任意摸出1个球,恰好摸到红球的概率是:111214=++(2)列表如下:红白白黑红---(白,红)(白,红)(黑,红)白(红,白)---(白,白)(黑,白)白(红,白)(白,白)---(黑,白)黑(红,黑)(白,黑)(白,黑)---所有等可能的情况有12种,其中两次都摸到一红一黑有2种可能,摸出的两个球都是白色的有有2种可能,则P (小李获胜)=21126=,P (小王获胜)=21126=,故游戏公平.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)证明见解析;(2)3π.【分析】(1)先根据圆的性质可得OA OB =,再根据三角形的中位线定理即可得证;(2)如图(见解析),先根据垂径定理、圆周角定理可得90,30ADB ABC CBD ∠=︒∠=∠=︒,从而可得60,30ABD BAD ∠=︒∠=︒,再根据直角三角形的性质、三角形的面积公式可得AOD S =120AOD ∠=︒,最后根据图中阴影部分的面积等于扇形OAD 面积减去AOD △面积即可得.【详解】(1)∵AB 是O 的直径,∴OA OB =,即点O 是AB 的中点,∵//OC BD ,∴OE 是ABD △的中位线,∴点E 是AD 的中点,∴AE ED =;(2)如图,连接OD ,∵AB 是O 的直径,6AB =,90ADB ∴∠=︒,132OA OD AB ===,∵//OC BD ,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,又OC 是O 的半径,AC CD∴=,30ABC CBD ∴∠=∠=︒,60ABD ABC CBD ∴∠=∠+∠=︒,9030BAD ABD ∠=︒-∠=︒,在Rt ABD △中,13,2BD AB AD ====,OD 是Rt ABD △的斜边AB 上的中线,111222AOD Rt ABD S S BD AD ∴==⨯⋅= ,又60ABD ∠=︒ ,2120AOD ABD ∴∠=∠=︒,则图中阴影部分的面积为212033360AODOAD S S ππ⨯-=-- 扇形.【点睛】本题考查了圆周角定理、垂径定理、扇形的面积公式、三角形中位线定理等知识点,较难的是题(2),熟练掌握圆周角定理和扇形的面积公式是解题关键.24.(1)20%;(2)3456【分析】(1)设年平均增长率为x ,一般用增长后的量=增长前的量×(1+增长率),2018年投入教育经费是2000万元,2019年在2018年的基础上增长x ,就是2018年的教育经费数额的(1)x +倍,2020年在2019年的基础上再增长x ,2020年的教育经费数额为20002(1)x +,即可列出方程求解.(2)利用(1)中求得的增长率来求2021年该地区将投入教育经费.【详解】解:(1)设年平均增长率为x,由题意得:2000×(1+x)2=2880,解得:x1=0.2x2=-2.2(舍去),答2018年至2020年洪泽湖初级中学投入教育经费的年平均增长率为20%,(2)2880×(1+20%)=3456(万元),答:2021年该地校将投入教育经费3456万元,【点睛】本题考查了一元二次方程中增长率的知识.掌握增长前的量×(1+年平均增长率)年数=增长后的量是本题的关键.25.(1)(2,0),(4,0),(0,8)(2)(3,-1)(3)①x1=2,x2=4②x<2或x>4③2<x<4【解析】【分析】(1)分别令x=0,y=0即可求得交点坐标.(2)把函数解析式转化为顶点坐标形势,即可得顶点坐标.(3)①根据图象与x轴交点可知方程的解;②③根据图象即可得知x的范围.【详解】(1)由题意,令y=0,得x2-6x+8=0,解得x1=2,x2=4.所以抛物线与x轴交点为(2,0)和(4,0),令x=0,y=8.所以抛物线与y轴交点为(0,8),(2)抛物线解析式可化为:y=x2-6x+8=(x-3)2-1,所以抛物线的顶点坐标为(3,-1),(3)如图所示.①由图象知,x 2-6x+8=0的解为x 1=2,x 2=4.②当x <2或x >4时,函数值大于0;③当2<x <4时,函数值小于0;【点睛】本题考查了二次函数图象上点的坐标特征及函数性质,是基础题型.26.(1)见解析;(2)见解析;(31655【分析】(1)连接OC ,由OA OC =,可得ACO A ∠=∠,可推出2COB A ∠=∠,由2D A ∠=∠,可得D COB ∠=∠.由⊥OD AB ,可求得90D COD ∠+∠=︒即可;(2)由90DCO ∠=︒和⊥OD AB 可得E 90DCE CO ∠+∠=︒,90AEO A ∠+∠=︒,由A ACO ∠=∠,可得DEC DCE ∠=∠即可;(3)由勾股定理求得4OC =,可求AB=8,可证AOE ACB ∽,由性质得OA OE AC BC =,可推出12BC AC =,由勾股定理222AC BC AB +=,转化为222184AC AC +=,解之即可.【详解】(1)证明:连接OC ,如图,OA OC = ,ACO A ∴∠=∠,2COB A ACO A ∴∠=∠+∠=∠,又2D A ∠=∠ ,D COB ∴∠=∠.又OD AB ⊥ ,90COB COD ∴∠+∠=︒.90D COD ∴∠+∠=︒.即90DCO ∠=︒,OC DC ∴⊥,又点C 在O 上,CD ∴是O 的切线;(2)证明:90DCO =︒∠ ,90DCE ACO ∴∠+∠=︒.又OD AB ⊥ ,90AEO A ∴∠+∠=︒,又A ACO ∠=∠ ,DEC AEO ∠=∠,DEC DCE ∴∠=∠,DE DC ∴=;(3)解:90DCO =︒∠ ,5OD =,3DC =,4OC ∴=,28AB OC ∴==,又3DE DC ==,2OE OD DE ∴=-=,A A ∠=∠ ,90AOE ACB ∠=∠=︒,AOE ACB ∴ ∽,OA OE AC BC ∴=,即2142BC OE AC OA ===,12BC AC ∴=,在ABC 中,222.AC BC AB += ,222184AC AC ∴+=,AC ∴=.【点睛】本题考查圆的切线,等腰三角形,相似三角形的判定与性质,勾股定理的应用,掌握圆的切线证明方法,等腰三角形判定方法,相似三角形的判定方法与性质的应用,会用勾股定理构造方程是解题关键.。
人教版九年级(上)期末数学试卷(解析版)
人教版九年级第一学期期末数学试卷及答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.58.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.811.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+512.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.413.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.414.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<015.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为,m的值是.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为m(用含x的代数式表示);(2)请列出方程,求出问题的解.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?参考答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.解:选项A、B、D的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称【分析】直接利用关于原点对称点的性质可得答案.解:因为点A(2,﹣1)和点B(﹣2,1)的横坐标和纵坐标均互为相反数,所以A、B两点关于原点对称.故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)【分析】根据二次函数的顶点式解析式解答即可.解:抛物线y=﹣2(x+3)2+5的顶点坐标是(﹣3,5).故选:B.【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.1【分析】根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.解:观察这个图可知:黑砖(4块)的面积占总面积(9块)的.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.解:∵a=1,b=0,c=﹣3,∴Δ=02﹣4×1×(﹣3)=12>0,则方程x2﹣3=0有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【分析】根据直径的定义,等圆的定义,等弧的定义,弧和圆心角的关系定理解答即可.解:A.过圆心且两个端点在圆上的线段是直径,故A选项说法错误;B.面积相等的圆,则半径相等,是等圆,故B选项说法正确;C.在同圆或等圆中,两个半圆是等弧,故C选项说法错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,故C选项说法错误;故选:B.【点评】本题主要考查了对圆的认识和弧、弦、圆心角的关系,熟练掌握相关定义和定理是解答本题的关键.7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.5【分析】利用2023年顺平县森林覆盖率=2021年顺平县森林覆盖率×(1+这两年顺平县的森林覆盖年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:根据题意得39.7%(1+x)2=50%,即0.397(1+x)2=0.5,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.【分析】根据题意得到xy=200(定值),故y与x之间的函数解析式,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=200,∴y=(x>0,y>0).故选:D.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点【分析】把解析式化为顶点式,利用二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线开口向上,对称轴为直线x=﹣2,顶点坐标为(﹣2,1),∴抛物线与x轴没有交点.故A,C,D正确;B不正确.故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.8【分析】设四边形A1B1C1D1的最短边长为x,然后利用相似多边形的性质可得=,进行计算即可解答.解:设四边形A1B1C1D1的最短边长为x,∵四边形ABCD与四边形A1B1C1D1相似,∴=,解得:x=6,故选:C.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.11.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+5【分析】直接利用正比例函数的性质、二次函数的性质、反比例函数的性质分别判断得出答案.解:A、y=,当x<0时,y随x的增大而减小,符合题意;B、y=2x﹣1,y随x的增大与增大,不合题意;C、y=﹣3x2,当x<0时,y随x的增大而增大,不合题意;D、y=x2+4x+5,当x<0时,y随x先减小,然后增大,不合题意;故选:A.【点评】此题主要考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.12.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.4【分析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等边三角形的性质求出OH即可.解:如图所示,连接OB、OA,过点O作OH⊥AB于点H,∵⊙O的直径为4cm,∴OB=OA=2cm,∵多边形ABCDEF是正六边形,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm,∵六边形ABCDEF是正六边形∴∠AOB=360°÷6=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=2cm,∵OH⊥AB,∴BH=AB=×2=1(cm),∴OH==(cm),∴正六边形纸片的边心距是cm,故选:B.【点评】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.13.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM 长的最小值.解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.14.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<0【分析】根据抛物线开口方向、对称轴和与y轴交点位置确定a、b、c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.解:∵抛物线开口向下,∴a<0;故A错误;∵﹣<0,∴b<0,故B错误;∵与y轴的交点在正半轴,∴c>0;故C错误;由图象观察知,当x=1时,函数值为负,∴a+b+c<0,故D正确;故选:D.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣.故选:C.【点评】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确.解:∵反比例函数y=﹣,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=﹣2时,y=3,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为3,m的值是6.【分析】设另一个根为x1,则根据根与系数的关系得出x1+2=5,2x1=m,求出即可.解:设另一个根为x1,则x1+2=5,2x1=m,解得:x1=3,m=6.故答案为:3,6.【点评】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是根据根与系数的关系得出x1+2=5,2x1=m.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=BC,∴BD=sin60°×OB=,∴BC=2BD=,劣弧BC==.故答案为:,.【点评】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=﹣2;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是0≤t<4.【分析】(1)通过抛物线对称轴为直线x=﹣求解;(2)将抛物线解析式化为顶点式,通过﹣3≤x≤1时y的取值范围求解.解:(1)∵抛物线对称轴为直线x=﹣=﹣1,∴b=﹣2.故答案为:﹣2.(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴函数最大值为y=4,∵(﹣1)﹣(﹣3)>1﹣(﹣1),∴x=1时,y=﹣1﹣2+3=0为﹣3≤x≤1的函数最小值,∴0≤t<4时,直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,故答案为:0≤t<4.【点评】本题考查二次函数的性质,解题关键是掌握抛物线顶点坐标公式,掌握二次函数与方程的关系.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.解:(1)x2+4x=5,x2+4x﹣5=0,(x+5)(x﹣1)=0,x﹣1=0或x+5=0,x1=1,x2=﹣5;(2)x(2x﹣1)=4x﹣2,x(2x﹣1)﹣2(2x﹣1)=0,(2x﹣1)(x﹣2)=0,x﹣2=0或2x﹣1=0,x1=2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近0.25(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.【分析】(1)当试验次数达到1500次时,摸到白球的频率接近于0.25,据此可得答案;(2)用总数量乘以摸到白球的频率求出其个数,再列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得答案.解:(1)由频率统计表知,当摸球次数很大时,摸到白球的频率将会接近0.25,从箱子中摸一次球,摸到红球的概率为1﹣0.25=0.75=,故答案为:0.25,;(2)由(1)知,袋中白球的个数约为4×0.25=1,红球的个数为4﹣1=3,列表如下:白红1红2红3白白红1白红2白红3红1红1白红1红2红1红3红2红2白红2红1红2红3红3红3白红3红1红3红2由表可知共有12种情况,其中一红一白的有6种,所以摸到一个红球一个白球的概率为=.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为(22﹣2x)m(用含x的代数式表示);(2)请列出方程,求出问题的解.【分析】(1)由题意即可得出结论;(2)由题意:建造一个面积为60m2的长方形花坛,列出一元二次方程,解方程,即可解决问题.解:(1)由题意得:花坛DE边的长为(22﹣2x)m,故答案为:(22﹣2x),(2)根据题意得:x(22﹣2x)=60,整理得:x2﹣11x+30=0,解得:x1=5,x2=6,当x=5时,DE=22﹣2×5=12>11(不符合题意,舍去);当x=6时,DE=22﹣2×6=10<11,符合题意;答:CD边的长为6m,DE边的长为10m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.【分析】(1)由旋转的性质可得BE=BF,∠EBF=∠ABC=90°,由等腰直角三角形的性质可求解;(2)由勾股定理的逆定理可求∠EFC=90°,即可求解.解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=∠ABC=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=(2)2,解得:x=2,∴BF的长为2;(2)∵△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC=3,∵CF2+EF2=12+(2)2=9,CE2=9,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.【点评】本题考查了旋转的性质,正方形的性质,勾股定理的逆定理,掌握旋转的性质是解题的关键.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.【分析】(1)连接OC,如图,由AC平分∠EAB得到∠BAC=∠EAC,加上∠OAC=∠ACO,则∠EAC=∠ACO,于是可判断OC∥AE,根据平行线的性质得OC⊥CD,然后根据切线的判定定理得到结论.(2)通过证明△AEC∽△ACB,进而根据比例式求得半径.【解答】(1)连OC(如图),∵AE⊥CD,∴∠AEC=90°,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,∵∠EAC=∠OCA,∴OC∥AE,∴OC⊥DE,∵点C在⊙O上,∴OC=r,∴DE为⊙O的切线.(2)连BC(如上图),∵AB为直径,∴∠ACB=90°,又∵∠AEC=90°,∴∠ACB=∠AEC,又∵∠EAC=∠BAC,∴△AEC∽△ACB,∴=,∴=,∴AB=r=,∴r=.【点评】本题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,熟练掌握切线的判定是解题的关键.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.【分析】(1)根据反比例函数图象上点的坐标特点可得k=6×2=12,进而可得反比例函数解析式;(2)根据反比例函数图象上点的坐标特点可得mn=12,再根据△ABC面积为9,可得×BC×(6﹣n)=9,解可得m的值,进而可得n的值,从而可得点B的坐标;(3)根据函数图象即可得到结论.【解答】解;(1)把A点坐标为(2,6)代入反比例函数y=得,k=12,∴反比例函数的解析式为y=;(2)设点B坐标为(m,n),分三种情况:①当B点在第一象限且在A点的上方时,(y B﹣y A)×CB=9 即(n﹣6)×m=9,×(﹣6)×m=9,解得m=﹣1(不符合题意,舍去),②当B点在第一象限且在A点的下方时,(y A﹣y B)×CB=9 即(6﹣n)×m=9,(6﹣)×m=9,解得m=5,∴点B坐标为(5,);③当B点在第三象限时,(y A﹣y B)×CB=9,(6﹣n)×(﹣m)=9 (6)×(﹣m)=9,解得m=﹣1,∴点B坐标为(﹣1,﹣12),所以点B的坐标为(5,)或(﹣1,﹣12);(3)由图象知,当y<3时,自变量x的取值范围为x>4 或x<0.【点评】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)①当0≤x≤30时由顶点坐标为(10,1800),可设y=a(x﹣30)2+1800,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当30<x≤40时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w 关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在10分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.解:(1)①当0≤x≤30时,∴设y=a(x﹣30)2+1800,将(0,0)代入,得:900a+1800=0,解得a=﹣2,∴y=﹣2(x﹣30)2+1800=﹣2x2+120x(0≤x≤30),②当30<x≤40时,y=1800(30<x≤40),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x,①0≤x≤30时,w=﹣2x2+120x﹣40x=﹣2x2+80x=﹣2(x﹣20)2+800,∵﹣2<0,∴当x=20时,w的最大值是800;②当30<x≤40时,w=1800﹣40x,∵﹣4<0,∴w随x的增大而减小,∴200≤w<600,∴排队人数最多是600人,要全部学生都完成体温检测:1800﹣40x=0,解得:x=45,∴要全部学生都完成体温检测需要45分钟,(3)设从一开始就应该增加m个监测点,由题意得:10×20(m+2)≥1800,解得:m≥7,∴从一开始就应该增加7个监测点.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.。
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
人教版数学九年级上册期末测试卷3套含答案
人教版九年级上册期末试卷(1)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列方程中,关于x的一元二次方程是( )A.3(x+1)2=2(x+1)B.ﻩC.ax2+bx+c=0D.x2+2x=x2﹣12.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A.ﻩB.2 C.D.33.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A.垂直B.相等ﻩC.垂直且相等ﻩD.不再需要条件4.(3分)已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3ﻩB.y3<y2<y1ﻩC.y3<y1<y2ﻩD.y2<y1<y35.(3分)学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是()A.9%B.8.5%ﻩC.9.5%ﻩD.10%6.(3分)甲、乙两地相距60km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.ﻩB.ﻩC.ﻩD.7.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7B.(x﹣2)2﹣1C.(x+2)2+7 D.(x+2)2﹣18.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A.B.C.ﻩD.9.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是AM,MR的中点,则EF的长随着M点的运动()A.变短ﻩB.变长 C.不变D.无法确定10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.ﻩB.5C.ﻩD.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)反比例函数的图象在一、三象限,则k应满足.12.(4分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.13.(4分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a的值为.14.(4分)已知==,则= .15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB 的面积为2,则该双曲线的表达式为 .16.(4分)如图,在Rt △ABC中,∠ACB =90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD = .17.(4分)如图,在梯形A BCD 中,AD ∥B C,A C,BD 交于点O ,S△A OD :S △CO B=1:9,则S△D OC:S△BO C= .18.(4分)如图,在△A BC 中,点D、E 分别在AB 、AC 上,DE ∥B C.若AD =4,DB=2,则的值为 .三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x 2﹣2x ﹣5=0;(2)(y+2)2=(3y ﹣1)2.20.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?、P2是反比例函数(k>0)在第一象限图象上的两点,26.(10分)如图,P1点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.27.(12分)如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.ﻩC.ax2+bx+c=0 D.x2+2x=x2﹣1【考点】一元二次方程的定义.【分析】一元二次方程有四个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.(4)二次项系数不为0.【解答】解:A、3(x+1)2=2(x+1)化简得3x2+4x﹣4=0,是一元二次方程,故正确;B、方程不是整式方程,故错误;C、若a=0,则就不是一元二次方程,故错误;D、是一元一次方程,故错误.故选:A.【点评】判断一个方程是不是一元二次方程:首先要看是不是整式方程;然后看化简后是不是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.2.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )A.ﻩB.2ﻩC. D.3【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】几何图形问题.【分析】由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,AC===5,∴Rt△EFC中,FC=5﹣3=2,EC=4﹣X,∴(4﹣x)2=x2+22,解得x=.故选A.【点评】本题考查了折叠问题、勾股定理和矩形的性质;解题中,找准相等的量是正确解答题目的关键.3.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是( )A.垂直B.相等ﻩC.垂直且相等D.不再需要条件【考点】中点四边形.【分析】因为菱形的四边相等,再根据三角形的中位线定理可得,对角线AC与BD需要满足条件是相等.【解答】解:∵四边形EFGH是菱形,∴EH=FG=EF=HG=BD=AC,故AC=BD.故选B.【点评】本题很简单,考查的是三角形中位线的性质及菱形的性质.解题的关键在于牢记有关的判定定理,难度不大.4.(3分)已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则( )A.y1<y2<y3B.y3<y2<y1ﻩC.y3<y1<y2ﻩD.y2<y1<y3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特点解答即可.【解答】解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.【点评】在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.5.(3分)学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是()A.9% B.8.5%C.9.5%ﻩD.10%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每次降价的百分数是x,则第一次降价后的价格是100(1﹣x),第二次降价后的价格是100(1﹣x)(1﹣x),根据“现在的售价是81元”作为相等关系列方程求解.【解答】解:设平均每次降价的百分数是x,依题意得100(1﹣x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.【点评】本题运用增长率(下降率)的模型解题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”)6.(3分)甲、乙两地相距60km,则汽车由甲地行驶到乙地所用时间y(小时)与行驶速度x(千米/时)之间的函数图象大致是()A.ﻩB.ﻩC.D.【考点】反比例函数的应用.【分析】根据实际意义,写出函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【解答】解:根据题意可知时间y(小时)与行驶速度x(千米/时)之间的函数关系式为:y=(x>0),所以函数图象大致是B.故选B.【点评】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式从而判断它的图象类型,要注意自变量x的取值范围,结合自变量的实际范围作图.7.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7ﻩB.(x﹣2)2﹣1C.(x+2)2+7ﻩD.(x+2)2﹣1【考点】配方法的应用.【分析】在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数﹣4的一半的平方;可将常数项3拆分为4和﹣1,然后再按完全平方公式进行计算.【解答】解:x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1.故选B.【点评】在对二次三项式进行配方时,一般要将二次项系数化为1,然后将常数项进行拆分,使得其中一个常数是一次项系数的一半的平方.8.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A.ﻩB.ﻩC.ﻩD.【考点】一次函数的图象;反比例函数图象上点的坐标特征.【专题】待定系数法.【分析】先根据函数y=的图象经过(1,﹣1)求出k的值,然后求出函数y=kx ﹣2的解析式,再根据一次函数图象与坐标轴的交点坐标解答.【解答】解:∵图象经过(1,﹣1),∴k=xy=﹣1,∴函数解析式为y=﹣x﹣2,所以函数图象经过(﹣2,0)和(0,﹣2).故选A.【点评】主要考查一次函数y=kx+b的图象.当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是A M,MR的中点,则EF的长随着M点的运动()A.变短ﻩB.变长C.不变ﻩD.无法确定【考点】三角形中位线定理;矩形的性质.【专题】压轴题;动点型.【分析】易得EF为三角形AMR的中位线,那么EF长恒等于定值AR的一半.【解答】解:∵E,F分别是AM,MR的中点,∴EF=AR,∴无论M运动到哪个位置EF的长不变,故选C.【点评】本题考查三角形中位线等于第三边的一半的性质.10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.B.5ﻩC.ﻩD.【考点】反比例函数综合题.【专题】综合题;压轴题;数形结合.【分析】根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.【解答】解:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:,解得a+b=2,即△ABC的周长=OC+AC=2.故选:A.【点评】本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)反比例函数的图象在一、三象限,则k应满足k>﹣2 .【考点】反比例函数的性质.【分析】由于反比例函数的图象在一、三象限内,则k+2>0,解得k的取值范围即可.【解答】解:由题意得,反比例函数的图象在二、四象限内,则k+2>0,解得k>﹣2.故答案为k>﹣2.【点评】本题考查了反比例函数的性质,重点是注意y=(k≠0)中k的取值,①当k>0时,反比例函数的图象位于一、三象限;②当k<0时,反比例函数的图象位于二、四象限.12.(4分)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的倍,那么边长应缩小到原来的倍.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的倍.故答案为:.【点评】本题考查了相似三角形面积的比等于相似比的平方的性质,熟记性质是解题的关键.13.(4分)已知一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0有一个根为零,则a 的值为﹣4.【考点】一元二次方程的解;一元二次方程的定义.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=0代入原方程即可求得a的值.【解答】解:把x=0代入一元二次方程(a﹣1)x2+7ax+a2+3a﹣4=0,可得a2+3a﹣4=0,解得a=﹣4或a=1,∵二次项系数a﹣1≠0,∴a≠1,∴a=﹣4.故答案为:﹣4.【点评】本题逆用一元二次方程解的定义易得出a的值,但不能忽视一元二次方程成立的条件a﹣1≠0,因此在解题时要重视解题思路的逆向分析.14.(4分)已知==,则=.【考点】比例的性质.【分析】根据已知比例关系,用未知量k分别表示出a、b和c的值,代入原式中,化简即可得到结果.【解答】解:设===k,∴a=5k,b=3k,c=4k,∴===,故答案为:.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为y=﹣.【考点】反比例函数系数k的几何意义.【专题】压轴题;数形结合.=2求出【分析】先根据反比例函数图象所在的象限判断出k的符号,再根据S△AOBk的值即可.【解答】解:∵反比例函数的图象在二、四象限,∴k<0,=2,∴|k|=4,∴k=﹣4,即可得双曲线的表达式为:y=﹣,∵S△AOB故答案为:y=﹣.【点评】本题考查的是反比例系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD= 2.【考点】相似三角形的判定与性质.【分析】首先证△ACD∽△CBD,然后根据相似三角形的对应边成比例求出CD 的长.【解答】解:Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°﹣∠A;又∵∠ADC=∠CDB=90°,∴△ACD∽△CBD;∴CD2=AD•BD=4,即CD=2.【点评】此题主要考查的是相似三角形的判定和性质.17.(4分)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC :S△BOC=1:3.【考点】相似三角形的判定与性质;梯形.【专题】压轴题.【分析】根据在梯形ABCD中,AD∥BC,AC,易得△AOD∽△COB,且S△AOD:S△COB=1:9,可求=,则S△AOD:S△DOC=1:3,所以S△DOC:S△BOC=1:3.【解答】解:根据题意,AD∥BC∴△AOD∽△COB∵S△AOD:S△COB=1:9∴=则S△AOD:S△DOC=1:3所以S△DOC :S△BOC=3:9=1:3.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.18.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.【考点】相似三角形的判定与性质.【分析】由AD=3,DB=2,即可求得AB的长,又由DE∥BC,根据平行线分线段成比例定理,可得DE:BC=AD:AB,则可求得答案.【解答】解:∵AD=4,DB=2,∴AB=AD+BD=4+2=6,∵DE∥BC,△ADE∽△ABC,∴=,故答案为:.【点评】此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x2﹣2x﹣5=0;(2)(y+2)2=(3y﹣1)2.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)利用求根公式计算即可;(2)利用因式分解可得到(4y+1)(3﹣2y)=0,可求得方程的解.【解答】解:(1)∵a=2,b=﹣2,c=﹣5,∴△=(﹣2)2﹣4×2×(﹣5)=48>0,∴方程有两个不相等的实数根,∴x==,即x1=,x2=,(2)移项得(y+2)2﹣(3y﹣1)2=0,分解因式得(4y+1)(3﹣2y)=0,解得y1=﹣,y2=.【点评】本题主要考查一元二次方程的解法,掌握一元二次方程的求根公式是解题的关键.20.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴ﻩAFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.【考点】游戏公平性;根的判别式;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【解答】解:(1)画树状图得:∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴(a,b)取值结果共有9种;(2)∵当a=,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,∴P(甲获胜)=P(△>0)=>P(乙获胜)=,∴这样的游戏规则对甲有利,不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD 及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【考点】平行四边形的判定;等边三角形的性质.【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.【点评】此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt△AFE≌Rt△BCA是关键.24.(10分)如图,已知A (﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).【考点】反比例函数与一次函数的交点问题.【专题】计算题;压轴题;待定系数法.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算;(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx +b 经过A (﹣4,2),B (2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB =S△ACO +S △BCO =×2×2+×2×4=6.(3)不等式的解集为:﹣4<x <0或x >2. 【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y 轴的交点运用分割法求得不规则图形的面积.同时间接考查函数的增减性,从而来解不等式.25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?【考点】一元二次方程的应用.【专题】经济问题;压轴题.【分析】等量关系为:(原来每张贺年卡盈利﹣降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【解答】解:设每张贺年卡应降价x 元,现在的利润是(0.3﹣x)元,则商城多售出100x ÷0.1=1000x 张.(0.3﹣x)(500+1000x)=120,解得x1=﹣0.3(降价不能为负数,不合题意,舍去),x2=0.1.答:每张贺年卡应降价0.1元.【点评】考查一元二次方程的应用;得到每降价x元多卖出的贺年卡张数是解决本题的难点;根据利润得到相应的等量关系是解决本题的关键.26.(10分)如图,P1、P2是反比例函数(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;等边三角形的性质.【分析】(1)首先作P1B⊥OA1于点B,由等边△P1OA1中,OA1=2,可得OB=1,P1B=,继而求得点P1的坐标,然后利用待定系数法即可求得此反比例函数的解析式;(2)首先作P2C⊥A1A2于点C,由等边△P2A1A2,设A1C=a,可得P2C=,OC=2+a,然后把P2点坐标(2+a,)代入,继而求得a的值,则可求得A2点的坐标.【解答】解:(1)作P1B⊥OA1于点B,∵等边△P1OA1中,OA1=2,∴OB=1,P1B=,把P1点坐标(1,)代入,解得:,∴;(2)作P2C⊥A1A2于点C,∵等边△PA1A2,设A1C=a,2则P2C=,OC=2+a,把P2点坐标(2+a,)代入,即:,解得,(舍去),∴OA2=2+2a=,∴A2(,0).【点评】此题考查了待定系数法求反比例函数的解析式以及等边三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.27.(12分)如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,求CE的长;(2)当△ECF的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得△EFP为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.【考点】相似三角形的判定与性质.【专题】压轴题.【分析】(1)因为EF∥AB,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P点可能的位置,再找到相似三角形,依据相似三角形的性质解答.【解答】解:(1)∵△ECF的面积与四边形EABF的面积相等∴S△ECF :S△ACB=1:2又∵EF∥AB∴△ECF∽△ACB==∵AC=4,∴CE=;(2)设CE的长为x∵△ECF∽△ACB∴=∴CF=由△ECF的周长与四边形EABF的周长相等,得x+EF+x=(4﹣x)+5+(3﹣x)+EF 解得∴CE的长为;(3)△EFP为等腰直角三角形,有两种情况:①如图1,假设∠PEF=90°,EP=EF由AB=5,BC=3,AC=4,得∠C=90°∴Rt△ACB斜边AB上高CD=设EP=EF=x,由△ECF∽△ACB,得:=即=解得x=,即EF=当∠EFP´=90°,EF=FP′时,同理可得EF=;②如图2,假设∠EPF=90°,PE=PF时,点P到EF的距离为EF设EF=x,由△ECF∽△ACB,得:=,即=解得x=,即EF=综上所述,在AB上存在点P,使△EFP为等腰直角三角形,此时EF=或EF=.【点评】此题考查了相似三角形的性质,有一定的开放性,难点在于作出辅助线就具体情况进行分类讨论.期末试卷(2)一、选择题(每小题3分,共42分)1.(3分)计算a7•()2的结果是()A.aB.a5 C.a6ﻩD.a82.(3分)要使分式有意义,则x的取值范围是()A.x≠1ﻩB.x>1C.x<1D.x≠﹣13.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A.ﻩB.ﻩC.ﻩD.4.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=2,BC=4,AC=7B.AB=5,BC=3,∠A=30°C.∠A=60°,∠B=45°,AC=4 D.∠C=90°,AB=65.(3分)下列各式:,,,,(x﹣y)中,是分式的共有()A.1个ﻩB.2个ﻩC.3个ﻩD.4个6.(3分)若(x+3)(x﹣4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12B.p=﹣1,q=﹣12C.p=7,q=12D.p=7,q=﹣127.(3分)下列能判定△ABC为等腰三角形的是()A.AB=AC=3,BC=6B.∠A=40°、∠B=70°C.AB=3、BC=8,周长为16ﻩD.∠A=40°、∠B=50°8.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.六边形ﻩB.八边形ﻩC.九边形D.十边形9.(3分)如图,四边形ABCD中,BC∥AD,AB=CD,BE=DF,图中全等三角形的对数是()A.5 B.6C.3ﻩD.410.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=65°,则∠1的度数为()A.65°B.25°C.35°D.45°11.(3分)已知y2+10y+m是完全平方式,则m的值是()A.25ﻩB.±25 C.5ﻩD.±512.(3分)如图,若∠A=27°,∠B=50°,∠C=38°,则∠BFE等于()A.65°B.115°C.105°D.75°13.(3分)若分式方程无解,则m的值为()A.﹣2B.0ﻩC.1 D.214.(3分)若m=2100,n=375,则m,n的大小关系为()A.m>nﻩB.m<nﻩC.m=nﻩD.无法确定二、填空题(本大题满16分,每小题4分)15.(4分)计算:=.16.(4分)一个矩形的面积为(6ab2+4a2b)cm2,一边长为2abcm,则它的周长为cm.17.(4分)等腰三角形一个顶角和一个底角之和是100°,则顶角等于.18.(4分)下列图形中对称轴最多的是.。
人教版九年级(上)期末数学试卷(含答案)
人教版九年级(上)期末数学试卷第I卷(选择题)一、选择题(本大题共16小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1.一元二次方程x2+6x+5=0的常数项是( )A. 0B. 1C. 5D. 都不对2.如图所示图形中是中心对称图形的是( )A. 正三角形B. 等腰三角形C. 直角三角形D. 圆3.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是( )A. ∠D=∠BB. ∠E=∠CC. ADAB =AEACD. ADAB =DEBC4.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是( )A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位5.如图,在△ABC中,DE//BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为( )A. 23B. 12C. 34D. 356.下列事件中,是随机事件的是( )第2页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 太阳从西边升起B. △ABC 中,AB 与AC 的和比BC 大C. 两个负数相乘,积为正D. 两个数相加,和大于其中的一个加数7. 如图,在一块宽为20m ,长为32m 的矩形空地上,修筑宽相等的两条小路,两条路分别与矩形的边平行,如图,若使剩余(阴影)部分的面积为560m 2,问小路的宽应是多少?设小路的宽为xcm ,根据题意得( )A. 32x +20x =20×32−560B. 32×20−20x ×32x =560C. (32−x)(20−x)=560D. 以上都不正确8. 一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是( )A. 摸到红球是必然事件B. 摸到黄球是不可能事件C. 摸到白球与摸到黄球的可能性相等D. 摸到红球比摸到黄球的可能性小9. 如图,已知⊙O 的半径为4,则它的内接正方形ABCD 的边长为( )A. 1B. 2C. 4√2D. 2√210. 如图,在平面直角坐标系xOy 中,点P 为函数y =4x(x <0)图象上任意一点,过点P 作PA ⊥x 轴于点A ,则△PAO 的面积是( )A. 8B. 4C. 2D. −211. 如图,PA ,PB 是⊙O 的切线,A ,B 是切点,若∠P =70°,则∠ABO =( )A. 30°B. 35°C. 45°D. 55°12.下列关于二次函数y=2x2的说法正确的是( )A. 它的图象经过点(−1,−2)B. 它的图象的对称轴是直线x=2C. 当x<0时,y随x的增大而减小D. 当x=0时,y有最大值为013.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC= 150cm,CD=800cm,则树高AB等于( )A. 300cmB. 400cmC. 550cmD. 都不对14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A. 10B. 15C. 20D. 都不对15.如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标为( )A. (1,0)B. (0,1)C. (−1,0)D. (0,−1)16.如图,△ABC和阴影三角形的顶点都在小正方形的顶点上,则与△ABC相似的阴影三角形为( )A. B. C. D.第II卷(非选择题)二、填空题(本大题共3小题,共12.0分)17.二次函数y=2(x−1)2−5的开口方向______,最小值是______.18.如图,△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,则△ABD与△A′B′D′的周长之比为______.△ABC与△A′B′C′的面积之比为______.第4页,共18页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………19. 已知一次函数y 1=kx +m(k ≠0)和二次函数y 2=ax 2+bx +c(a ≠0)部分自变量与对应的函数值如下表x … −1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…−159…当y 2=y 1时,自变量x 的取值是______,当y 2>y 1时,自变量x 的取值范围是______.三、解答题(本大题共7小题,共66.0分。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.下列4个图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2.平面直角坐标系内一点(-3,4)关于原点对称点的坐标是()A .(3,4)B .(-3,-4)C .(3,-4)D .(4,-3)3.如图,在⊙O 中,OC ⊥AB ,若∠BOC =40°,则∠OAB 等于()A .40°B .50°C .80°D .120°4.抛物线y =﹣2(x ﹣3)2﹣4的对称轴是()A .直线x =3B .直线x =﹣3C .直线x =4D .直线x =﹣45.连续抛掷两次骰子,它们的点都是奇数的概率是()A .136B .19C .14D .126.二次函数y =ax 2+bx+c 的图象如图所示,则一次函数y =﹣bx+c 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,将△ABC 绕点A 顺时针旋转α,得到△ADE ,若点D 恰好在CB 的延长线上,则∠CDE 等于()A .ΑB .90°+2αC .90°﹣2αD .180°﹣2α8.如图,是二次函数y =ax 2+bx+c 图象的一部分,其对称轴是x =﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a ﹣b =0;③若(﹣5,y 1),(3,y 2)是抛物线上两点,则y 1=y 2;④4a+2b+c <0,其中说法正确的()A .①②B .①②③C .①②④D .②③④9.已知平面直角坐标系中有点A (﹣4,﹣4),点B (a ,0),二次函数y =x 2+(k ﹣3)x ﹣2k 的图象必过一定点C ,则AB+BC 的最小值是()A .B .C .D .10.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°二、填空题11.若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是________ 12.为了估计池塘里有多少条鱼,先从池溏里捕捞100条鱼做上记号,然后放回池塘里去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞300条鱼,若其中有15条有标记,那么估计池塘里大约有鱼________条._____.13.如图,扇形AOB的圆心角为120°,弦AB=14.已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是_____.15.已知二次函数y=﹣x2+bx+c与一次函数y=mx+n的图象相交于点A(﹣2,4)和点B(6,﹣2),则不等式﹣x2+bx+c>mx+n的解集是_____.16.如图,已知Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是_____.17.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.三、解答题18.解方程:(x+3)2﹣2x(x+3)=0.19.如图,四边形ABCD内接于⊙O,E为BC延长线上的一点,点C为 BD的中点.若∠DCE =110°,求∠BAC的度数.20.如图,已知△ABC 中,BD 是中线.(1)尺规作图:作出以D 为对称中心,与△BCD 成中心对称的△EAD .(2)猜想AB+BC 与2BD 的大小关系,并说明理由.21.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,又放回.小明摸取了60次,结果统计如下:标号1234次数16142010(1)上述试验中,小明摸取到“2”号小球的频率是;小明下一次在袋中摸取小球,摸到“2”号小球的概率是;(2)若小明随机从口袋中摸取一个小球,记录摸到小球的标号后放回,再从中摸取一个小球,请用列举法求小明两次摸取到小球的标号相同的概率.(3)若小明一次在袋中摸出两个小球,求小明摸出两个小球标号的和为5的概率.22.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.23.在平面直角坐标系中,以坐标原点为圆心的⊙O 半径为3.(1)试判断点A (3,3)与⊙O 的位置关系,并加以说明.(2)若直线y =x+b 与⊙O 相交,求b 的取值范围.(3)若直线y =x+3与⊙O 相交于点A ,B .点P 是x 轴正半轴上的一个动点,以A ,B ,P 三点为顶点的三角形是等腰三角形,求点P 的坐标.24.已知关于x 的一元二次方程﹣212x +ax+a+3=0.(1)求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2)如图,若抛物线y =﹣212x +ax+a+3与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C ,连结BC ,BC 与对称轴交于点D .①求抛物线的解析式及点B 的坐标;②若点P 是抛物线上的一点,且点P 位于直线BC 的上方,连接PC ,PD ,过点P 作PN ⊥x 轴,交BC 于点M ,求△PCD 的面积的最大值及此时点P 的坐标.25.已知关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0.(1)若方程有两个实数根,求a 的取值范围.(2)若x=2是方程的一个根,求另一个根.(3)在(1)的条件下,试判断直线y=(2a﹣3)x﹣a+5能否过点A(﹣1,3),并说明理由.26.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.参考答案1.B【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选B.2.C【详解】∵P(-3,4),∴关于原点对称点的坐标是(3,-4),故选:C.3.B【详解】解:在⊙O中,OA=OB,∴△AOB为等腰三角形,∵OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,∴∠OAB=(180°-∠AOB)÷2=50°.4.A【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.5.C【详解】解:列表如下:123456 1()1,1()1,2()1,3()1,4()1,5()1,6 2()2,1()2,2()2,3()2,4()2,5()2,6 3()3,1()3,2()3,3()3,4()3,5()3,6 4()4,1()4,2()4,3()4,4()4,5()4,6 5()5,1()5,2()5,3()5,4()5,5()5,6 6()6,1()6,2()6,3()6,4()6,5()6,6由表格信息可得:所有的等可能的结果数有36个,符合条件的结果数有91=. 364故选C6.D【详解】解:由势力的线与y轴正半轴相交可知c>0,对称轴x=-2ba<0,得b<0.∴0b ->所以一次函数y =﹣bx+c 的图象经过第一、二、三象限,不经过第四象限.故选:D .7.A【详解】解:由旋转的性质可得:∠ABC=∠ADE ,∵∠ABC+∠ABD=180°,∴∠ABD+∠ADE=180°,即∠ABD+∠ADB+∠CDE=180°,∵∠ABD+∠ADB+∠BAD=180°,∴∠CDE=∠BAD ,∵∠BAD=α,∴∠CDE=α.故选:A .8.B【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确的是①②③,故选:B .9.C【详解】解:二次函数y =x 2+(k ﹣3)x ﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C (2,-2)点C 关于x 轴对称的点C '的坐标为(2,2),连接AC ',如图,∵()4,4A --∴AC '==故选:C 10.B【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.11.3m ≠【详解】解:mx 2+3x-4=3x 2,可变形为2(3)340m x x -+-=,∵2(3)340m xx -+-=是一元二次方程,∴30m -≠,∴3m ≠.故答案为:3m ≠.12.2000100条,由此即可解答.【详解】设该池塘里现有鱼x 条,由题意知,15100300x=,∴x=2000.∴估计池塘里大约有鱼2000条.故答案为2000.13.4π3【详解】解:由题意知:∵OA OB=∴△OAB 为等腰三角形∴()1180120302OAB ∠=︒-︒=︒∵12cos30OA⨯︒=∴2OA =∵π120π24π1801803n r S ⨯⨯===扇1sin 302OAB S OA =⨯⨯︒⨯=∴4π3AOB S S S =-=- 阴扇故答案为:4π314.相切或相交【详解】设直线AB 上与圆心距离为4cm 的点为C ,当OC ⊥AB 时,OC=⊙O 的半径,所以直线AB 与⊙O 相切,当OC 与AB 不垂直时,圆心O 到直线AB 的距离小于OC ,所以圆心O 到直线AB 的距离小于⊙O 的半径,所以直线AB 与⊙O 相交,综上所述直线AB 与⊙O 的位置关系为相切或相交,故答案为:相切或相交.15.26x -<<【详解】解:如图,∵两函数图象相交于点A (-2,4),B (6,-2),∴不等式﹣x 2+bx+c >mx+n 的解集是26x -<<.故答案为:26x -<<.16.【分析】将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N .证明△PBH 是等边三角形,得PH BP =,所以PA PB PC PA PH HG ++=++,推出当A ,P ,G ,H′共线时,PA+PB+PC 的值最小,最小值=AG 的长,再运用勾股定理求出AG 的长即可.【详解】解:将△BCP 绕点B 顺时针旋转60°得到△BHG ,连接PH ,AG ,过点G 作AB 的垂线,交AB 的延长线于N ,如图,∵∠90,30ABC ACB ︒︒=∠=,4AC =2,AB ∴=由勾股定理得:BC ==∵将△BCP 绕点B 顺时针旋转60°得到△BHG ,∴△BPC BHG≅∆∴,60BP BH PBH ︒=∠=,,HG PC BC BG ===,∠PBC GBH=∠∴△PBH 是等边三角形,∴PH BP=∴PA PB PC PA PH HG++=++∴当点A ,点P ,点G ,点H 共线时,PA PH HG ++有最小值,最小值为AG ,∵∠150ABP PBH GBH ABP PBC CBH ︒+∠+∠=∠+∠+∠=∴∠150ABG ︒=∴∠30GBN ︒=∵GN AB⊥∴1122GN BG ==⨯=由勾股定理得,3BN ===∴235AN AB BN =+=+=∴AG ===∴PA PB PC ++最小值为故答案为:17【详解】∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,∵CA=CA 1,∴△ACA 1是等边三角形,AA 1=AC=BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB=CB 1,∴△BCB 1是等边三角形,∴BB 1BA 1=2,∠A 1BB 1=90°,∴BD=DB 1∴A 1=18.123,3x x ==-【详解】解:(x+3)2﹣2x (x+3)=0()()3320x x x ++-=()()330x x +-=解得123,3x x ==-19.55°【分析】由圆内接四边形的性质可得110BAD ∠=︒,根据“点C 为 BD的中点”可得AC 是BAD ∠平分线,从而可得结论.【详解】解:∵四边形ABCD 内接于⊙O ,∴DCE BAD∠=∠∵110DCE ∠=︒∴110BAD ∠=︒∵点C 为 BD的中点∴ BC D C=∴111105522BAC DAC BAD ∠=∠=∠=⨯︒=︒20.(1)见详解;(2)AB+BC >2BD .证明见详解.【分析】(1)延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,根据点D 为AC 中点,得出AD=CD ,再证△ADE ≌△CDB (SAS ),根据∠CDB+∠ADB=180°,得出△BCD 绕点D 旋转180°得到△EAD ,(2)根据△ADE ≌△CDB (SAS ),得出AE=BC ,BD=ED ,得出BE=2BD ,在△ABE 中,AB+AE >BE 即可.(1)解:延长BD ,在BD 延长线上截取DE=BD ,连结AE ,则△ADE 与△CDB 关于点D 成中心对称,∵点D 为AC 中点,∴AD=CD ,在△ADE 和△CDB 中,AD CD ADE CDB ED BD =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDB (SAS ),∵∠CDB+∠ADB=180°,∴△BCD 绕点D 旋转180°得到△EAD,(2)AB+BC >2BD .证明:∵△ADE ≌△CDB (SAS ),∴AE=BC ,BD=ED ,∴BE=2BD ,在△ABE中,AB+AE>BE,即AB+BC>2BD.【点睛】本题考查尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系,掌握尺规作图,三角形全等判定与性质,中心对称的定义,三角形三边关系是解题关键.21.(1)7 30,14(2)1 4(3)1 3【分析】(1)摸取到“2”号小球的频率为1460,摸到“2”号小球的概率是14;(2)小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况,进而可求概率;(3)列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况,进而可求概率.(1)解:摸取到“2”号小球的频率为147 6030=摸到“2”号小球的概率是1 4故答案为:71 304,.(2)解:列举法求小明两次摸取到小球的标号为()()()()()()()()()()()()()()()()1,11,21,31,42,12,22,32,43,13,23,33,44,14,24,34,4共16种可能的情况,其中两次标号相同的为()()()()1,12,23,34,4共4种可能的情况∵41 164=∴小明两次摸取到小球的标号相同的概率为1 4.(3)解:列举法可知一次摸出两个小球的有标号为()()()()()()1,21,31,42,32,43,4共6种可能情况,标号和为5有()()1,42,3两种情况∵2163=∴小明摸出两个小球标号的和为5的概率为13.【点睛】本题考查了频率,列举法求概率.解题的关键在于正确的列举所有事件.22.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.23.(1)点A 在O 外(2)b -<<(3)(3-+或(3,0)【分析】(1)由勾股定理求出AO 的长,再与圆的半径比较即可得出结论;(2)求出直线y x b =+与O 相切时OB 的长度即可得到b 的取值;(3)分BA BP =,AB AP =和PB PA =三种情况求解即可.(1)∵(3,3)A∴OA ==∵3>∴点A 在O 外(2)如图,当直线y x b =+与O 相切于点C 时,连接OC ,则OC=3∵∠45CBO ︒=∴OB =∴直线y x b =+与O 相交时,b -<(3)∵直线3y x =+与O 相交于点A ,B ,∴(0,3)A ,(3,0)B -∴AB =当BA BP ==P 坐标为:1(3P -+,2(3P--(舍去)当AB AP =时,∵AO x ⊥轴∴BO OP=∴3(3,0)P 当PB PA =时,点P 与点O 重合,∴4()0,0P (舍去)综上,点P 的坐标为:(3-+或(3,0)24.(1)见解析;(2)①y=2142x x -++,点B (4,0);②△PCD 的面积的最大值为1,点P (2,4).【分析】(1)判断方程的判别式大于零即可;(2)①把A (-2,0)代入解析式,确定a 值即可求得抛物线的解析式,令y=0,求得对应一元二次方程的根即可确定点B 的坐标;②设点P 的坐标为(x ,2142x x -++),确定直线BC 的解析式y=kx+b ,确定M 的坐标(x ,kx+b ),求得PM=2142x x -++-(kx+b ),从而利用C ,D 的坐标表示=-PCD PCM CDM S S S △△△构造新的二次函数,利用配方法计算最值即可.(1)∵21-+302x ax a ++=,∴△=214(-)(3)2a a -⨯+=2226(1)5a a a ++=++>0,∴无论a 为任何实数,此方程总有两个不相等的实数根.(2)①把A (-2,0)代入解析式21=-+32y x ax a ++,得1-4-2302a a ⨯++=,解得a=1,∴抛物线的解析式为2142y x x =-++,令y=0,得21402x x -++=,解得x=-2(A 点的横坐标)或x=4,∴点B (4,0);②设直线BC 的解析式y=kx+b ,根据题意,得4=0=4k b b +⎧⎨⎩,解得=-1=4k b ⎧⎨⎩,∴直线BC 的解析式为y=-x+4;∵抛物线的解析式为2142y x x =-++,直线BC 的解析式为y=-x+4;∴设点P 的坐标为(x ,2142x x -++),则M (x ,4x -+),点N (x ,0),∴PM=2142x x -++-(4x -+)=2122x x -+,∵219(1)22y x =--+,∴抛物线的对称轴为直线x=1,∴点D (1,3),∵=-PCD PCM CDMS S S △△△=11-(1)22PM x PM x - =21124PM x x =-+=21(2)14x --+,∴当x=2时,y 有最大值1,此时2142y x x =-++=4,∴△PCD 的面积的最大值为1,此时点P (2,4).25.(1)112a ≥-且0a ≠(2)14x =(3)能,理由见解析【分析】(1)根据一元二次方程的定义,以及根的判别式进行判断即可(2)根据方程的解的定义求得a ,进而根据一元二次方程根与系数的关系求解即可;(1)关于x 的方程ax 2﹣(2a+1)x+a ﹣2=0有两个实数根,则0a ≠,()()2242142b ac a a a ∆=-=-+--⎡⎤⎣⎦2244148a a a a=++-+121a =+0≥a 的取值范围为:112a ≥-且0a ≠(2) x =2是方程的一个根,4(21)220a a a ∴-+⨯+-=解得4a =设另一根为2x ,则2212419244a x a +⨯++===214x ∴=∴另一个根为14x =(3)若y =(2a ﹣3)x ﹣a+5过点A (﹣1,3),则()3235a a =---+解得53a = 112a ≥-且0a ≠∴y =(2a ﹣3)x ﹣a+5能经过点A (﹣1,3),26.(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD ,由AB 是圆O 的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD 为⊙O 的切线;(2)根据BE 是⊙O 的切线,则∠EBA=90°,即可求得∠P=30°,再由PD 为⊙O 的切线,得∠PDO=90°,根据三角函数的定义求得OD ,由勾股定理得OP ,即可得出PA ;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF ,由AB 是圆O 的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE 是等边三角形.进而证出四边形DFBE 为菱形.【详解】解:(1)直线PD 为⊙O 的切线,理由如下:如图1,连接OD ,∵AB 是圆O 的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO ,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴tan30OD PD︒=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.。
2024年全新初三数学上册期末试卷及答案(人教版)
2024年全新初三数学上册期末试卷及答案(人教版)一、选择题1. 若a²4a+4=0,则a的值为()A. 2B. 0C. 1D. 22. 下列选项中,哪个不是等腰三角形的性质?A. 底边相等B. 两腰相等C. 底角相等D. 对边相等3. 若一个正方形的边长为5cm,则其对角线的长度为()A. 5cmB. 10cmC. 5√2 cmD. 10√2 cm4. 下列哪个选项是二次函数的一般形式?A. y = ax² + bx + cB. y = ax + bC. y = a/b + cD. y = a² + b² + c²5. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 3B. 2C. 1D. 4二、填空题6. 若a²4a+4=0,则a的值为________。
7. 下列选项中,哪个不是等腰三角形的性质?________。
8. 若一个正方形的边长为5cm,则其对角线的长度为________。
9. 下列哪个选项是二次函数的一般形式?________。
10. 若一个等差数列的前三项分别为2, 5, 8,则该数列的公差为________。
答案:一、选择题1. A2. D3. C4. A5. A二、填空题6. 27. D8. 5√2 cm9. A10. 32024年全新初三数学上册期末试卷及答案(人教版)三、解答题11. 已知等差数列的前三项分别为2, 5, 8,求该数列的通项公式。
解答:我们知道等差数列的通项公式为an = a1 + (n 1)d,其中an是第n项,a1是首项,d是公差。
根据题目,首项a1 = 2,公差d = 5 2 = 3。
所以,该数列的通项公式为an = 2 + (n 1)×3。
12. 一个正方形的边长为5cm,求其对角线的长度。
解答:正方形的对角线长度可以通过勾股定理来求解。
设正方形的边长为a,对角线长度为d,则有:d² = a² + a²将a = 5cm代入上式,得:d² = 5² + 5²d² = 50d = √50d = 5√2 cm所以,该正方形的对角线长度为5√2 cm。
2024年全新九年级数学上册期末试卷及答案(人教版)
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.以下关于垃圾分类的图标中是中心对称图形的是()A .B .C .D .2.如图,在平面直角坐标系中,已知ABC 与DEF 位似图形,原点O 是它们的位似中心.且3OF OC =,则ABC 与DEF 的面积之比是()A .1:2B .1:4C .1:3D .1:93.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A .65πB .60πC .75πD .70π4.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x 支球队,则可列方程为()A .()16x x -=B .()16x x +=C .()1162x x -=D .()1162x x +=5.如图,在边长为2的等边ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,则图中阴影部分的面积为()A .π6B .π3C .π2D .2π36.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是()A .相离B .相切C .相交D .相交或相切7.如图,在△ABC 中,∠CAB =70°,∠B =30°,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△A′B′C′的位置,则∠CC′B′=()A .10°B .15°C .20°D .30°8.若关于x 的一元二次方程()22120m x x m m +-+--=有一根为0,则m 的值为()A .2B .1-C .2或1-D .1或2-9.已知两点()()126,,2,A y B y -均在抛物线2(0)y ax bx c a =++>上,若12y y >,则抛物线的顶点横坐标m 的值可以是()A .6-B .5-C .2-D .1-10.如图,在ABC ∆中,90ACB ∠=︒,4AC =,3BC =,P 是AB 边上一动点,PD AC ⊥于点D ,点E 在P 的右侧,且1PE =,连接CE ,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,阴影部分面积12S S +的大小变化的情况是()A .一直减小B .一直增大C .先增大后减小D .先减小后增大二、填空题11.坐标平面内的点P(m ,﹣2)与点Q(3,n)关于原点对称,则m +n =__.12.已知,1x ,2x 是方程232x x -=的两根,则12x x ⋅的值为______.13.已知正三角形ABC ,则正三角形的边长为______cm.14.如图,PA 、PB 是O 的切线,其中A 、B 为切点,点C 在O 上,52ACB ∠=︒,则APB ∠=______︒.15.如图,AB 为O 的直径,C 为O 上一动点,将AC 绕点A 逆时针旋转120︒得AD ,若2AB =,则BD 的最大值为__.16.如图,将△ABC 绕点C 逆时针旋转得到△A′B′C ,其中点A′与A 是对应点,点B′与B 是对应点,点A′落在直线BC 上,连接AB′,若∠ACB =45°,AC =3,BC =2,则AB′的长为_____.17.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数1y x =上,顶点B 在反比例函数4y x=上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是_____.18.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0b >;②0a b c -+=;③一元二次方程200(1)ax bx c a +++=≠有两个不相等的实数根;④当1x <-或3x >时,0y >.上述结论中正确的是__________.(填上所有正确结论的序号)三、解答题19.解方程:2670x x --=20.如图,已知ABO ,点A 、B 坐标分别为()2,4、()2,1.(1)把ABO 绕着原点O 顺时针旋转90︒得11A B O ,画出旋转后的11A B O ;(2)在(1)的条件下,点B 旋转到点1B 经过的路径的长为______.(结果保留π)21.如图,AC 平分∠BAD ,∠B =∠ACD .(1)求证:△ABC ∽△ACD ;(2)若AB =2,AC =3,求AD 的长.22.如图,抛物线2y x mx =-+的对称轴为直线2x =(1)求抛物线解析式;(2)若关于x 的一元二次方程20x mx t -+-=(t 为实数)在13x <<的范围内有解,则t 的取值范围是______.23.脱贫攻坚取得重大胜利,是中国在2020年取得的最重要成就之一.家庭养猪是农村精准扶贫的重要措施之一.如图所示,修建一个矩形猪舍,猪舍一面靠墙,墙长13m ,另外三面用27m 长的建筑材料围成,其中一边开有一扇1m 宽的门(不包括建筑材料).(1)所围矩形猪舍的AB 边为多少时,猪舍面积为290m ?(2)所围矩形猪舍的AB 边为多少时(AB 为整数),猪舍面积最大,最大面积是多少?24.如图,四边形ABCD 内接于O ,4OC =,42AC =(1)求点O 到AC 的距离;(2)求出弦AC 所对的圆周角的度数.25.如图,反比例函数2m y x=和一次函数y=kx-1的图象相交于A (m ,2m ),B 两点.(1)求一次函数的表达式;(2)求出点B 的坐标,并根据图象直接写出满足不等式21m kx x<-的x 的取值范围.26.如图,在Rt △ABC 中,∠C =90°,以AC 为直径作⊙O 交AB 于点D ,线段BC 上有一点P .(1)当点P 在什么位置时,直线DP 与⊙O 有且只有一个公共点,补全图形并说明理由.(2)在(1)的条件下,当BP =2,AD =3时,求⊙O 半径.27.已知抛物线23y ax bx =++与x 轴分别交于点()30A -,,()10B ,,与y 轴交于点C ,对称轴DE 与x 轴交于点D ,顶点为E .(1)求抛物线的解析式;(2)若点P 为对称轴右侧且位于x 轴上方的抛物线上一动点(点P 与顶点E 不重合),PQ AE ⊥于点Q ,当PQE V 与ADE 相似时,求点P 的坐标;(3)对称轴DE 上是否存在一点M 使得2ACB AMD ∠=∠,若存在求出点M 的坐标,若不存在请说明理由.参考答案1.C【分析】根据中心对称图形的概念逐项判断即可.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意,故选:C.【点睛】本题考查中心对称图形,理解概念是解答的关键.2.D【分析】根据位似图形的概念得到AB∥DE,进而得到△OAB与△ODE相似,根据相似三角形的性质计算即可.【详解】解:∵△ABC与△DEF是位似图形,∴AB∥DE,∴△OAB∽△ODE,∴13 AB OADE OD==,∴221139 ABCDEFS ABS DE⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭.故选:D.【点睛】本题考查的是位似图形的概念和性质,掌握位似图形的对应边平行、相似三角形的性质是解题的关键.3.A【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】∵圆锥的高为12,底面圆的半径为5,=13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A .【点睛】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键.4.C【分析】设该小组有x 支球队,则每个队参加(1)x -场比赛,则共有1(1)2x x -场比赛,从而可以列出一个一元二次方程.【详解】解:设该小组有x 支球队,则共有1(1)2x x -场比赛,由题意得:1(1)62x x -=,故选:C .【点睛】此题考查了一元二次方程的应用,关要求我们掌握单循环制比赛的特点:如果有n 支球队参加,那么就有1(1)2n n -场比赛,此类虽然不难求出x 的值,但要注意舍去不合题意的解.5.C【分析】由等边ABC 中,D 是BC 边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】ABC 是等边三角形,D 是BC 边上的中点AD BC ∴⊥,60A ∠=︒AD ∴===S 扇形AEF226060(3)3603602r πππ⨯===故选C .【点睛】本题考查了等边三角形的性质,勾股定理,扇形面积公式,熟练等边三角形性质和扇形面积公式,求出等边三角形的高是解题的关键.6.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm ,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm ,那么圆心到直线的距离可能等于6.5cm 也可能小于6.5cm ,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm ,那么圆心与直线上某一点的距离是6.5cm 是指圆心到直线的距离可能等于6.5cm 也可能小于6.5cm.7.A【分析】根据旋转的性质找到对应点、对应角进行解答.【详解】解:∵在△ABC 中,∠CAB =70°,∠B =30°,∴∠ACB =180°﹣70°﹣30°=80°,∵△ABC 绕点A 逆时针旋转40°得到△AB′C′,∴∠CAC′=40°,∠AC′B′=∠ACB =80°,AC =AC′,∴∠AC′C =12(180°﹣40°)=70°,∴∠CC′B′=∠AC′B′﹣∠AC′C =10°,故选:A .【点睛】本题考查了旋转的性质,掌握旋转的性质,以及三角形的内角和是解题的关键8.A【分析】根据一元二次方程和根的定义,可得10m +≠,将0x =代入求解m 即可.【详解】解:由题意可得,10m +≠,解得1m ≠-将0x =代入得:220m m --=解得2m =或1m =-(舍去)故选A【点睛】此题考查了一元二次方程的定义和根的定义,解题的关键是掌握一元二次方程的定义和根的定义,易错点为容易忽略二次项系数不为0.9.D【分析】根据题意假设点A 、B 是抛物线()20y ax bx c a =++>上的两个对称点,则此时该抛物线的对称轴为直线6222x -+==-,然后由12y y >,开口向上离对称轴越近y 的值越小,进而问题可求解.【详解】解:∵点()()126,,2,A y B y -均在抛物线()20y ax bx c a =++>上,∴假设点A 、B 是抛物线()20y ax bx c a =++>上的两个对称点,∴此时该抛物线的对称轴为直线6222x -+==-,∵12y y >,开口向上,抛物线上的点离对称轴越近,则y 的值越小,∴该抛物线的顶点横坐标2m >-,所以选项中符合题意的只有D 选项;故选D .【点睛】本题主要考查二次函数图象与性质,熟练掌握二次函数的图象与性质是解题的关键.10.D【分析】设PD=x ,AB 边上的高为h ,想办法求出AD 、h ,构建二次函数,利用二次函数的性质解决问题即可.【详解】在Rt ABC ∆中,90ACB ∠=︒ ,4AC =,3BC =,5AB ∴===,设PD x =,AB 边上的高为h ,125AC BC h AB == ,//PD BC ,ADP ACB ∆∆∽∴,∴PD AD BC AC=,43AD x ∴=,53PA x =22121415122242333(4)2()23235353210S S x x x x x x ∴+=+-=-+=-+ ∴当302x <<时,12S S +的值随x 的增大而减小,当14x时,12S S +的值随x 的增大而增大.故选D .【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题.11.1-【分析】利用关于原点对称点的性质得出m ,n 的值进而得出答案.【详解】解:∵点P(m ,-2)与点Q(3,n)关于原点对称,∴m =﹣3,n =2,∴m +n =﹣3+2=﹣1.故答案为:﹣1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.12.-2【分析】先将方程化为一般形式,再根据一元二次方程根与系数的关系求解即可.【详解】解:∵232x x -=∴2320x x --=∵1x ,2x 是方程232x x -=的两根,∴12=2x x ⋅-故答案为:-2.【点睛】本题主要考查了一元二次方程根与系数的关系,熟练掌握一元二次方程极好与系数的关系是解答本题的关键.13.6【分析】直接利用正三角形的性质得出,再由勾股定理求出BD 的长即可解决问题.【详解】解:如图所示:连接BO ,由题意可得,OD ⊥BC ,,∠OBD=30°,故.BC=2BD由勾股定理得,3BD ===∴6cmBC =故答案为:6.【点睛】此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.14.76【分析】连接OA 、OB ,根据圆周角定理求得∠AOB ,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA 、OB ,52ACB ∠=︒,∴∠AOB=104°∵PA 、PB 是⊙O 的两条切线,点A 、B 为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°故答案为:76151【分析】将ABD △绕点A 顺时针旋转120︒,则D 与C 重合,'B 是定点,BD 的最大值即'B C 的最大值,根据圆的性质,可知:'B O C 、、三点共线时,BD 最大,根据勾股定理可得结论.【详解】解:如图,将ABD △绕点A 顺时针旋转120︒,则D 与C 重合,'B 是定点,BD 的最大值即'B C 的最大值,即'B O C 、、三点共线时,BD 最大,过'B 作'B E AB ⊥于点E ,由题意得:'2,'120AB AB BAB ==∠=︒,∴'60EAB ∠=︒,'Rt AEB △中,'30AB E ∠=︒,∴1'1,'2AE AB EB ==,由勾股定理得:'OB =,∴''1B C OB OC =+=.1.16【分析】证明90ACB ∠'=︒,利用勾股定理求出AB '即可.【详解】解:如图,由旋转的性质可知,2CB CB ='=,45ABC BCB ∠=∠'=︒,90ACB ∴'=︒,AB ∴'===17.3【分析】过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,延长BA 交y 轴于点G ,结合反比例系数k 的几何意义表达出矩形OFAG 和矩形OEBG 的面积,再结合平行四边形的性质求出平行四边形OABC 的面积.【详解】解:如图,过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,延长BA 交y 轴于点G ,则四边形OFAG 和四边形OEBG 是矩形,∵点A 在反比例函数y =1x 上,点B 在反比例函数y =4x上,∴S 矩形OFAG =1,S 矩形OEBG =4,∴S ▱OABC =S 矩形ABEF =S 矩形OEBG ﹣S 矩形OFAG =4﹣1=3.故答案为:3.18.②③④.【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由图可知,对称轴1x =,与x 轴的一个交点为()3,0,∴2b a =-,与x 轴另一个交点()1,0-,①∵0a >,∴0b <;∴①错误;②当1x =-时,0y =,∴0a b c -+=;②正确;③一元二次方程210ax bx c +++=可以看作函数2y ax bx c =++与1y =-的交点,由图象可知函数2y ax bx c =++与1y =-有两个不同的交点,∴一元二次方程200(1)ax bx c a +++=≠有两个不相等的实数根;∴③正确;④由图象可知,0y >时,1x <-或3x >∴④正确;故答案为②③④.19.x 1=7,x 2=1-【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1-.20.(1)见解析2【分析】(1)分别作出A ,B 的对应点1A ,1B 即可.(2)利用弧长公式计算即可.(1)如图,△11A B O即为所求作.(2)∵OB=∴点B旋转到点1B经过的路径的长==..21.(1)证明见解析;(2)92.【分析】(1)根据角平分线的性质可知∠BAC=∠CAD,再根据题意∠B=∠ACD,即可证明△ABC∽△ACD.(2)利用三角形相似的性质,可知AC ADAB AC=,再根据题意AB和AC的长,即可求出AD.【详解】(1)∵AC分∠BAD,∴∠BAC=∠CAD,∵∠B=∠ACD,∴△ABC∽△ACD.(2)∵△ABC∽△ACD,∴AC AD AB AC=,∵AB=2,AC=3,∴AD=92.22.(1)y=-x 2+4x(2)3<t≤4【分析】(1)先利用抛物线的对称轴方程求出即可得到抛物线解析式为y=-x 2+4x ;(2)配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x<3的范围内有公共点可确定t 的范围.(1)∵抛物线y=-x 2+mx 的对称轴为直线x=2,∴22(1)m -=⨯-,解得m=4,∴抛物线解析式为y=-x 2+4x ,(2)∵y=-x 2+4x=2(2)4x --+,∴抛物线的顶点坐标为(2,4),当x=1时,y=-x 2+4x=3;当x=3时,y=-x 2+4x=3,∵关于x 的一元二次方程-x 2+mx-t=0(t 为实数)在1<x<3的范围内有解,∴抛物线y=-x 2+4x 与直线y=t 在1<x<3的范围内有公共点,如图,∴3<t≤4.故答案为:3<t≤4【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.23.(1)9m(2)AB 为8m 时,面积最大,最大面积是296m .【分析】(1)设m AB x =,则()2721m AD x =-+,根据题意列式即可;(2)设m AB x =,所围矩形猪圈的面积为2m y ,列出二次函数解析式,根据二次函数性质和猪舍的AB 边的取值范围即可得出结论.(1)解:(1)设m AB x =,则()2721m AD x =-+.根据题意可得:()272190x x -+=,解得:15=x ,29x =.当5x =时,27211813x -+=>,不符合题意,舍去;当9x =时,27211013x -+=<,符合题意.答:AB 为9m 时,猪舍的面积为290m .(2)(2)设m AB x =,所围矩形猪圈的面积为2m y .()()2227212282798y x x x x x =-+=-+=--+028213x <-≤ ,7.514x ∴≤<.∵()22798y x =--+,图像开口向下,在对称轴7x =的右侧随x 增大而减小,∴当AB 为整数时,8x =,272112x -+=时,96y =最大值.答:AB 为8m 时,面积最大,最大面积是296m .【点睛】本题主要考查了二次函数与一元二次方程的应用,找准等量关系,正确列出二次函数解析式和一元二次方程是解题的关键.24.(1)(2)∠B =45°,∠D=135°.【分析】(1)连接OA ,作OH ⊥AC 于H ,根据勾股定理的逆定理得到∠AOC=90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B ,根据圆内接四边形的性质计算,得到答案.(1)连接OA ,作OH ⊥AC 于H ,∵4OA OC ==,AC =∴22224432OA OC +=+=,232AC ==,∴OA 2+OC 2=AC 2,∴△AOC 为等腰直角三角形,90,AOC ∠=︒又∵OH AC ⊥,∴AH CH =,∴OH=12AC=O 到AC 的距离为(2)90,AOC Ð=°Q ∴∠B=12∠AOC=45°,∵四边形ABCD 内接于⊙O ,∴∠D=180°-45°=135°.综上所述:弦AC 所对的圆周角∠B =45°,∠D=135°.【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键.25.(1)y=3x-1;(2)203x -<<或x >1.【分析】(1)把A (m ,2m )代入2m y x =,求得A 的坐标为(1,2),然后代入一次函数y=kx-1中即可得出其解析式;(2)联立方程求得交点B 的坐标,然后根据函数图象即可得出结论.【详解】(1)∵A(m ,2m)在反比例函数图象上,∴22m m m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx-1的图象上,∴2=k-1,即k=3,∴一次函数的表达式为:y=3x-1.(2)由231y x y x ⎧=⎪⎨⎪=-⎩解得B(23-,-3)∴由图象知满足21m kx x<-的x 取值范围为203x -<<或x >1.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,根据题意利用数形结合求出不等式的解集是解答此题的关键.26.(1)补图见解析;理由见解析;(2)2.【分析】(1)根据题意补全图形如图所示,情况一:点P 在过点D 与OD 垂直的直线与BC 的交点处,根据切线的定义即可得到结论;情况二:如图,当点P 是BC 的中点时,直线DP 与⊙O 有且只有一个公共点,连接CD ,OD ,根据圆周角定理得到∠ADC=∠BDC=90°,根据直角三角形的性质得到DP=CP ,根据切线的判定定理即可得到结论;(2)由题意可知在Rt △BCD 中,根据直角三角形的性质得到BC=2BP ,求得,根据相似三角形的性质和勾股定理即可得到结论.【详解】解:(1)补全图形如图所示,情况一:点P 在过点D 与OD 垂直的直线与BC 的交点处,理由:经过半径外端,并且垂直于这条半径的直线是圆的切线;情况二:如图,当点P 是BC 的中点时,直线DP 与⊙O 有且只有一个公共点,证明:连接CD ,OD ,如上图,∵AC 是⊙O 的直径,∴∠ADC =∠BDC =90°,∵点P 是BC 的中点,∴DP =CP ,∴∠PDC =∠PCD ,∵∠ACB =90°,∴∠PCD+∠DCO =90°,∵OD =OC ,∴∠DCO =∠ODC ,∴∠PDC+∠ODC =90°,∴∠ODP =90°,∴DP ⊥OD ,∴直线DP 与⊙O 相切;(2)在Rt △BCD 中,∵∠BDC =90°,P 是BC 的中点,∴BC =2BP ,∵BP =2,∴BC ,∵∠ACB =∠BDC =90°,∠B =∠B ,∴△ACB ∽△CDB ,∴AB BC BC BD=,∴2BC AB BD = ,设AB =x ,∵AD =3,∴BD =x ﹣3,∴x (x ﹣3)2,∴x =5(负值舍去),∴AB =5,∵∠BDC =90°,∴AC∴OC =12AC即⊙O27.(1)223y x x =--+;(2)12039P ⎛⎫ ⎪⎝⎭,;(3)存在,点M 的坐标为()11M -,或()11--,【分析】(1)利用待定系数法求出抛物线的解析式;(2)由P 的位置分析得只能是PEQ EAD △△∽,得QEP EAD ∠=∠.延长EP 交x 轴于F ,则AF EF =,设()0F m ,,由两点间距离公式可列方程得到F 点的坐标,用待定系数法求直线EF 的解析式,于抛物线联立即可求得P 点坐标;(3)当点M 在x 轴上方时,连接MA ,MB ,由抛物线的对称性可知MA=MB ,则2=AMB AMD ACB ∠=∠∠,利用圆中同弧所对圆周角相等的性质得圆心O '在对称轴上,设O '的坐标为()1,m -,根据AO CO BO MO ''''===,可列方程求得O '的坐标,从而求得M 的坐标,最后由轴对称性质可知另一点M '的坐标.【详解】解:(1)把()30A -,,()10B ,,点坐标分别代入抛物线解析式,得:933030a b a b -+=⎧⎨++=⎩解得:1a =-,2b =-∴抛物线的解析式:223y x x =--+(2)如图,只能是PEQ EAD △△∽,得QEP EAD ∠=∠.延长EP 交x 轴于F ,∴AF EF =,∴22AF EF =设()0F m ,,则()()222341m m +=++∴2m =,即()20F ,.设直线EF 的解析式为11y k x b =+,则1111420k b k b -+=⎧⎨+=⎩,解之得114383k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线EF 的解析式4833y x =-+.联立2483323y x y x x ⎧=-+⎪⎨⎪=--+⎩,解得13209x y ⎧=⎪⎪⎨⎪=⎪⎩或14x y =-⎧⎨=⎩(舍去)∴12039P ⎛⎫⎪⎝⎭,.(3)如图2,当点M 在x 轴上方时,连接MA ,MB ,设O '的坐标为()1,m -,若AO CO BO MO ''''===,则点A ,B ,C ,M 四点在以O '为圆心的圆上∴ACB AMB∠=∠∵DE 是抛物线的对称轴,∴AMD BMD ∠=∠,∴2AMB AMD ∠=∠,∴2ACB AMD ∠=∠,∵()30A -,,()03C ,,AO CO ''=,∴AO '=CO '=∴()22413m m +=+-,∴1m =,∴()11O '-,,CO AO ''=∴1MD =,∴()11M -+,当点M 在x 轴下方时,由对称知,()11M --,,即:点M 的坐标为()11M -+,或()11-,.。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.下列一元二次方程中没有实数根是()A .2540x x ++=B .2440x x -+=C .2320x x --=D .2230x x ++=3.从2,5,3,6,4这5个数中随机抽取一个,恰好为2的倍数的概率为()A .15B .25C .35D .454.某商品原价为225元,连续两次平均降价的百分率为a ,连续两次降价后售价为144元,下面所列方程正确的是()A .()22251144a +=B .()22251144a -=C .()222512144a -=D .()21441225a +=5.在同一平面直角坐标系内,将函数22y x -=的图象向右平移3个单位,再向下平移2个单位得到图象的顶点坐标是()A .()32-,-B .()32-,C .(3,-2)D .(3,2)6.如图,将△ABC 绕着点C 按顺时针方向旋转25°,B 点落在B′位置,点A 落在A'位置,若AC ⊥A'B',则∠BAC 的度数是()A .55°B .65°C .75°D .85°7.如图,点,,,,A B C D E 都在⊙O 上,,24BC DE BAC =∠=︒,则∠DOE=()A .24°B .42°C .48°D .72°8.一个圆锥的母线长为6,侧面展开图是半圆,则圆锥的侧面积是()A .6πB .12πC .18πD .24π9.在同一直角坐标系中,函数y ax a =+和函数22y ax x =++(a 是常数,且a≠0)的图象可能是()A .B .C .D .10.抛物线2y ax bx c =++的顶点为D(-1,3),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则以下结论:①240ac b -<;②0a b c ++<;③3c a -=;④方程220ax bx c ++-=有两个不相等的实数根;⑤若点()()1122,,,x y x y 都在该函数图象上,且1230.5x x --<<<,则123y y <<.其中正确结论的个数为()A .2个B .3个C .4个D .5个二、填空题11.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是____12.若一元二次方程220x x -=的两个根分别为12,x x ,则1212x x x x +-的值是____.13.如图,D 、E 分别是ΔABC 的边AB 、AC 上的动点,若3,8,6AE AC AB ===,且ΔADE 与ΔABC 相似,则AD 的长度是_______.14.如图,已知四边形ABCD 内接于⊙O ,E 在AD 的延长线上,∠CDE=82°,则∠ABC的度数是_____.15.已知CD 是⊙O 的一条弦,作直径AB ,使AB CD ⊥,垂足为E ,若1,6AE CD ==,则AB 的长为______.16.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.17.如图所示,抛物线23y x bx =-++与x 轴交于点A 和点B ,与y 轴交于点C ,且OA=OC ,点M 、N 是直线x=-1上的两个动点,且MN=2(点N 在点M 的上方),则四边形BCNM 的周长的最小值是______.三、解答题18.解方程:(1)2450x x --=(2)()()22320x x x +-+=19.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?20.如图所示,AB 是⊙O 直径,OD AC ⊥弦于点F ,且交⊙O 于点E ,若BEC ADO ∠=∠.(1)判断直线AD 和⊙O 的位置关系,并说明理由;(2)当54AB AC ==,时,求AD 的长.21.如图,抛物线()20y ax bx c a =++≠经过点A(2,0),B(-2,4),(-4,0),直线AB 与抛物线的对称轴交于点E .(1)求抛物线的表达式;(2)点M 在直线AB 上方的抛物线上运动,当ΔABM 的面积最大时,求点M 的坐标;(3)若点F 为平面内的一点,且以点,,,B E C F 为顶点的四边形是平行四边形,请写出符合条件的点F 的坐标.22.如图,⊙O 与△ABC 的边BC 相切于点D ,与AB 、AC 的延长线分别相切于点E 、F ,连接OB ,OC .(1)若∠ABC=80°,∠ACB=40°,求∠BOC 的度数.(2)∠BOC 与∠A 有怎样的数量关系,并说明理由.23.如图,正比例函数2y x =的图象与反比例函数k y x=的图象交于点A(m ,2)(1)求反比例函数的解析式和A 点的坐标;(2)点C 在y 轴的正半轴上,点D 在x 轴的正半轴上,直线CD 经过点A ,直线CD 交反比例函数图象于另一点B ,若OD =2OC ,求点B 的坐标.24.如图,在⊙O中,AB为弦,CD为直径,且AB⊥CD,垂足为E,P为 AC上的动点(不与端点重合),连接PD.(1)求证:∠APD=∠BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:∠AIP+∠DAI=180°;(3)在(2)的条件下,连接IC、IE,若∠APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.25.已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.26.如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)若点P是y轴上一点,当∠APB=90°时,求点P的坐标.参考答案1.B2.D3.C4.B5.C6.B7.C8.C9.D10.C11.-112.213.4或9414.82°15.1016.9517.218.(1)15=x ,21x =-.(2)12x =-,21x =.【分析】(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.(1)2450x x --=由题意得,a =1,b =﹣4,c =﹣5,∵∆=24b ac -=()()24415--⨯⨯-=36,∴46232x ±===±,∴15=x ,21x =-.(2)()()22320x x x +-+=原方程整理得,()()210x x +-=,∴20x +=或10x -=,∴12x =-,21x =.19.(1)50元或58元(2)54元【分析】(1)设每件商品的售价应为x 元,根据总利润和每件利润与件数的关系列出总利润的代数式,建立方程(x-33)[300+20(60-x)]=8500解答;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据w 和每件利润与件数的关系列出函数表达式,配方成顶点式,得到当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.(1)解:设每件商品的售价应为x 元,根据题意,得(x-33)[300+20(60-x)]=8500解得150x =,258x =,∴售价应为50元或58元;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据题意,得()333002060w x x =-+⎦-⎡⎤⎣()220216049500x x =-+-()220548820x =--+,当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.20.(1)相切,理由见解析(2)103【分析】(1)先证明∠FAO+∠AOF=90°,再根据圆周角定理证明∠BAC=∠ADO ,即可推出∠ADO+∠AOF=90°,由此得到∠DAO=90°,即可证明结论;(2)先利用垂径定理和勾股定理求出OE 的长,再证明△AOF ∽DOA ,利用相似三角形的性质求解即可.(1)解:直线AD 和⊙O 相切.理由如下:∵OD ⊥AC 于点F ,∴∠AFO=90°,在Rt △AOF 中,∠FAO+∠AOF=90°,又∵∠BEC=∠ADO ,∠BEC=∠BAC ,∴∠BAC=∠ADO ,∴∠ADO+∠AOF=90°,∴∠DAO=180°-(∠ADO+∠AOF )=180°-90°=90°,∵OA 为圆O 半径,∴直线AD 和⊙O 相切.(2)解:由垂径定理可知,122AF AC ==,又∵OA=12AB=2.5,由勾股定理可知 1.5OF ==,∵直线AD 和⊙O 相切,∴∠DAB=90°=∠AFO ,又∵∠AOD=∠AOF ,∴△AOF ∽△DOA ,∴OF AF OA AD =即15225AD =..,∴AD=103.【点睛】本题主要考查了圆周角定理,切线的判定,相似三角形的性质与判定,垂径定理,勾股定理等等,熟知切线的判定以及相似三角形的性质与判定条件是解题的关键.21.(1)2142y x x =--+(2)(0,4)(3)(-5,1)或(1,7)或(-3,-1)【分析】(1)已知抛物线上的三点用待定系数法求解析式;(2)根据抛物线的解析式,设出点M 的坐标,作一条竖线交AB 于N ,利用公式()12ABM A B S MN x x =-△求△ABM 的面积;(3)求出点E 坐标,利用平行四边形的性质和平移求点F 的坐标,注意分类讨论.(1)解:将点A(2,0),B(-2,4),C(-4,0)分别代入2y ax bx c =++得:4201640424a b c a b c a b c ++=⎧⎪-+=⎨⎪-+=⎩,解得1214a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩.∴抛物线的表达式为y=2142x x --+.(2)如图,作MN ∥y 轴交直线AB 于点N,设点M(m ,2142m m --+).设直线AB 的方程为y kx n =+,将20()2)4(A B -,,,代入解析式得:2024k n k n +=⎧⎨-+=⎩,解得12k n =-⎧⎨=⎩,∴直线AB 的解析式为:2y x =-+,∴2()N m m -+,,()221142222MN m m m m =--+--+=-+,∴()()2211122242222(2)ABM A B S MN x x m m m ∆=-=⨯-++=-+-⨯(<<),∵-1<0,且-2<0<2,∴当m=0时,ΔABM 的面积最大,此时21442m m --+=,所以M 的坐标为(0,4).(3)∵抛物线的对称轴为直线,将1x =-代入2y x =-+得y=3,∴E (-1,3),当BC 为对角线时,构成BECF .∵B(-2,4),E(-1,3),∴点E到点B向左一个单位长度,向上1个单位长度,∴点C到点F也向左一个单位长度,向上1个单位长度,∵C(-4,0),∴F(-5,1).同理,当BE为对角线时,构成BCEF,可得F(1,7);当BF为对角线时,构成BCFE,可得F(-3,-1).综上所述点F得坐标为(-5,1)或(1,7)或(-3,-1).22.(1)60°(2)∠BOC=90°-12∠A,见解析【分析】(1)方法一:先根据平角的定义求出∠EBC和∠DCF的度数,再根据切线长定理得到∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,据此理由三角形内角和定理求解即可;方法二:如图,连接OD,OE,OF,则由切线的性质可知,证明Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),得到∠EOB=∠DOB,∠COD=∠COF,先求出∠A的度数,再利用四边形内角和定理求出∠EOF=120°,则∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)同(1)方法二求解即可.(1)解:方法一:由题意得∠EBC=180°-∠ABC=180°-80°=100°,∠DCF=180°-∠ACB=180°-40°=140°,由切线长定理可知,∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,∴在△OBC中,∠BOC=180°-∠OBC-∠BCO=180°-70°-50°=60°;方法二:如图,连接OD,OE,OF,则由切线的性质可知,∠BEO=∠BDO=∠CDO=∠CFO=90°,又∵OD=OE=OF,OB=OB,OC=OC,∴Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),∴∠EOB=∠DOB,∠COD=∠COF,在△ABC中,∠A=180°-∠ABC-∠ACB=60°,在四边形AEOF 中,∠A+∠EOF=180°,∴∠EOF=120°,∴∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)解:同(1)方法二可得180EOF A =︒-∠∠,∠EOB=∠DOB ,∠COD=∠COF ,∴∠BOC=∠BOD+∠COD=12∠EOF=1902A ︒-∠.【点睛】本题主要考查了切线的性质,切线长定理,三角形内角和定理,四边形内角和定理,全等三角形的性质与判定等等,熟知切线的性质和切线长定理是解题的关键.23.(1)反比例函数解析式为2y x=,点A 的坐标为(1,2),(2)(4,12)【分析】(1)先把点A 的坐标代入正比例函数解析式求出点A 的坐标,然后把点A 的坐标代入反比例函数解析式求出反比例函数解析式即可;(2)设直线CD 的解析式为1=y k x b +,求出点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,得到1b OC b OD k ==-,,再根据OD=2OC ,求出112k =-,得到直线CD 的解析式为12y x b =-+,然后代入A 点坐标求出直线CD 的解析式即可求出点B 的坐标.(1)解:∵点A (m ,2)在正比例函数y=2x 的图象上,∴2m=2,∴m=1,∴点A 的坐标为(1,2),把点A 的坐标代入反比例函数解析式得2=1k,∴k=2,∴反比例函数解析式为2y x=(2)解:设直线CD 的解析式为1=y k x b +,令0x =,y b =,令0y =,10k x b +=,即1bx k =-,∴点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,∴1bOC b OD k ==-,,∵OD=2OC ,∴12bb k -=,∴112k =-,∴直线CD 的解析式为12y x b =-+,把点A 的坐标代入直线CD 解析式得1122b -⨯+=,∴52b =,∴直线CD 的解析式为1522y x =-+,联立15222y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,解得412x y =⎧⎪⎨=⎪⎩或12x y =⎧⎨=⎩(舍去),∴点B 的坐标为(4,12).24.(1)见解析(2)见解析(3)2【分析】(1)根据垂径定理和圆周角定理可证明;(2)作∠BAP的平分线交BP于I,证明∠DAI=∠AID,进而命题可证;(3)连接BI,AC,先计算得∠AIB=120°,从而确定I在以D为圆心,AD为半径的圆上运动,根据“射影定理”得AD2=DE•CD,进而证明△DI′E∽△DCI′,从而求得结果.(1)解:证明:∵直径CD⊥弦AB,∴=,AD BD∴∠APD=∠BPD;(2)如图,作∠BAP的平分线,交PD于I,证:∵AI平分∠BAP,∴∠PAI=∠BAI,∴∠AID=∠APD+∠PAI=∠APD+BAI,∵=,AD BD∴∠DAB=∠APD,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI,∴∠AID=∠DAI,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)如图2,连接BI,AC,OA,OB,∵AI平分∠BAP,PD平分∠APB,∴BI平分∠ABP,∠BAI=12∠BAP,∴∠ABI=12∠ABP,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP)=60°,∴∠AIB=120°,∴点I的运动轨迹是 AB,∴DI=DA,∵∠AOB=2∠APB=120°,∵AD⊥AB,∴AD BD,∴∠AOB=∠BOD=60°,∵OA=OD,∴△AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.25.(1)(1,0)-或(2,3)(2)见解析(3)①(2,3);②333022m m -<<【分析】(1)把1m =代入抛物线及直线解析式,并联立即可求解;(2)联立方程组求解即可求证;(3)①由(2)可直接得到;②先求出抛物线G ',再联立抛物线G '和直线h ,求出交点,再进行分类讨论即可.(1)解:当1m =时,抛物线21:1G y x =-,直线2:1h y x =+,令211x x -=+,解得1x =-或2x =,∴抛物线G 与直线h 交点的坐标为(1,0)-或(2,3);(2)证明:令2(33)2332mx m x m mx m --+-=+-,整理得2(43)460mx m x m --+-=,即(2)(23)0x mx m --+=,解得2x =或23m x m -=,当2x =时,3y =;当23m x m-=时,0y =;∴抛物线G 与直线h 的交点分别为(2,3)和23(m m-,0),∴必有一个交点在x 轴上;(3)①证明:由(2)可知,抛物线一定过点(2,3);②解:抛物线21:(33)23(23)(1)G y mx m x m mx m x =--+-=-+-,则抛物线G 与x 轴的交点为(1,0),23(m m-,0), 抛物线G 与抛物线G '关于原点对称,∴抛物线G '过点(1,0)-,23(m m--,0),∴抛物线G '的解析式为:223(1)((33)23m y m x x mx m x m m-'=-++=----+,令2(33)2332mx m x m mx m ----+=+-,整理得2(43)0mx m x +-=,0x ∴=或34m x m-=,即四个交点分别为:(0,32)m -,(2,3),23(m A m -,0),34(m m -,66)m -,2302(0)m m m-∴<<>,不等式无解,这种情况不成立;当340m m -<时,则304m <<,则34232m m m m --<<,解得1m >,不成立;当342m m->时,得102m <<,此时23340m m m m --<<,解得得102m <<,333022m m -∴<<.即抛物线G 对称轴的取值范围为:333022m m -<<.【点睛】本题主要考查二次函数与一次函数交点问题,第(3)关键是求出四个交点,由“点A 的横坐标既不是最大值又不是最小值”,对四个点进行分类讨论.26.(1)y=-x 2+2x+3(2)(0,1)或(0,3)【分析】(1)将点A (1,4)代入y=-2x+m ,确定直线解析式即可求出B 点坐标,再设抛物线解析式为y=a(x-1)2+4,将所求的B点坐标代入即可求a的值;(2)(2)设P(0,t),则可求AB=AB的中点M(2,2),再由直角三角形斜边的中线等于斜边的一半可得4+(t-2)2=5,即可求P点坐标为(0,1)或(0,3).【小题1】解:将点A(1,4)代入y=-2x+m,∴-2+m=4,∴m=6,∴y=-2x+6,令y=0,则x=3,∴B(3,0),设抛物线解析式为y=a(x-1)2+4,将B(3,0)代入y=a(x-1)2+4,∴4a+4=0,∴a=-1,∴y=-x2+2x+3;【小题2】设P(0,t),∵A(1,4),B(3,0),∴AB=AB的中点M(2,2),∵∠APB=90°,∴∴4+(t-2)2=5,∴t=1或t=3,∴P点坐标为(0,1)或(0,3).。
人教版九年级上册《数学》期末考试卷及答案【可打印】
人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。
()2. 一个正方形的对角线互相垂直且平分。
()3. 一个圆的半径是直径的一半。
()4. 一个长方体的对角线互相垂直。
()5. 一个等腰三角形的底角等于顶角。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的周长是直径的______倍。
4. 一个长方体的体积是长、宽、高的______。
5. 一个等腰三角形的底边长是腰长的______倍。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方体的性质。
5. 简述等腰三角形的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。
2. 一个正方形的边长为8cm,求其对角线长。
3. 一个圆的直径为14cm,求其周长。
4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。
人教版九年级数学上册期末考试试题及答案精选6套
人教版九年上期末测试题01一、细心填一填(每小题3分,共36分) 1、已知式子31+-x x有意义,则x 的取值范围是 2、计算20102009)23()23(+-=3、若关于x 的一元二次方程(a +1)x 2+4x +a 2—1=0的一根是0,则a = 。
4、成语“水中捞月”用概率的观点理解属于不可能事件,请你仿照它写出一个必然事件 。
5、点P 关于原点对称的点Q 的坐标是(—1,3),则P 的坐标是6、已知圆锥的底面半径为9cm,母线长为10cm ,则圆锥的全面积是 cm 27、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是 8、中国象棋中一方16个棋子,按兵种不同分布如下:1个帅,5个兵、士、象、马、车、炮各2个.若将这16个棋子反面朝上放在棋盘中,任取1个是兵的概率是 。
9、如图,过圆心O 和图上一点A 连一条曲线,将OA 绕O 点按同一 方向连续旋转90°, 把圆分成四部分,这四部分面积 .(填“相等”或“不相等”) 二、选择题(每小题3分,共15分)10、下列二次根式中,与35-是同类二次根式的是( )(A ) 18 (B)3.0 (C ) 30 (D )30011、已知关于x 的一元二次方程(m —2)2x 2+(2m +1)x +1=0有两个实数根,则m 的取值范围是( )(A )43>m (B )43≥m (C )43>m 且2≠m (D )43≥m 且2≠m 12、如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A B C13、如图,⊿ABC 内接于⊙O,若∠OAB=28°则∠C 的大小为( )(A)62° (B )56° (C)60° (D )28°D19、(7分)在一个不透明的袋子中装有三个完全相同的小球,分别标有数字2,3,4。
2024年最新人教版初三数学(上册)期末试卷及答案(各版本)
2024年最新人教版初三数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = |x|D. y = x^43. 下列哪个图形是正方体?A. 长方体B. 正方体C. 球体D. 圆柱体4. 下列哪个命题是假命题?A. 对顶角相等B. 两直线平行,同旁内角相等C. 两直线平行,内错角相等D. 两直线平行,同旁内角互补5. 下列哪个数是无理数?A. 1/2B. √9C. πD. 0.333二、判断题5道(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 任何两个实数的积都是实数。
()3. 0是正数。
()4. 1是质数。
()5. 2是偶数。
()三、填空题5道(每题1分,共5分)1. 两个角的和为180°,这两个角互为__________。
2. 两个角的和为90°,这两个角互为__________。
3. 两个角的和为360°,这两个角互为__________。
4. 两个角的和为270°,这两个角互为__________。
5. 两个角的和为__________°,这两个角互为补角。
四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。
2. 请简要说明无理数的定义。
3. 请简要说明实数的定义。
4. 请简要说明函数的定义。
5. 请简要说明奇函数的定义。
五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:(3/4 + 1/3) ÷ (5/6 1/2)2. 计算下列表达式的值:(2/3)^2 × (3/4)^33. 计算下列表达式的值:√(27) + √(48) √(75)4. 计算下列表达式的值:log2(64) + log2(16) log2(8)5. 计算下列表达式的值:sin(45°) + cos(45°) tan(45°)六、分析题:2道(每题5分,共10分)1. 请分析并解释勾股定理及其应用。
人教版九年级上册数学期末考试试卷附答案
人教版九年级上册数学期末考试试题一、单选题1.用配方法解方程x 2+2x-1=0时,配方结果正确的是()A .()212x +=B .()222x +=C .()213x +=D .()223x +=2.下列二次函数中,其图象的对称轴为x =﹣2的是()A .y =2x 2﹣2B .y =﹣2x 2﹣2C .y =2(x ﹣2)2D .y =(x+2)23.下列标志图中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .4.抛物线223y x x =--与x 轴的两个交点间的距离是()A .-1B .-2C .2D .45.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣36.将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为A .110°B .120°C .150°D .160°7.如图,⊙O 的半径为2,点C 是圆上的一个动点,CA ⊥x 轴,CB ⊥y 轴,垂足分别为A 、B ,D 是AB 的中点,如果点C 在圆上运动一周,那么点D 运动过的路程长为()A .4πB .2πC .πD .2π8.如图是二次函数y =ax 2+bx+c (a≠0)图象的一部分,对称轴是直线x =﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c >0;④b ﹣4a =0;⑤方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有()A .2个B .3个C .4个D .5个9.如图,ABCD 为正方形,O 为对角线AC,BD 的交点,则△COD 绕点O 经过下列哪种旋转可以得到△DOA ()A .顺时针旋转90°B .顺时针旋转45°C .逆时针旋转90°D .逆时针旋转45°10.已知二次函数y =ax2+bx+c 的图象与x 轴交于A ,B 两点,对称轴是直线x =﹣1,若点A 的坐标为(1,0),则点B 的坐标是()A .(﹣2,0)B .(0,﹣2)C .(0,﹣3)D .(﹣3,0)二、填空题11.一元二次方程()()320x x --=的根是_____.12.抛物线y =(x+2)2+1的顶点坐标为_____.13.从实数﹣1、﹣2、1中随机选取两个数,积为负数的概率是________.14.如图,△DEC 与△ABC 关于点C 成中心对称,AB =3,AC =1,∠D =90°,则AE 的长是_____.15.已知扇形的圆心角为120°,它所对弧长为20πcm ,则扇形的半径为_____.16.若关于x 的函数2y kx 2x 1=+-与x 轴仅有一个公共点,则实数k 的值为___17.已知点P (x 0,m ),Q (1,n )在二次函数y =(x+a )(x ﹣a ﹣1)(a≠0)的图象上,且m <n 下列结论:①该二次函数与x 轴交于点(﹣a ,0)和(a+1,0);②该二次函数的对称轴是x =12;③该二次函数的最小值是(a+2)2;④0<x 0<1.其中正确的是_____.(填写序号)三、解答题18.解方程:2680x x -+=19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =10cm ,CD =16cm ,求AE 的长.20.已知二次函数2y ax bx =+的图象过点()2,0,()1,6-.(1)求二次函数的关系式;(2)写出它与x 轴的两个交点及顶点坐标.21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a b和c恰好是这个方程的两个根时,求k的值.23.已知⊙O的直径AB、CD互相垂直,弦AE交CD于F,若⊙O的半径为R,求证:AE•AF =2R2.24.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.25.ΔABC为等腰三角形,O为底边BC的中点,腰AB与 O相切于点D.求证:AC是 O的切线.26.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?参考答案1.A【分析】先把常数项移到方程右边,再把方程两边同时加上一次项系数一半的平方,然后把方程左边写成完全平方形式即可.【详解】解:∵x2+2x﹣1=0,∴x2+2x=1,∴x2+2x+1=2,∴(x+1)2=2.故选:A.【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.2.D【分析】根据二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质逐项分析即可.【详解】A.y=2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;B.y=﹣2x2﹣2的对称轴是x=0,故该选项不正确,不符合题意;;C.y=2(x﹣2)2的对称轴是x=2,故该选项不正确,不符合题意;;D.y=(x+2)2的对称轴是x=-2,故该选项正确,符合题意;;故选D【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,y=a(x-h)2+k是抛物线的顶点式,其顶点是(h,k),对称轴是x=h.熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.3.B【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,也不是中心对称图形,不符合题意.故选B .【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.4.D 【分析】求解得到方程的两个根,用较大根减去小根即可.【详解】令y=0,得2230x x --=,解得123,1x x ==-,∴两个交点间的距离是3-(-1)=4,故选D .【点睛】本题考查了抛物线与x 轴的交点,一元二次方程的解法,正确理解题意,找到合理的解题方法是解题的关键.5.A 【分析】根据二次函数平移的规律“上加下减,左加右减”的原则即可得到平移后函数解析式.【详解】解:抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,得到的抛物线解析式为y =2(x ﹣4+4)2﹣1,即y =2x 2﹣1,再向上平移2个单位长度得到的抛物线解析式为y =2x 2﹣1+2,即y =2x 2+1;故选:A .【点睛】本题考查的是二次函数图象平移变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.6.A 【详解】设C′D′与BC 交于点E ,如图所示:∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°−∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°−70°−90°−90°=110°,∴∠1=∠BED′=110°.故选:A .7.D 【分析】根据题意可知,四边形OACB 是矩形,D 为AB 的中点,连接OC ,可知D 点是矩形的对角线的交点,那么当C 点绕圆O 旋转一周时,D 点也会以OD 长为半径旋转一周,D 点的轨迹是一个以O 为圆心,以OD 长为半径的圆,计算圆的周长即可.【详解】如图,连接OC ,∵CA ⊥x 轴,CB ⊥y 轴,∴四边形OACB 是矩形,∵D 为AB 中点,∴点D 在AC 上,且OD =12OC ,∵⊙O 的半径为2,∴如果点C 在圆上运动一周,那么点D 运动轨迹是一个半径为1圆,∴点D 运动过的路程长为2π•1=2π,故选:D .【点睛】本题考查了动点问题,解决本题的关键是能够判断出D 点的运动轨迹是一个半径为1的圆.8.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵22ba-=-,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4,∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b+c >0,∴③正确,故正确的有②③④⑤.故选:C .【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用9.C 【详解】试题分析:因为四边形ABCD 为正方形,所以∠COD=∠DOA=90°,OC=OD=OA ,则△COD 绕点O 逆时针旋转得到△DOA ,旋转角为∠COD 或∠DOA .故选C .考点:旋转的性质10.D 【分析】利用点B 与点A 关于直线x=-1对称确定B 点坐标.【详解】解:∵二次函数y =ax 2+bx+c 的图象与x 轴交于A ,B 两点,∴点A 与点B 关于直线x =﹣1对称,而对称轴是直线x =﹣1,点A 的坐标为(1,0),∴点B 的坐标是(﹣3,0).故选D .【点睛】本题考查抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.11.123,2==x x 【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【详解】解:30x -=或20x -=,所以123,2==x x .故答案为123,2==x x .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.12.(﹣2,1)【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【详解】由抛物线的顶点坐标可知,抛物线y =(x+2)2+1的顶点坐标是(﹣2,1).故答案为:(﹣2,1).【点睛】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.13.23【详解】从实数-1、-2、1中随机选取两个数共有以下三种等可能情况:①-1,-2;②-1,1;③-2,1;其中乘积为负数的是②、③两种,∴从实数-1,-2,1中随机选取两个数,积为负数的概率是:23.故答案为23.141,3CD AC DE AB ====,再利用勾股定理即可得.【详解】DEC ∆ 与ABC ∆关于点C 成中心对称ABC DEC∴∆≅∆1,3CD AC DE AB ∴====2AD CD AC ∴=+=90D ∠=︒AE ∴===【点睛】本题考查了中心对称图形的性质、勾股定理,熟记中心对称图形的性质是解题关键.15.30cm .【分析】根据扇形弧长公式代入计算即可解决.【详解】根据题意得12020180rππ⨯⨯=,r =30cm ,故答案为30cm .【点睛】本题考查了扇形弧长公式的应用,解决本题的关键是熟练掌握扇形弧长公式.16.0或-1##-1或0【详解】由于没有交待是二次函数,故应分两种情况:当k=0时,函数y 2x 1=-是一次函数,与x 轴仅有一个公共点.当k≠0时,函数2y kx 2x 1=+-是二次函数,若函数与x 轴仅有一个公共点,则2210kx x +-=有两个相等的实数根,即()224k 10∆=-⋅⋅-=,解得:k 1=-,故答案为:0或-1.17.①②④.【分析】(1)根据二次函数的解析式,求出与x 轴的交点坐标,即可判断①;(2)用与x 轴交点的横坐标相加除以2,即可求证结论②;(3)将二次函数交点式转化为顶点式,得到顶点坐标,即可求证③;(4)讨论P 点分别在对称轴的左侧和右侧两种情况,根据函数的增减性,计算x 0的范围即可.【详解】①∵二次函数y =(x+a )(x ﹣a ﹣1),∴当y =0时,x 1=﹣a ,x 2=a+1,即该二次函数与x 轴交于点(﹣a ,0)和(a+1,0).故①结论正确;②对称轴为:12122x x x +==.故②结论正确;③由y =(x+a )(x ﹣a ﹣1)得到:y =(x ﹣12)2﹣(a+12)2,则其最小值是﹣(a+12)2,故③结论错误;④当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得12<x 0<1,综上所述:m <n ,所求x 0的取值范围0<x 0<1.故④结论正确.故答案是:①②④.【点睛】本题考查了二次函数性质的应用,解决本题的关键是熟练掌握二次函数不同形式解析式之间的相互转化,正确理解掌握二次函数的性质.18.x 1=4,x 2=2【分析】原方程运用因式分解法求解即可【详解】解:2680x x -+=(x -4)(x -2)=0x -4=0或x -2=0∴x 1=4,x 2=2【点睛】本题主要考查了解一元二次方程,灵活选用方法是解答本题的关键19.AE =16cm .【分析】根据垂径定理,计算出CE 的长度,再根据勾股定理计算OE 的长度,两者相加即可解决问题.【详解】∵弦CD ⊥AB 于点E ,CD =16cm ,∴CE =12CD =8cm .在Rt △OCE 中,OC =10cm ,CE =8cm ,∴6OE ===(cm ),∴AE =AO+OE =10+6=16(cm ).【点睛】本题考查了圆中计算问题,解决本题的关键是:①熟练掌握垂径定理及其推论,②熟练掌握勾股定理.20.(1)224y x x=-(2)与x 轴的两个交点坐标分别是:()0,0,()2,0;顶点坐标是()1,2-【分析】(1)把点(2,0),(−1,6)代入二次函数y =ax 2+bx ,得出关于a 、b 的二元一次方程组,求得a 、b 即可;(2)将(1)中解析式转化为两点式或顶点式,即可求得抛物线与x 轴的交点坐标和顶点坐标.(1)解:把点()2,0,()1,6-代入二次函数2y ax bx =+,得4206a b a b +=⎧⎨-=⎩,解得24a b =⎧⎨=-⎩,因此二次函数的关系式224y x x =-;(2)解:∵224y x x =-=2x (x−2),∴该抛物线与x 轴的两个交点坐标分别是(0,0),(2,0).∵224y x x =-=2(x−1)2−2,∴二次函数224y x x =-的顶点坐标(1,−2).21.(1)袋子中白球有2个;(2)59.【分析】(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个,根据题意得:213x x =+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.22.(1)见解析;(2)3【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-3.又在直角△ABC 中,根据勾股定理,得(b+c )2﹣2bc 2,由此可以求得k 的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k ﹣3)=4k 2﹣12k+13=(2k ﹣3)2+4,∴无论k 取什么实数值,总有=(2k ﹣3)2+4>0,即△>0,∴无论k 取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b 和c 恰好是方程x 2﹣(2k+1)x+4k ﹣3=0的两个根,得∴b+c =2k+1,bc =4k ﹣3,又∵在直角△ABC 中,根据勾股定理,得b 2+c 2=a 2,∴(b+c)2﹣2bc2,即(2k+1)2﹣2(4k﹣3)=31,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=3,当k=﹣2时,b+c=﹣4+1=﹣3<0,不符合题意,舍去,当k=3时,b+c=2×3+1=7,符合题意,故k=3.23.见解析【详解】连接BE,根据圆周角定理可的∠AEB=90,再有AB⊥CD,公共角∠A,即可证得△AOF∽△AEB,根据相似三角形的对应边成比例即得结果.解:如图,连接BE,∵AB为⊙O的直径∴∠AEB=90°∵AB⊥CD∴∠AOF=90°∴∠AOF=∠AEB=90°又∠A=∠A∴△AOF∽△AEB∴AE•AF=AO•AB∵AO=R,AB=2R所以AE•AF=2R2.24.(Ⅰ)a=﹣1,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);2②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.25.见解析.【分析】过点O作OE⊥AC于点E,连结OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【详解】证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是O的半径,∵AC经过O的半径OE的外端点且垂直于OE,∴AC是O的切线。
人教版九年级上册数学期末考试试卷有答案
人教版九年级上册数学期末考试试题一、单选题1.如图所示四个图标中,属于中心对称图形的是()A.B.C.D.2.抛物线y=3(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)3.如果∠A是锐角,且sinA=12,那么∠A的度数是()A.90°B.60°C.45°D.30°4.如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠C的度数()A.90°B.60°C.45°D.30°5.在半径为6的圆中,120°的圆心角所对的弧长是()A.3πB.4πC.6πD.12π6.如图,△ABC中,点D是AB的中点,DE∥BC交AC于点E,下面结论中正确的是A.12AE AC=B.BC=3DEC.S梯形BCDE=4S△ADE D.AD DEBD BC=7.如图,Rt △ABC 中,∠C =90°,BC AC tanA 的值是()AB .1CD .无法确定8.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是()A .4B .0C .2D .39.如图,△ABC 中,AB =AC ,AD 是BC 边上的中线.按下列步骤作图:①分别以点A 、C 为圆心,大于12AC 的长为半径作弧,相交于M 、N 两点;②直线MN 交AD 于点E ;③连接EB .下列结论中错误的是()A .AD ⊥BCB .EA =EBC .∠AEB =2∠ACBD .∠EBD =2∠EBA10.Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 旋转得到△ADE ,且点D 恰好在AC 上,sin ∠DCE 的值是()A .12B .35C D 二、填空题11.在平面直角坐标系中,点P 、点Q 关于原点对称,若点P 的坐标是(2,3),则点Q 的坐标是.12.如图,△ABC 中,D 、E 分别在BA 、CA 延长线上,DE ∥BC ,23AE AC =,DE =1,BC 的长度是_________.13.若点A (2,y1),B y 2)在抛物线y =x 2﹣2x+1上,则用不等号表示y 1、y 2的大小关系是_____.14.如图,抛物线y =﹣x 2+2x+3的对称轴交抛物线于点P ,交x 轴于点Q ,点A 是PQ 右侧的抛物线上的一点,过点P 做PB ⊥PA 交x 轴于点B ,若设点A 的横坐标为t (t >1),线段BQ 的长度为d ,则d 与t 的函数关系式是_____.15.如图,在O 中、三条劣弧AB 、BC 、CD 的长都相等,弦AC 与BD 相交于点E ,弦BA 与CD 的延长线相交于点F ,且40F ∠=︒,则AED ∠的度数为________.16.如图,把△ABC 绕点A 旋转一定角度得到△ADE ,BC 与DE 交于F ,连接CE ,若∠BFD =20°,则∠ACE =_____度.三、解答题17.确定抛物线y=﹣x2+6x+1的开口方向、对称轴和顶点.18.如图,正方形网格中每个小正方形的边长都是1.将△ABC绕点P逆时针旋转90°后得到△A'B'C',其中A和A',B和B',C和C'是对应点.(1)画出△A'B'C';(2)在该网格中建立平面直角坐标系,点P,A坐标分别为P(0,1),A(1,1),直接写出该坐标系下A',B',C'的坐标.19.如图,四边形ABCD内接于⊙O,AB=12cm,AD=5cm,BD为直径,AC平分∠BAD,求BC的长.20.在△ABC和△ADE中,点E在BC上,已知∠B=∠D,∠DAB=∠EAC.(1)求证:△ABC ∽△ADE ;(2)若AC ∥DE ,∠AEC =45°,求∠C 的度数.21.如图,O 上有A ,B ,C 三点,AC 是直径,点D 是 AB 的中点,连接CD 交AB 于点E ,点F 在AB 延长线上且FC FE =.(1)求证:CF 是O 的切线;(2)若6BF =,4sin 5F =,求O 的半径.22.某班计划购买A ,B 两种花苗,根据市场调查整理出表:A 种花苗盆数B 种花苗盆数花费(元)35220410380(1)求A ,B 两种花苗的单价;(2)经过班级学生商讨,决定购买A ,B 两种花苗12盆(A ,B 两种花苗都必须有),同时得到了优惠方式:购买几盆A 种花,A 种花苗每盆就降价几元.请设计花费最少的购买方案.23.如图,Rt △ABC 中,∠C =90°,AB =10,AC =8.点D 是线段AC 上的一点,点E 在射线CB 上且∠CDE =∠B .(1)求BC 的长;(2)若AD =x ,△CDE 的面积与△ABC 重合部分的面积是y ,求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.24.如图,Rt △ABC 中,AB =AC ,∠BAC =90°,△ADE 中,AD =AE ,∠DAE =90°.连接BD 、CE .(1)如图1,点B 在边ED 的延长线上,求∠AEC 的度数;(2)如图2,∠AEC =90°,射线ED 交BC 于点F .①求证:BF =CF ;②若BD =kAD (k >1),求DEDF的值(用含k 的式子表示).25.如图为函数F 1:21(1)22y x =-++的图象,若F 1和F 2的图象关于坐标原点O (0,0)对称,F 1的顶点A 关于点O 的对称点为点B .(1)求F2的解析式;(2)在F1的图象和直线AB围成的封闭图形上,求平行于y轴的线段的长度的最大值;(3)若F=12(1) (1)F x F x <-⎧⎨>-⎩在F的图象上是否存在点C,使∠ABC=45°,若存在,求出点C的坐标;若不存在,请说明理由.参考答案1.A2.C3.D4.C5.B6.A7.C8.B9.D10.C11.(﹣2,﹣3)【详解】解:∵点P 和点Q 关于原点对称,点P 的坐标是(2,3),∴点Q 的坐标是:(﹣2,﹣3).故答案为:(﹣2,﹣3).12.32【详解】解:∵DE ∥BC ,,AED ACB ADE ABC ∴∠=∠∠=∠,∴ADE ABC ,∴AE DEAC BC=,∵23AE AC =,DE =1,∴32BC =,故答案为:32.13.y 1>y 2【详解】解:∵抛物线y=x 2-2x+1,∴抛物线开口向上,对称轴为直线2121x -=-=⨯,∴点A (2,y 1),B y 2)在抛物线y=x 2-2x+1上,且1<2,∴y 1>y 2.故答案为:y 1>y 2.14.44d t =-【详解】如图,过点A 作AC ⊥PQ 于点C∵222314y x x x ++=--+=-()∴P(1,4)∴PQ=4∵PB ⊥PA∴∠BPQ+∠CPA=90°∵AC ⊥PQ∴∠PAC+∠CPA=90°∴∠PAC=∠BPQ ∴△BQP ∽△PCA ∴AQ PC B QPC =∵点A 的横坐标为t (t >1)∴A(t,-t 2+2t +3)∴PC=4-(-t 2+2t +3)=4+t 2-2t -3=t 2-2t+1∵CA=t-1∴24211d t t t =-+-∴4(1)44d t t =-=-故答案为:44d t =-15.70︒【分析】连接BC ,由弧AB 、BC 、CD 的长相等,可得BAC BDC BCA DBC ∠=∠=∠=∠,设ACD ABD x ∠=∠=,在ABC 中,根据三角形内角和定理建立方程,解方程求得x 的值,进而即可求解.【详解】解:连接BC ,弧AB 、BC 、CD 的长相等,BAC BDC BCA DBC ∴∠=∠=∠=∠,设ACD ABD x ∠=∠=,40F ∠=︒ ,40BAC x ∴∠=+︒,40BDC BCA DBC x ∴∠=∠=∠=+︒,在ABC 中,404040180x x x x +︒++++︒+︒=︒,解得15x =︒,4055DBC BCA x ∴∠=∠=+︒=︒,4070AED BEC x x ∴∠=∠=++︒=︒.故答案为:70︒.16.80【分析】由旋转的性质可得∠ACB =∠AED ,AC =AE ,由外角的性质可得∠CAE =∠EFC =∠BFD =20°,由等腰三角形的性质可求解.【详解】解:如图,设AC 与DE 交点为O ,∵△ABC 绕点A 旋转一定角度得到△ADE ,∴∠ACB =∠AED ,AC =AE ,∵∠COE =∠CAE+∠AED =∠ACB+∠EFC ,∴∠CAE =∠EFC =∠BFD =20°,∵AC =AE ,∴∠ACE =∠AEC =80°,故答案为:80.17.开口向下,对称轴x =3,顶点坐标(3,10)【分析】把二次函数化为顶点式,即可得出开口方向、对称轴及顶点坐标.【详解】解:∵y =﹣x 2+6x+1=﹣(x ﹣3)2+10,∴开口向下,对称轴x =3,顶点坐标(3,10).18.(1)见解析(2)图见解析,A'(0,2),B'(-3,4),C'(-3,2)【分析】(1)根据旋转的性质即可画出△A'B'C';(2)根据点P ,A 坐标分别为P (0,1),A (1,1),即可在网格中建立平面直角坐标系,进而写出该坐标系下A',B',C'的坐标.(1)解:如图,△A'B'C'即为所求;(2)解:如图即为所求的平面直角坐标系,A'(0,2),B'(-3,4),C'(-3,2).19.2【分析】根据圆周角定理得到∠BAD=∠BCD=90°,根据勾股定理得到BD==(cm),求得BC=CD,于是得到结论.13【详解】解:解:∵BD为直径,∴∠BAD=∠BCD=90°,∵AB=12,AD=5,∴BD13=,∵AC平分∠BAD,∴∠BAC=∠DAC=45°,∴ BCCD =,∴BC =CD ,∴BC =CD BD ,故BC 的长为2.20.(1)见详解(2)67.5°【分析】(1)根据∠DAB =∠EAC ,得∠DAE =∠BAC ,从而证明结论;(2)根据平行线的性质得∠AED =∠EAC ,利用△ABC ∽△ADE ,得∠AED =∠C ,从而有∠EAC =∠C ,再利用三角形内角和定理可得答案.(1)证明:∵∠EAC =∠DAB ,∴∠BAC =∠DAE ,∵∠B =∠D ,∴△ABC ∽△ADE ;(2)解:∵AC ∥DE ,∴∠AED =∠EAC ,∵△ABC ∽△ADE ,∴∠AED =∠C ,∴∠EAC =∠C ,∵∠AEC =45°,∴∠C =(180°﹣45°)÷2=67.5°,∴∠C 的度数为67.5°.21.(1)证明见解析(2)203【分析】(1)如图,连接BC ,由题意知90ABC ∠=︒, AD BD=,可得90A ACB ∠+∠=︒,ACD BCD ∠=∠,由等边对等角与三角形外角的性质可知ECF CEF A ACD ∠=∠=∠+∠,根据ACF ACD ECF ∠=∠+∠可求90ACF ∠=︒,进而结论得证;(2)由90F BCF ∠+∠=︒,90ACB BCF ∠+∠=︒可得ACB F ∠=∠,4sin sin 5AB ACB F AC ∠===,则45AB AC =,证明ABC ACF ∽△△,则AB AC AC AF =,可得()2446655AC AB AB ⎛⎫=+=⨯+ ⎪⎝⎭,求出满足要求的AC 的值,根据12OC AC =求半径即可.(1)证明:如图,连接BC ,由题意知90ABC ∠=︒,AD BD =∴90A ACB ∠+∠=︒,ACD BCD ∠=∠,∵FC FE=∴ECF CEF A ACD∠=∠=∠+∠∵ACF ACD ECF∠=∠+∠∴90ACF ACD A ACD BCD A ACD ∠=∠+∠+∠=∠+∠+∠=︒∴AC CF⊥又∵OC 是半径∴CF 是O 的切线.(2)解:∵90F BCF ∠+∠=︒,90ACB BCF ∠+∠=︒∴ACB F∠=∠∴4sin sin 5ABACB F AC ∠===∴45AB AC=∵BAC CAF ∠=∠,ACB F∠=∠∴ABC ACF∽△△∴AB ACAC AF =即ABACAC AB BF=+∴()2446655AC AB AB AC AC ⎛⎫=+=⨯+ ⎪⎝⎭解得0AC =(不合题意,舍去),403AC =∴12023OC AC ==∴O 的半径为203.22.(1)A 种花苗的单价为30元,B 种花苗的单价为26元;(2)购买A 种花苗11盆,购买B 种花苗1盆花费最少.【分析】(1)设A 种花苗的单价为x 元,B 种花苗的单价为y 元,根据“购买A 种花苗3盆,B 种花苗5盆,则需220元;购买A 种花苗4盆,B 种花苗10盆,则需380元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总费用等于购买A ,B 两种花苗费用之和列出函数解析式,再根据函数的性质求最值.(1)解:设A 种花苗的单价为x 元,B 种花苗的单价为y 元,依题意得:35220410380x y x y +=⎧⎨+=⎩,解得:3026x y =⎧⎨=⎩.答:A 种花苗的单价为30元,B 种花苗的单价为26元;(2)设购买两种花的总费用为w 元,购买A 种花苗m 盆,则购买B 种花苗(12-m )盆,根据题意得:w=(30-m )m+26(12-m )=-m 2+4m+312=-(m-2)2+316,∵-1<0,0<m <12(m 为整数),∴当m=11时,w 最小,最小值为235,∴购买A 种花苗11盆,购买B 种花苗1盆花费最少.23.(1)6(2)()226724,072278,832y x x y x x ⎧=-+≤<⎪⎪⎨⎪=-≤≤⎪⎩【分析】(1)根据勾股定理可以直接求得BC 的长;(2)当点E 在线段BC 上时,△CDE 的面积与△ABC 重合部分的面积是△CDE 的面积,根据ABC EDC ∽得到CE 即可求出△CDE 的面积,当点E 在CB 的延长线上时,根据相似三角形的性质求出高OF 关于x 的表达式,即可求得ADO S △,从而得到ABC ADO y S S ∆∆=-,最终得到函数的解析式.(1)解:∵∠C =90°∴222BC AC AB +=,∴6BC ==;(2)解:当点E 在线段BC 上时,12DCE S DC CE=⨯ ∵∠C =90°,∠CDE =∠B ,∴=DEC A ∠∠,∴ABC EDC ∽,∴DCCEBC AC =,∵8,6,8AC BC DC x===-∴()()884863x CE x -==-,∴()()11488223DCE S DC CE x x ⎛⎫=⨯=-- ⎪⎝⎭∴()2283DCE S x =- ,如下图所示,当E 点于B 点重合,即BC=CE=6时,即()4863x -=,得72x =,∴当782x ≤≤时,()2283y x =-;当702x ≤<时,点E 在CB 的延长线上,如下图所示,设AB 交DE 于点O ,过点O 作OF AC ⊥,∵90DFO C ∠=∠= ,FDO CBA ∠=∠,∴FDO CBA ∽,∵90DFO C ∠=∠= ,A A ∠=∠,∴AFO ACB ∽,∴FODF AC BC =,AFFOAC BC=设=OF h ,DF n=∵=AF DF x n x+=+∴8686h nx n h ⎧=⎪⎪⎨+⎪=⎪⎩,6h=8n 即3h=4n6x+6n=8h 解方程组得:127h x =,∴2111262277ADO S AD FO x x x =⨯=⨯= ,22ΔΔ1666824277ABC ADO y S S x x =-=⨯⨯-=-+,∴()226724,072278,832y x x y x x ⎧=-+≤<⎪⎪⎨⎪=-≤≤⎪⎩.24.(1)135︒(2)①答案见解析;②21DE DF k =-【分析】(1)证明△BAD ≌△CAE (SAS ),由全等三角形的性质可得出∠AEC =∠ADB ,由等腰直角三角形的性质可得出答案;(2)①过点B 作BH ⊥BD ,交ED 的延长线于点H ,证明△BFH ≌△CFE (AAS ),由全等三角形的性质可得出BF =CF ;②设AD =x ,由等腰直角三角形的性质及全等三角形的性质可得出DF=2,则可得出答案.(1)解:∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴∠AEC =∠ADB ,∵AD =AE ,∠ADE =90°,∴∠ADE =45°,∴∠ADB =135°,∴∠AEC =135°;(2)解:①证明:过点B 作BH ⊥BD ,交ED 的延长线于点H ,由(1)可知△AEC≌△ADB,∴∠AEC=∠ADB=90°,BD=CE,∵∠DAE=90°,AD=AE,∴∠ADE=∠AED=45°,∴∠BDF=∠CED=45°,∴∠H=45°,∴∠BDH=∠H,∠H=∠CEH,∴BD=BH,∴BH=EC,又∵∠BFH=∠CFE,∴△BFH≌△CFE(AAS),∴BF=CF;②解:设AD=x,∵BD=kAD(k>1),∴BD=kx,∴DE2x,DH22kx,∵△BFH≌△CFE,∴EF=FH,∴DF+EF2,∴DF+DE+DF2kx,∴DF=222kx x,∴21DE DFk =-.25.(1)y 12=x 2﹣x 32-(2)2(3)存在C 点,符合条件的C点坐标为(23-,139)或(7,16)【分析】(1)设F 1与x 轴的交点为C 和D ,求出C 点和D 点坐标,然后求出C 点和D 点关于原点的对称点C'和D',再求出B 点的坐标,最后用待定系数法求出F 2的解析式即可;(2)设AB 上一点M ,过M 作y 轴的平行线MN ,交F 1于点N ,求MN 的最大值即可;(3)分点C 在F 1图象段和在F 2图象段两种情况分别求出C 点的坐标即可.(1)设F 1与x 轴的交点为C 和D,当12-(x+1)2+2=0时,解得x 1=1,x 2=﹣3,∴C (1,0),D (﹣3,0),∴C 点关于原点的对称点C'(﹣1,0),D 点关于原点的对称点D'(3,0),∵A (﹣1,2),∴A 点关于原点的对称点B (1,﹣2),设抛物线F 2的解析式为y =ax 2+bx+c ,代入B 点,C'点,D'点坐标得,09302a b c a b c a b c -+=⎧⎪++=⎨⎪++=-⎩,解得12132 abc⎧=⎪⎪=-⎨⎪⎪=-⎩,∴F2的解析式为y12=x2﹣x32-;(2)设AB上一点M,过M作y轴的平行线MN,交F1于点N,设直线AB的解析式为y=sx,代入A点坐标得s=﹣2∴直线AB的解析式为y=﹣2x,设M(m,﹣2m),则N(m,12-(m+1)2+2),∴MN12=-(m+1)2+2﹣(﹣2m)12=-m2+m3122+=-(m﹣1)2+2,∴当m=1时,MN有最大值为2,即平行于y轴的线段的长度的最大值为2;(3)存在C点,分C点在F1图象段和在F2图象段两种情况:①当C 点在F 1图象段时,作线段AB 的垂直平分线PQ ,且OP =OB =OQ ,∴Q (2,1),P (﹣2,﹣1),连接PB 并延长交F 于点C ,连接BQ 并延长与F 交于点C 1设直线PB 的解析式为y =rx+t ,∴212r t r t -+=-⎧⎨+=-⎩,解得1353r t ⎧=-⎪⎪⎨⎪=-⎪⎩,即直线PB 的解析式为y 13=-x 53-,∴215331(1)22y x y x ⎧=--⎪⎪⎨⎪=-++⎪⎩,解得26161261136113x x y y ⎧⎧+-==⎪⎪⎪⎪⎨⎨---⎪⎪==⎪⎪⎩⎩或(舍去),∴此时C (2613-,61139),②当C 点在F 2图象段时,同理可得直线BQ 的解析式为y =3x ﹣5,∴2351322y x y x x =-⎧⎪⎨=--⎪⎩,解得71162x x y y ==⎧⎧⎨⎨==-⎩⎩或(舍去),∴此时C (7,16),综上,符合条件的C 点坐标为(23-,139)或(7,16).。
人教版初三上册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。
A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。
()2. 两条平行线上的任意两个点之间的距离相等。
()3. 当两个数的和为0时,它们互为相反数。
()4. 函数y=2x+1的图像是一条直线。
()5. 正比例函数的图像经过原点。
()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。
2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。
3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。
4. 若一组数据的平均数为5,则这组数据的总和是______。
5. 若两个等腰三角形的底边长度相等,则它们一定全等。
()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。
2. 简述等腰三角形的性质。
3. 简述函数图像平移的规律。
4. 简述求解二元一次方程组的方法。
5. 简述众数、中位数、平均数的定义及区别。
五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。
若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学九年级(上)期末数学练习试卷满分:120分时间:120分钟一.选择题(满分24分,每小题3分)1.四个数﹣2,2,﹣1,0中,负数的个数是()A.0B.1C.2D.32.我国倡导的“一带一路”地区覆盖的总人口为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.44×10103.如图所示几何体的左视图正确的是()A.B.C.D.4.如图是某市2019年四月每天最低气温(℃)的统计图,在四月份每天的最低气温这组数据中,下列说法正确的是()温度(度)12131415161718天数(天)52123242 A.中位数14℃B.众数是15℃C.平均数是14℃D.极差是10℃5.如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=6,则△PCD的周长为()A.8B.6C.12D.106.已知抛物线y=﹣3kx2+6kx+2(k>0)上有三点(﹣,y1)、(,y2)、(3,y3),则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y17.下列说法错误的是()A.两条直线被第三条直线所截,同位角相等B.在同一平面内,垂直于同一条直线上的两直线平行C.在同一平面内,平行于同一直线的两直线平行D.两点之间线段最短8.如图,在平面直角坐标系中,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上则a的值是()A.1B.2C.3D.4二.填空题(满分18分,每小题3分)9.分解因式:6xy2﹣9x2y﹣y3=.10.计算﹣6的结果是.11.已知扇形的面积为3πcm2,半径为3cm,则此扇形的圆心角为度.12.已知:如图,海船以10(+1)海里/小时的速度向正东方向行驶,在A处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的西北方向,则此时灯塔B与海船C处的距离是(用带根号的式子表示).13.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB 于E,MF⊥AC于F,N为EF的中点,则MN的最小值为.14.已知二次函数y=ax2﹣4ax+3a(1)若a=1,则函数y的最小值为.(2)若当1≤x≤4时,y的最大值是4,则a的值为.三.解答题(共10小题,满分78分)15.(6分)先化简,再求值:1﹣÷,其中x=﹣2,y=.16.(6分)某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.17.(6分)某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)请利用二元一次方程组求这两种服装各购进的件数;(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?18.(7分)共享单车横空出世,很好地解决了人们“最后一公里”出行难问题,但也给城市环境造成了一定的影响.为了解初中学生对共享单车对城市影响的想法,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A、B、C、D四类,其中A类表示“乱停放影响他人”、B类表示“方便市民”、C类表示“缓解车辆拥挤”,D类表示“其他影响”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了多少名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中共享单车对城市影响“缓解交通拥挤”和“方便市民”的学生共有多少名?19.(7分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,与AC、BC分别交于点M、N,与AB的另一个交点为E.过点N作NF⊥AB,垂足为F.(1)求证:NF是⊙O的切线;(2)若NF=2,DF=1,求弦ED的长.20.(7分)如图,在每个小正方形的边长均为1的方格纸中有一条线段AB,线段AB的两个端点均在小正方形的顶点上,请按要求画出图形,使得它们的顶点均在小正方形的顶点上(1)在图中画一个以AB为边的菱形A BCD,使得菱形ABCD的面积为24;(2)以B为旋转中心,将线段BA顺时针方向旋转90°得到线段BE.(3)连接CE,则线段CE的长为.21.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.22.(9分)在四边形ABCD中,E为BC边中点.(Ⅰ)已知:如图1,若AE平分∠BAD,∠AED=90°,点F为AD上一点,A F=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;(Ⅱ)已知:如图2,若AE平分∠BAD,DE平分∠ADC,∠AED=120°,点F,G均为AD上的点,AF=AB,GD=CD.求证:(1)△GEF为等边三角形;(2)AD=AB+BC+CD.23.(10分)如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).24.(12分)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax与x轴交于A,B两点(A在B 的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,﹣a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.参考答案一.选择题1.解:﹣2和﹣1是负数,故选:C.2.解:4 400 000 000用科学记数法表示为:4.4×109,故选:C.3.解:从几何体的左面看所得到的图形是:故选:A.4.解:A、把这些数从小到大排列,最中间的数是滴15、16个数的平均数,则中位数是=14℃,故本选项正确;B、14℃出现了12次,出现的次数最多,则众数是14℃,故本选项错误;C、平均数是(12×5+13×2+14×12+15×3+16×2+17×4+18×2)=14.5℃,故本选项错误;D、极差是:18﹣12=6℃,故本选项错误;故选:A.5.解:∵P A、PB分别切⊙O于点A、B,CD切⊙O于点E,∴P A=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=P A+AC+PD+BD=P A+PB=6+6=12,即△PCD的周长为12,故选:C.6.解:∵抛物线的对称轴为直线x=﹣=1,而抛物线开口向下,点(﹣,y1)到直线x=1的距离最大、点(,y2)到直线x=1的距离最小,∴y1<y3<y2.7.解:A、两条直线被第三条直线所截,同位角相等.错误.本选项符合题意.B、在同一平面内,垂直于同一条直线上的两直线平行,正确,本选项不符合题意.C、在同一平面内,平行于同一直线的两直线平行,正确,本选项不符合题意.D、两点之间线段最短,正确,本选项不符合题意,故选:A.8.解:(1)作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,则y=3,即B(0,2),令y=0,则x=1,即A(1,0),则OB=2,OA=1,∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵Rt△ABO中,∠BAO+∠DAF=90°,∴∠DAF=∠OBA,在△OAB与△FDA中,,∴△OAB≌△FDA(AAS),∴AF=OB=2,DF=OA=1,∴OF=3,∴D(3,1),∵点D在反比例函数y=(k≠0)的图象上,∴1=,解得k=3;作CE⊥y轴,交反比例函数的图象于点G,∵同(1)可得△OAB≌△EBC,∴OB=EC=2,OA=BE=1,∴OE=3,C(2,3),∵点C的纵坐标是3,∴G(1,3),∴CG=1,即m=1.二.填空题(共6小题,满分18分,每小题3分)9.解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)210.解:原式=2﹣6×=2﹣2=0故答案为0.11.解:设扇形的圆心角为n°.则有3π=,解得n=120,故答案为12012.解:如图,过B点作BD⊥AC于D.∴∠DAB=90°﹣60°=30°,∠DCB=90°﹣45°=45°.设BD=x,在Rt△ABD中,AD==x,在Rt△BDC中,BD=DC=x,BC=,∵AC=10(+1)×2=20(+1),∴x+x=20(+1).得x=20.∴BC=20(海里).答:灯塔B距C处20海里.故答案是:20海里.13.解:过点A作AM⊥BC于点M′,∵在△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∴AM′==.∵ME⊥AB于E,MF⊥AC于F,∴四边形AEMF是矩形,∴AM=EF,MN=AM,∴当MN最小时,AM最短,此时点M与M′重合,∴MN=AM′==2.4.故答案为:2.4.14.解:(1)当a=1时,y=x2﹣4x+3=(x﹣2)2﹣1∵a=1>0∴抛物线的开口向上,当x=2时,函数y的最小值为﹣1.(2)∵二次函数y=ax2﹣4ax+3a=a(x﹣2)2﹣a∴抛物线的对称轴是直线x=2,∵1≤x≤4,∴当a>0时,抛物线开口向上,在对称轴直线x=2右侧y随x的增大而增大,当x=4时y有最大值,a×(4﹣2)2﹣a=4,解得a=,当a<0时,抛物线开口向下,x=2时y有最大值,a×(2﹣2)2﹣a=4,解得a=﹣4.故答案为(1)﹣1;(2).三.解答题(共10小题,满分78分)15.解:原式=1﹣•=1﹣=﹣,当x=﹣2,y=时,原式=.16.解:画树状图如下:共有9种等可能的结果数,其中两次摸出的球的颜色相同的结果数为3,所以过关的概率是=.17.解:(1)设购进A种服装x件,购进B种服装y件,根据题意得:,解得:.答:购进A种服装40件,购进B种服装20件.(2)40×100×(1﹣0.9)+20×160×(1﹣0.8)=1040(元).答:服装店比按标价出售少收入1040元.18.解:(1)30÷15%=200人,答:本次调查一共抽查200名学生.(2)200×30%=60人,补全条形统计图如图所示:(3)360°×=36°,答:图2中D类所对应的圆心角的度数为36°.(4)1500×=1125人,答:这所学校1500名学生中共享单车对城市影响“缓解交通拥挤”和“方便市民”的学生共有1125名.19.(1)证明:连接ON.如图所示:∵在Rt△ACB中,CD是边AB的中线,∴CD=BD,∴∠DCB=∠B,∵OC=ON,∴∠ONC=∠DCB,∴∠ONC=∠B,∴ON∥AB∵NF⊥AB∴∠NFB=90°∴∠ONF=∠NFB=90°,∴ON⊥NF又∵NF过半径ON的外端∴NF是⊙O的切线;(2)解:过点O作OH⊥ED,垂足为H,如图2所示:设⊙O的半径为r∵OH⊥ED,NF⊥AB,ON⊥NF,∴∠OHD=∠NFH=∠ONF=90°.∴四边形ONFH为矩形.∴HF=ON=r,OH=NF=2,∴HD=HF﹣DF=r﹣1,在Rt△OHD中,∠OHD=90°∴OH2+HD2=OD2,即22+(r﹣1)2=r2,∴r=.∴HD=,∵OH⊥ED,且OH过圆心O,∴HE=HD,∴ED=2HD=3.20.解:(1)如图,四边形ABCD即为所求.(2)如图,线段BE即为所求.(3)EC==.21.解:(1)设货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=k1x,根据题意得5k1=300,解得k1=60,∴y=60x,即货车离甲地距离y(干米)与时间x(小时)之间的函数式为y=60x;故答案为:y=60x;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);解方程组,解得,∴当x=3.9时,轿车与货车相遇;3)当x=2.5时,y=150,两车相距=150﹣80=70>20,货由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.22.(Ⅰ)证明:(1)如图1中,∵AE平分∠BAD,∴∠BAE=∠F AE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS),(2)∵△ABE≌△AFE,∴∠AEB=∠AEF,BE=BF,∵AE平分BC,∴BE=CE,∴FE=CE,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC,在△DEF和△DEC中,,∴△DEF≌△DEC(SAS),∴DF=DC,∵AD=AF+DF,∴AD=AB+CD;(Ⅱ)证明:(1)如图2中,∵E是BC的中点,∴BE=CE=BC,同(1)得:△ABE≌△AFE(SAS),△DEG≌△DEC(SAS),∴BE=FE,∠AEB=∠AEF,CE=EG,∠CED=∠GED,∵BE=CE,∴EF=EG,∵∠AED=120°,∠AEB+∠CED=180°﹣120°=60°,∴∠AEF+∠GED=60°,∴∠FEG=60°,∴△FEG是等边三角形.(2)由(1)可知FG=GE=EF=BC,∵AD=AG+GH+HD,∴AD=AB+CD+BC.23.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABC D与四边形AEFG都为矩形,∴∠BAD=∠DAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.24.解:(1)令y=0,即0=ax2﹣4ax,解得x1=0,x2=4,∴A(0,0),B(4,0).答:点A、B的坐标为:(0,0),(4,0);(2)①设直线PC解析式为y=kx+b,将点C(2,1),P(1,﹣a)代入解得:k=1+a,b=﹣3a﹣1,∴直线PC解析式为y=(1+a)x﹣3a﹣1,当x=4时,y=3a+3,所以点Q的纵坐标为3a+3.②∵抛物线与线段PQ恰有一个公共点,∴当a<0时,抛物线开口向下,抛物线只能与点Q相交,y=ax2﹣4ax=a(x﹣2)2﹣4a,3a+3<﹣4a,解得a<﹣;当a>0时,抛物线开口向上,只能与点P相交,当x=1时,y=﹣a,y=﹣3a,所以抛物线与点P不相交.综上:a的取值范围是:a<﹣.。