2014年高考全国卷1理科数学试题及答案-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试
一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。 1. 已知集合A={x |2
230
x x --≥},B={x |-2≤x <2=,则A B ⋂= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)
2. 32
(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i -- 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是
A .()f x ()g x 是偶函数
B .|()f x |()g x 是奇函数
C .()f x |()g x |是奇函数
D .|()f x ()g x |是奇函数
4. 已知F 是双曲线C :2
2
3(0)
x m y m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A .3 B .3 C .3m D .3m
5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率
A .18
B .38
C .58
D .7
8
6. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线O A ,终边为射线O P ,过点P 作
直线O A 的垂线,垂足为M ,将点M 到直线O P 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为
7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =
A .
203 B .165 C .72 D .158
8. 设(0,
)2πα∈,(0,)2π
β∈,且1s in ta n c o s βαβ
+=
,则 A .32
π
αβ-=
B .22
π
αβ-=
C .32
π
αβ+=
D .22
π
αβ+=
9. 不等式组1
24
x y x y +≥⎧⎨
-≤⎩的解集记为D .有下面四个命题:
1p :(,),22x yD x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21
x yD x y ∃∈+≤-. 其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P
10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4F P F Q =,则||QF =A .
72 B .5
2
C .3
D .2 11. 已知函数()f x =3
2
31
a x x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)
12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面
体的个条棱中,最长的棱的长度为
A .62
B .42
C .6
D .4
二.填空题:本大题共四小题,每小题5分。
13. 8
()()x y x y -+的展开式中2
2
x y 的系数为 .(用数字填写答案)
14. 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;
乙说:我没去过C 城市;丙说:我们三人去过同一个城市.由此可判断乙去过的城市为 . 15. 已知A ,B ,C 是圆O 上的三点,若1
()2
A O A
B A
C =+,则A B 与A C 的夹角为 .
16. 已知,,a b c 分别为A B C ∆的三个内角,,A B C 的对边,a =2,且(2)(s i n s i n )()s i n b A B c b C
+-=-,则A B C ∆面积的最大值为 .
三、解答题:解答应写出文字说明,证明过程或演算步骤。
17. (本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-
,其中λ为常数. (Ⅰ)证明:2n n a a λ+-=
;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由. 18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下
频率分布直方图:
(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2
s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2
(,)N μδ,其中μ近似为样本平
均数x ,2
δ
近似为样本方差2s .
(i )利用该正态分布,求(187.8212.2)
P Z <<; (ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)
的产品件数,利用(i )的结果,求EX .