《算法初步》知识点总结
数学必修三知识点总结
数学必修三知识点总结一、算法初步。
1. 算法的概念。
- 算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
- 算法的特点:有限性(步骤有限)、确定性(每一步都有确切定义)、顺序性(步骤有先后顺序)、可行性(每一步都能有效执行)、不唯一性(解决问题的算法不唯一)。
2. 程序框图。
- 程序框图的基本图形符号:- 终端框(起止框):表示一个算法的起始和结束。
- 输入、输出框:用来表示数据的输入或结果的输出。
- 处理框(执行框):赋值、计算等操作。
- 判断框:判断某一条件是否成立,成立时在出口处标明“是”或“Y”,不成立时标明“否”或“N”。
- 流程线:连接程序框,表示算法步骤的执行顺序。
- 三种基本逻辑结构:- 顺序结构:是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
- 条件结构:根据条件是否成立有不同的流向。
- 循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况。
有当型循环(先判断条件,满足条件执行循环体)和直到型循环(先执行一次循环体,再判断条件)。
3. 基本算法语句。
- 输入语句:`INPUT“提示内容”;变量`,用于向程序中输入数据。
- 输出语句:`PRINT“提示内容”;表达式`,用于输出程序的运行结果。
- 赋值语句:变量 = 表达式,将表达式的值赋给变量。
- 条件语句:- `IF - THEN`语句(单分支条件语句):- 格式:`IF 条件 THEN`。
语句体。
- 当条件满足时执行语句体。
- `IF - THEN - ELSE`语句(双分支条件语句):- 格式:`IF 条件 THEN`。
语句体1。
`ELSE`.语句体2。
- 当条件满足时执行语句体1,不满足时执行语句体2。
- 循环语句:- `FOR`循环语句:- 格式:`FOR 循环变量=初值 TO 终值 STEP 步长`。
循环体。
`NEXT 循环变量`。
- 用于已知循环次数的循环结构。
高中数学必修3知识点总结
高中数学必修3知识点总结高中数学必修3知识点总结高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:2.算法的特点:(1)有限性;(2)确定性;(3)顺序性与正确性;(4)不唯一性;(5)普遍性;1.1.2程序框图(一)构成程序框的图形符号及其作用(二)、演算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。
2、条件结构:条件结构是依据指定条件选择执行不同指令的控制结构。
依据条件P是否成立而选择执行A框或B框。
无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。
一个预判判断结构可以有三十多个判断框。
3、循环结构:在一些算法中,经常会发生从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
1.2.1输入、输出语句和赋值语句AB1、输入语句一般格式Input“提示内容”;变量Print“提示内容”;表达式2、输出语句:一般格式3、赋值语句(1)赋值语句的一般格式变量=表达式(2)赋值语句的作用是将表达式所积极作用代表者的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中所的等号的意义是不同的。
赋值号的左右两边不必对换,它将赋值号右边的表达式的值赋给赋值号右边的变量;(4)赋值语句名号左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以真值十多次赋值。
1.2.2条件语句1、条件语句的一般格式:IF语句的一般格式为图1,对应的程序框图为图2。
if表达式语句序列1;else语句序列2;图1图2否满足条件?是语句1语句2end必修三IF语句的最简单格式为图3,对应的程序框图为图4。
1.2.3循环语句循环结构是由循环语句来实现的。
算法初步知识点及习题
算法算法是高中数学课程中的新增内容,是中国数学课程内容的一个新特色.“算法”过程是指机械式地按照某种确定的步骤行事,通过一系列小的简单计算操作完成复杂计算的过程.算法的学习内容大致可分为三个步骤:用自然语言描述算法;精确刻画算法(程序框图);计算机实现执行算法(程序语言的描述过程).算法思想贯穿高中数学课程的相关部分.【知识要点】1.算法:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤.2.程序框图程序框图:用一些通用的符号构成一张图来表示算法,这种图称为程序框图(程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形).用框图表示算法步骤的一些常用的图形符号:程序框名称功能终端框(起止框) 表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框) 赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”,不成立时标明“否”↓→流程线(指向线) 指引流程图的方向连接点连接另一页或另一部分的框图程序框图的三种基本逻辑结构:顺序结构:描述的是最简单的算法结构,语句与语句之间、框与框之间按从上到下的顺序进行(如图9-1).图9-1条件分支结构:依据指定条件选择执行不同指令的控制结构(如图9-2).图9-2循环结构:根据指定条件决定是否重复执行一条或多条指令的控制结构(如图9-3).图9-33.几种基本算法语句任何一个程序设计语言中,都包含五种基本的算法语句,即输入语句、输出语句、赋值语句、条件语句、循环语句.输入语句和输出语句分别用来实现算法的输入信息、输出结果的功能;赋值语句是用来表明赋给某一个变量一个具体的确定值的语句;条件语句是处理条件分支逻辑结构的算法语句;循环语句是用来处理算法中的循环结构的语句.4.中国古代算法案例:更相减损之术、辗转相除法:求两个正数的最大公因数的方法.辗转相除法算法步骤:第一步:用两数中较大数除以较小数,求商和余数.第二步:用除数除以余数.第三步:重复第二步,直到余数为0.第四步,得出两数的最大公约数,即余数0之前的余数.更相减损术算法步骤:第一步:用较大数减去较小数,得到差.第二步:比较减数与差的大小,再用较大数减去较小数.第三步:重复第二步,直到差与减数相等为止.第四步:相等数即为最大公约数.割圆术:用正多边形的面积逐渐逼近圆面积的算法求圆周率π. 秦九韶算法:求一元多项式的值的一种方法,递推关系为),,2,1(10n k a x v v a v k n k kn=⎩⎨⎧+==-- 【复习要求】1.了解算法的含义,了解算法的思想.2.理解程序框图的三种基本逻辑结构:顺序结构、条件分支结构、循环结构.3.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.【例题分析】例1 如图(图9-4)所示,将一系列指令用框图的形式表示,箭头指向下一步的操作.请按照框图回答问题:图9-4(1)这个框图表示了怎样的算法?(2)输出的数是多少?【分析】由框图中的文字及图形符号表示的操作内容可知:此算法是“求1到50的和”,由此可以算出输出的数.解:(1)此框图表示的算法为:求1+2+3+…+50的和;(2)易知所求和为1275.【评析】程序框图主要包括三部分:表示相应操作的框,带箭头的流程线和框外必要的说明.读框图时要从这三个方面研究,流程线反映了命令执行的先后顺序,主要看箭头方向,框及内外的文字说明表明了操作内容.常用这种方式考察对算法的理解和应用.例2 (1)如图9-5所示的是一个算法的程序框图,已知a1=3,输出的结果为7,则a2的值为______.图9-5(2)如图9-6所示的是某个函数求值的程序框图,则满足该程序的函数解析式为_____.图9-6(3)如图9-7所示的是求某个数列和的程序框图,此程序输出的结果为_____.图9-7【分析】这三个小题的重点在于读懂框图.(1)只含有顺序结构,(2)含有条件分支结构,表明函数的定义域为R ,当x <0时,遵从解析式f (x )=3x -1,否则(即当x ≥0时),遵从解析式f (x )=2-5x ;(3)中有两个循环变量S 、I ,S 是累加变量,I 是计数变量;另外还要判断I 的奇偶性,以此决定是加还是减.解:(1)112=a ;(2)⎩⎨⎧≥-<-=)0(52)0(13)(x x x x x f ;(3)S =12-22+32-42+…+992-1002=-5050.【评析】题(1),只含有顺序结构,所表示的算法比较简单,只需按照框图箭头方向依次读出即可.题(2)含有条件分支结构,这是一个与分段函数有关的算法,框图中含有判断框.读包含有判断框的框图时,要特别重视判断框内的条件和框外的文字说明,对应的下一步操作会依条件不同而改变.题(3)含有循环结构,当解决一些有规律的科学计算问题,尤其是累加和累乘时,往往可以利用循环结构来实现算法.循环结构有两种,读包含有循环结构的框图时,除关注判断框内外的说明外,一般要从开始依顺序做几次循环,观察变量的变化规律来帮助读懂算法的含义.例3 (1)已知平面上的一点P 0(x 0,y 0)和直线l :Ax +By +C =0,求点P 0到直线l 的距离d ,并画出程序框图.(2)用条件分支结构写“已知三个数a 、b 、c ,找出其中最大数”的算法及框图.(3)写出求n131211++++的和的算法,画出程序框图,并写出相应程序(选做). 【分析】正确分析“算理”,才能选择恰当的算法结构,有条理的表达算法.(1)在已知点到直线距离公式的前提下,适合用顺序结构表示;(2)涉及比大小,必须用到条件分支结构;(3)中分母有规律的递增,可以引入累加变量S 和计数变量i ,且S =S +1/i 是反复进行的,可以用循环结构表示.解:(1)算法及框图为:S1 输入x 0,y 0;A ,B ,C ; S2 计算m =A 2+B 2;S3 计算n =Ax 0+By 0+C ; S4 计算mn d ||=; S5 输出d ;(2)算法及框图为:S1 输入a ,b ,c ; S2 令x =a ;S3 若b >x ,则令x =b ;否则,执行S4;S4 若c >x ,则令x =c ;否则,执行S5; S5 输出x ;(3)算法及框图为:S1 输入i =1,S =0; S2 当i ≤n 时,,1iS S += i =i +1;否则执行S3; S3 输出S ;程序如下; S =0For i =1:1:n S =S +1/i i =i +1 endprint(%io (2),S )【评析】书写算法时,一步一步的程序化步骤,即“算则”固然重要,但这些步骤的依据,即“算理”有着更基本的作用,“算理,,是“算则”的基础,“算则”是“算理”的表现.这三道小题由于算理不同,所蕴含的算法结构也不同.通过实例,模仿、操作、探索,经历通过设计程序框图表达解决问题的过程,可以更好的理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,体会和理解算法的含义,了解算法语言的基本构成.本例中涉及的“利用公式求点到直线的距离”、“实数排序求最值问题”、“求数列的和或积的问题”,还包括“二分法求函数零点”、“质数的判定”,“求π的近似值”等等,都是算法的典型案例,学习时要给予充分的重视.一般算法的表示方法并不唯一.不同的算法语言的书写形式是有差别的.本书所采用的是Scilab 语言,学习时要了解赋值语句、输入输出语句、if 语句、while 和for 语句的基本含义及表达方式,能够读懂语句表示的算法过程.例4 (1)用辗转相除法计算56和264的最大公约数时,需要做的除法次数是______. (2)用更相减损术求56和98的最大公约数时,操作如下:(98,56)(56,42)(42,14)(28,14)(14,14),由此可知两数的最大公约数为______.(3)用秦九韶算法求得多项式f (x )=x 6-2x 5+3x 3+4x 2-6x +5当x =2时函数值为______.解:(1)8216816240164015640564264+⨯=+⨯=+⨯=+⨯=所以最大公约数为8,需做的除法次数是4;(2)最大公约数为14; (3)33. 【评析】书上所涉及的古代基本算法案例包括:更相减损术与辗转相除法、秦九韶算法、割圆术.辗转相除法与更相减损术都是求最大公约数的方法,辗转相除法又叫欧几里得方法,计算上以除法为主,更相减损术以减法为主,计算次数上,前者相对较少,特别是两个整数相差较大时区别尤其明显;辗转相除法以余数为0结束,更相减损术则以减数与差相等结束.秦九韶算法的特点是把求n 次多项式的值转化为求n 个一次多项式的值,运算时只有加法和乘法,而且运算的次数比较少,求一个n 次多项式的值最多需要进行n 次加法、n 次乘法.割圆术是由中国古代数学家刘徽提出的,是当时计算圆周率比较先进的算法,“算理”明确,即用圆内接正多边形和外切正多边形逼近圆周率,重点是确定递推关系.例5 (09辽宁)某店一个月的收入和支出总共记录了N 个数据,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V .那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A .A >0,V =S -TB .A <0,V =S -TC .A >0,V =S +TD .A <0,V =S +T【分析】本题要注意三点:a k 有正有负;S 为总收入,是所有正数的和;T 为总支出,是所有非正数的和.答案为C【评析】本题结合实际背景,强调算法的应用价值,是一种比较新的题型,应引起关注.练习9一、选择题1.任何一个算法都必须有的基本结构是( )A.顺序结构B.条件分支结构C.循环结构D.以上三个都要有2.下面给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②判断框有一个入口,有不止一个出口;③对于一个算法来说,判断框内的条件表达方式是唯一的;其中正确的有( )A.0个B.1个C.2个D.3个3.在算法的逻辑结构中,要求进行逻辑判断并根据结果进行不同处理的是哪种结构( ) A.顺序结构B.条件分支结构和循环结构C.顺序结构和条件分支结构D.顺序结构和循环结构4.算法:S1 输入n;S2 判断n是否是2;若n=2,则n满足条件,若n>2,则执行S3;S3 依次从2到n-1检验能否整除n,若都不能整除,则n满足条件;满足上述算法的n是( )A.奇数B.偶数C.质数D.合数二、填空题5.阅读下面两个程序框图,框图1输出的结果为______;框图2输出的结果为______.框图1 框图26.(08广东)阅读图9-8的程序框图,若输入m=4,n=6,则输出a=______,i=______.图9-8 图9-97.阅读图9-9的程序框图,若输入的n是100,则输出的变量S和T的值依次是______.8.“x=3*5”和“x=x+1”是某个程序中的先后相邻两个语句,下列说法中①“x=3*5”是将数值15赋给x,而不是普通运算“x=3*5=15”;②“x=3*5”可以写成“3*5=x”③语句“x=x+1”在执行时,“=”右边x为15,“=”左边x为16;正确的有______.三、解答题9.分别用辗转相除法和更相减损术求189和81的最大公约数.10.用循环语句书写求1+2+3+…+n>1000的最小自然数n的算法,画出程序框图,并写出相应的程序(选做).11.(09宁夏)为了测量两山顶MN间的距离,飞机沿水平方向在AB两点进行测量,MN在同一个铅垂平面内(如图).飞机能够测量的数据有俯角和AB间的距离,请你设计一个方案,包括:指出需要测量的数据(用字母表示,并在图中标出);用文字和公式写出计算MN间距离的步骤.专题九 算法参考答案练习9一、选择题1.A 2.C 3.B 4.C 二、填空题5.27,21 6.12,3 7.2550,2500 8.①③. 三、解答题9.解:辗转相除法:3278127281189 ⨯=⨯=,所以最大公约数为27.更相减损术:189-81=108,108-81=27,81-27=54,54-27=27, 所以最大公约数为27. 10.解:S1 输入S =0,i =1; S2 S =S +i ,i =i +1;S3 若S ≤1000,重复执行S2; 若 S >1000,输出i .S =0,i =1; While S ≤1000 S =S +i ; i =i +1; endprint (%io (2),i )11.解:如图(1)需要测量的数据有:A 点到M 、N 的俯角α1,β1;B 点到M 、N 的俯角α 2,β 2;A 、B 的距离d .11 / 11 (2)第一步:计算BM ,由正弦定理)sin(sin 211ααα+=d BM ; 第二步:计算BN ,由正弦定理)sin(sin 121βββ-=d BN ; 第三步:计算MN ,由余弦定理 )cos(22122αβ+++=⋅⋅BN BM BN BM MN .。
算法初步
第十一章算法初步本章知识结构图考纲解读1.了解算法的含义和思想.2.理解程序框图的3中基本逻辑结构:顺序、条件分支、循环.3.理解5种基本算法语句——输入、输出、赋值、条件和循环语句的含义.命题趋势探究预测在2019年高考中,本章知识仍为考查的热点,内容以程序框图为主.从形式上看,以选择题和填空题为主,或以实际问题为背景,侧重知识应用能力的考查,要求考生具备一定的逻辑推理能力.本专题主要考察算法的逻辑结构,要求能够写出程序的运行结果、指明算法的功能、补充程序框图,求输入参量,并常将算法与其他板块知识(尤其是数列)进行综合考查.一般来说,有关算法的试题属中档题目,分值稳定在5分.知识点精讲一、算法与程序框图1.算法算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是确定的和能执行的,并且能够在有限步之内完成.2. 程序框图(1)定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)说明:在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向的流程线将程序框连接起来,表示算法步骤的执行顺序.3.3种基本逻辑结构程序框图有3种基本的逻辑结构,如表11-1所示.二、基本算法语句1.3中基本算法语句的一般格式和功能3中基本算法语句的一般格式和功能如表11-2所示.2.条件语句(1)算法中的条件结构由条件语句来表达. (2)条件语句的格式及框图如图11-1和11-2所示. ①IF—THEN 格式IF 条件 THEN 语句体 END②IF—THEN —ELSE 格式 IF 条件 THEN 语句体1 ELSE 语句体2END图11-23.循环语句(1)算法中的循环结构是由循环语句来实现. (2)循环语句的格式及框图如图11-3和11-4所示. ①UNTIL 语句DO循环体LOOP UNTIL 条件②WHILE 语句 WHILE 条件循环体END(3)WHILE 语句与UNTIL 语句之间的区别与联系如表11-3所示.三、算法案例 1.辗转相除法辗转相除法又叫欧几里德算法,是一种求最大公约数的古老而有效的算法,其步骤如下: (1)用两数中较大的数除以较小的数,求得商和余数; (2)以除数和余数中较大的数除以较小的数; (3)重复上述两步,直到余数为0; (4)较小的数是两数的最大公约数. 2.更相减损术更相减损术是我国古代数学专著《九章算术》中介绍的一种求两数最大公约数的算法,其基本过程为:对于任意给定的两个正整数,以大数减小数,接着把所得的差与较小的数比较,并以大数减小数,继续该操作,直到所得的数相等为止,这个数(等数)就是所求的最大图11-3图11-4公约数.3.秦九韶算法秦九韶算法是我国南宋数学家秦九韶在他的代表作《数书九章》中提出的一种用于计算一元n次多项式的值的方法。
高中数学必修(3)第一章算法初步(知识点汇总)
算法初步与程序框图1、算法的概念:算法通常指按照一定的规则解决某一类问题的明确和有限的步骤。
2、程序框图:用程序框、流程线及文字说明来表示算法的图形叫做程序框图或流程图。
(1)用框图表示算法步骤的一些常用的图形符号图形符号名称功能终端框(起止框)表示一个算法的起始和结束,是任何算法程序框图不可缺少的输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置处理框(执行框)赋值、计算.算法中处理数据需要的算式、公式等,它们分别写在不同的用以处理数据的处理框内判断框判断某一条件是否成立,成立时出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框,表示算法进行的前进方向以及先后顺序连接点如果一个流程图需要分开来画,要在断开处画上连接点,并标出连接的号码(2)程序框图的结构形式①顺序结构;②条件结构;③循环结构;(3)基本算法语句①输入语句;②输出语句;③赋值语句;④条件语句;⑤循环语句;3、程序框图举例:开始11(1)(2)4、辗转相除法:5、更相减损术:6、秦九韶算法:7、二分法:8、进位制:9、流程图和结构图框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系,框图可分为流程图和结构图,流程图与结构图直观形象、简洁、明了,在日常生活中应用广泛.一、流程图:流程图常常用来表示一个动态过程,通常会有一个“起点”,一个或多个“终点”.程序框图是流程图的一种.流程图可以直观、明确地表示动态过程从开始到结束的全部步骤.它是由图形符号和文字说明构成的图示.流程图用于描述一个过程性的活动,活动的每一个明确的步骤构成流程图的一个基本单元,基本单元之间用流程线联系.基本单元中的内容要根据需要而确定.可以在基本单元中具体说明,也可以为基本单元设置若干子单元.10、流程图的种类(1)算法流程图①算法流程图在必修课程中已经学过,它是一种特殊的流程图,主要适用于计算机程序的编写.②在算法流程图内允许有闭合回路.(2)工艺流程图①工艺流程图是常见的一种流程图,又称统筹图,在日常生活、生产实践等各方面经常用到工艺流程图.②用来描述具有先后顺序的时间特征的动态过程.③工艺流程图的构成由矩形框、流程线和名称(代号)构成.④工艺流程图可以有一个或多个“起点”,一个或多个“终点”,对于同一个矩形框可以有多个流出点和流入点.⑤在工艺流程图中不允许出现几道工序首尾相连接的圈图或循环回路.20、绘制流程图的一般过程首先,用自然语言描述流程步骤;其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达; 再次,分析各步骤之间的关系;最后,画出流程图表示整个流程.二、结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图.10、结构图的种类常用的结构图一般包括知识结构图、组织结构图、建筑结构图、布局结构图及分类结构图.20、绘制结构图步骤:(1)确定组成系统的基本要素,及它们之间的关系.(2)将系统的主体要素及其之间的关系表示出来.(3)确定主体要素的下位要素(从属主体的要素)“下位”要素比“上位”要素更为具体,“上位”要素比“下位”要素更为抽象.(4)逐步细化各层要素,直到将整个系统表示出来为止.三、结构图与流程图的区别:流程图和结构图不同.流程图是表示一系列活动相互作用、相互制约的顺序的框图.结构图是表示一个系统中各部分之间的组成结构的框图.流程图描述动态过程,结构图刻画系统结构.流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由有向线连接;结构图则更多地表现为“树”状结构,其基本要素之间一般为逻辑关系.四、考点详解考点一:流程图类型一:算法流程图例1、写出方程0ax b += (,a b 为常数)的根的流程图.分析:因为,a b 是实数,要解方程需先判断a 是否为0,当0a ≠时,方程根为b x a =-;当0a =时,需再次判断b 是否为0,若0b =,则方程根为全体实数,若0b ≠,则方程无解,因此可以用算法中的条件结构来实现,相应程序语句是条件语句.解:根据以上的算法分析可得出算法流程图:点评:算法流程图是学习算法语言的必备工具,在使用时必须用其标准的图形符号.变式练习1:某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7类型二: 工序流程图例2、某工厂装配一辆轿车的工序、工序所花的时间及各工序的先后关系如下表所示:开始输入,a b0a ≠? b x a=- 0b ≠? 输出方程无解 输出方程根是全体实数输出原方程根为x 结束否 否是是注:紧前工序,即与该工序相衔接的前一工序.(1)画出装配该轿车的工序流程图;(2)装配一辆轿车的最短时间是多少小时?分析:要画工序流程图,首先要弄清整项工程应划分为多少道工序,这当然应该由上到下,先粗略后精细,其次是仔细考虑各道工序的先后顺序及相互联系、制约的程度,最后考虑哪些工序可以平行进行,哪些工序可以交叉进行.一旦上述问题都考虑清楚了,一个合理的工序流程图就成竹在胸了,依据其去组织生产,指挥施工,就能收到统筹兼顾的功效.解:(1)工序流程图如下图所示:(2)装配一辆轿车的最短时间是1154125340+++++=(小时).点评: 有关工序流程图应先理清工序大体分几个阶段,再对每一阶段细分,每一步应注意先后顺序,这是十分关键的,否则会产生错误.在画工序流程图时,不能出现几道工序首尾相接的圈图或循环回路.变式练习2:某成品的组装工序图如下,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是( )A. 11小时B. 13小时C. 15小时D. 17小时考点二: 结构图类型一: 知识结构图例3、设计一个结构图,表示《数学{5}》第二章“数列”的知识结构图. 分析:画知识结构图的过程与方法:首先,要对所画结构图从头到尾抓住主要脉络进行分解;然后将每一步分解进行归纳与提炼,形成一个个知识点,并将其逐一地写在矩形框内;最后,按其内在的逻辑顺序将它们排列起来并且用线段相连,这样就画成了知识结构图.解:本章的知识结构图如下:点评:要熟悉知识结构,注意实际问题的逻辑顺序和概念上的从属关系,这个结构图从整体上反映了数列的结构,从左向右反映的是要素之间的从属关系.在画结构图时,应根据具体需要确定复杂程度,简洁的结构图有时能更好地反映主体要素之间的关系和系统的整体特点.另外在画结构图时还应注意美观、明了. 变式练习3:下图是《集合》的知识结构图,如果要加入“子集”,则应该放在( )A. “集合的概念”的下位B. “集合的表示”的下位C. “基本关系”的下位D. “基本运算”的下位类型二: 组织结构图例4、下面为某集团的组织结构图,请据下图分析财务部和人力资源部的隶属关系.分析: 根据组织结构图,分析好各部门之间的从属关系,最后作答.解:由组织结构图可分析得:财务部直属总裁管理;而总裁又由董事长管理,董事长服从于董事会管理.人力资源部由董事长助理直接管理,董事长助理服从董事长管理,董事长又服从于董事会管理,董事会是最高管理部门.点评:有关组织结构图一般都呈“树”形结构.这种图直观,容易理解,被应用于很多领域中.在组织结构图中,可采用从上到下或从左到右的顺序绘制图,注意各单元要素之间的关系,并对整个组织结构图进行浏览处理,注重美观、简洁、明了.变式练习4:某公司做人事调整:设总经理一个,配有经理助理一名;设副经理两人,直接对总经理负责,设有6个部门,其中副经理A 管理生产部、安全部和质量部,经理B 管理销售部、财务部和保卫部;生产车间由生产部和安全部共同管理,公司配有质检中心和门岗。
算法基础的知识点总结
算法基础的知识点总结算法是计算机科学的核心概念之一,它是指解决问题的一系列清晰而有条理的步骤。
算法可以用于各种不同的情境,包括数学、工程、计算机科学等领域。
一个好的算法应该是高效的、清晰的和可靠的。
在本文中,我们将总结一些算法基础知识点,包括算法的定义、算法分析、算法设计、算法复杂度和常见的算法类型。
一、算法的定义算法是指解决问题的有序而清晰的步骤,它可以被用来处理输入并产生输出。
一个好的算法应该是可理解的、可重复的和可验证的。
算法可以用来解决各种不同的问题,包括数值计算、图形处理、数据搜索等。
二、算法的分析算法的分析是指评估算法的效率和性能。
常见的算法分析方法包括时间复杂度分析和空间复杂度分析。
时间复杂度是指算法执行所需的时间,它可以用来评估算法的执行效率。
空间复杂度是指算法执行所需的内存空间,它可以用来评估算法的内存使用情况。
通过对算法的分析,我们可以评估算法的性能并选择最合适的算法来解决问题。
三、算法的设计算法的设计是指如何选择和设计合适的算法来解决问题。
常见的算法设计方法包括分治法、动态规划、贪心算法、回溯法等。
分治法是指将问题拆分成更小的子问题,并递归地求解这些子问题。
动态规划是指将问题分解成更小的子问题,并使用子问题的解来求解原问题。
贪心算法是一种逐步选择最优解的算法。
回溯法是一种逐步搜索解空间的算法。
通过选择合适的算法设计方法,我们可以设计出高效的算法来解决问题。
四、算法的复杂度算法的复杂度是指算法执行所需的时间和空间资源。
常见的算法复杂度包括时间复杂度和空间复杂度。
时间复杂度是指算法执行所需的时间资源,它可以用来评估算法的执行效率。
空间复杂度是指算法执行所需的内存资源,它可以用来评估算法的内存使用情况。
通过对算法的复杂度进行评估,我们可以选择最合适的算法来解决问题。
五、常见的算法类型1.排序算法:排序算法是指将一组数据按特定顺序排列的算法。
常见的排序算法包括插入排序、选择排序、冒泡排序、快速排序、归并排序等。
算法初步文档
算法初步算法定义算法(Algorithm)是指解决特定问题或完成特定任务的一系列步骤。
算法是一种精确定义的计算过程,可以由计算机进行执行。
它可以用来解决各种问题,如排序、搜索、图像处理等。
算法包含输入、输出、有穷性、确定性和可行性等特点。
输入是算法的初始数据,输出是算法的结果。
有穷性指算法必须在有限的时间内结束。
确定性指算法的每个步骤都必须有明确的定义。
可行性指算法必须是可行的,即可以通过计算得出结果。
算法的性能度量在比较不同算法的优劣时,我们通常需要考虑算法的性能。
对于算法的性能度量,主要包括以下几个方面:时间复杂度时间复杂度是度量算法的执行时间随数据规模增长的变化趋势。
我们通常通过大 O 表示法来表示时间复杂度。
例如,如果一个算法的时间复杂度为 O(n),则表示算法的执行时间随输入规模 n 增长线性地增加。
常见的时间复杂度有:•O(1):常数时间复杂度,表示算法的执行时间与输入规模无关。
•O(log n):对数时间复杂度,表示算法的执行时间随着输入规模呈对数增长。
•O(n):线性时间复杂度,表示算法的执行时间随着输入规模呈线性增长。
•O(n^2):平方时间复杂度,表示算法的执行时间随着输入规模的平方增长。
空间复杂度空间复杂度是度量算法在执行过程中所需的存储空间大小的度量。
和时间复杂度类似,我们通常使用大 O 表示法来表示空间复杂度。
常见的空间复杂度有:•O(1):常数空间复杂度,表示算法的空间使用量是固定的。
•O(n):线性空间复杂度,表示算法的空间使用量随着输入规模线性增长。
•O(n^2):平方空间复杂度,表示算法的空间使用量随着输入规模的平方增长。
算法的正确性与可行性在比较算法的性能时,我们还需要考虑算法的正确性与可行性。
正确性是指算法可以正确地解决问题,可行性是指算法可以在可行的时间与空间限制内完成。
常见算法排序算法排序算法是将一组无序的数据按照特定的顺序进行排列的算法。
常见的排序算法有:•冒泡排序(Bubble Sort)•插入排序(Insertion Sort)•选择排序(Selection Sort)•快速排序(Quick Sort)•归并排序(Merge Sort)搜索算法搜索算法是在给定的数据集中查找特定元素的算法。
高中数学知识点:概率统计知识点总结概括
高中数学知识点:概率统计知识点总结概括高中数学知识点:概率统计知识点总结概括一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
(3)通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。
⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异。
⑥形成对数据处理过程进行初步评价的意识。
(3)变量的相关性①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。
②经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
二.常用逻辑用语1。
命题及其关系①了解命题的逆命题、否命题与逆否命题。
②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。
高中数学必修三知识点
高中数学必修三知识点高中数学必修三涵盖了算法初步、统计和概率这三个重要的部分,每个部分都有其独特的知识点和应用。
一、算法初步算法是解决问题的一系列明确的步骤,具有有限性、确定性、可行性等特点。
1、算法的概念算法是指按照一定规则解决某一类问题的明确和有限的步骤。
2、程序框图程序框图也叫流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)和判断框。
3、三种基本逻辑结构顺序结构:是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
条件结构:根据条件是否成立而选择不同的流向。
循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构。
循环结构又分为当型(while 型)和直到型(until 型)。
4、基本算法语句输入语句:INPUT “提示内容”;变量。
输出语句:PRINT “提示内容”;表达式。
赋值语句:变量=表达式。
条件语句:IF THEN ELSE 语句和 IF THEN 语句。
循环语句:当型循环(WHILE 语句)和直到型循环(UNTIL 语句)。
算法在计算机科学和日常生活中都有广泛的应用,例如计算机程序的编写、解决实际问题的步骤规划等。
二、统计统计是研究如何收集、整理、分析数据以及由数据得出结论的科学。
1、随机抽样简单随机抽样:包括抽签法和随机数法,总体中的个体数量较少时适用。
系统抽样:将总体平均分成若干部分,然后按照一定的规则,从每一部分抽取一个个体。
分层抽样:将总体分成若干层,然后从各层中独立地抽取一定数量的个体。
2、用样本估计总体频率分布表和频率分布直方图:能清楚地显示数据的分布情况。
众数、中位数、平均数:众数是一组数据中出现次数最多的数据;中位数是将数据从小到大或从大到小排列,位于中间位置的数(如果数据个数是奇数),或者中间两个数的平均数(如果数据个数是偶数);平均数则是所有数据的总和除以数据的个数。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
高中数学必修三算法知识点总结
高中数学必修3知识点总结第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术
高二数学必修3 第一章算法初步知识点:展转相除法与更相减损术高二数学关于知识点的掌握的要求是比较高的。
小编准备了高二数学必修 3 第一章算法初步知识点,希望能帮助到大家。
1.3.1 展转相除法与更相减损术1、展转相除法。
也叫欧几里德算法,用展转相除法求最大条约数的步骤以下:( 1):用较大的数m 除以较小的数n 获得一个商S和一个余数R;( 2):若R=0,则 n 为 m, n 的最大条约数;若R0,则用除数 n 除以余数 0R获得一个商1S和一个余数1R;( 3):若1R=0,则1R 为 m, n 的最大条约数;若1R0,则用除数R除以余数1R获得一个商2S和一个余数2R;挨次计算直至nR=0,此时所获得的1nR 即为所求的最大条约数。
2、更相减损术我国初期也有求最大条约数问题的算法,就是更相减损术。
在《九章算术》中有更相减损术求最大条约数的步骤:可半者半之,不行半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。
翻译为:( 1):随意给出两个正数;判断它们能否都是偶数。
假如,用 2 约简;若不是,履行第二步。
(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。
连续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大条约数。
例 2 用更相减损术求98 与 63 的最大条约数 . 剖析:(略)3、展转相除法与更相减损术的差异:(1)都是求最大条约数的方法,计算上展转相除法以除法为主,更相减损术以减法为主,计算次数上展转相除法计算次数相对较少,特别当两个数字大小差异较大时计算次数的差异较显然。
语文课本中的文章都是优选的比较优异的文章 ,还有许多名家名篇。
假如有选择顺序渐进地让学生背诵一些优异篇目、出色段落 ,对提升学生的水平会大有裨益。
此刻 ,许多语文教师在剖析课文时 ,把文章解体的支离破裂 ,总在文章的技巧方面下功夫。
结果教师费力 ,学生头疼。
剖析完以后 ,学生见效甚微 ,没过几日便忘的干干净净。
人教版八年级下册数学各单元知识点归纳总结
人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。
每章节都包括基本概念、计算方法和应用场景等内容。
阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。
高中概率知识点总结
高中概率知识点总结高中概率知识点总结概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。
概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是小编整理的高中概率知识点总结,希望能够帮助到大家!高中概率知识点总结篇1一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
(3)通过阅读中国古代中的算法案例,体会中国古代对世界发展的贡献。
3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(4)了解随机数的意义,能运用模拟(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
(5)通过阅读材料,了解人类认识随机现象的过程。
2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。
②结合具体的实际问题情境,理解随机抽样的必要性和重要性。
③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
④能通过试验、查阅、设计调查问卷等方法收集数据。
(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。
高中数学必修三:知识点
必修3:知识点一:算法初步 1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. (2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。
③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题. ④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
2: 程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,5、在图形符号内描述的语言要非常简练清楚。
3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来, 按顺序执行算法步骤。
如在示意图中,A 框和B 框是依次执行的,只有在 执行完A 框指定的操作后,才能接着执行B 框所指定的操作。
(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的 算法结构。
新课标人教A版高中数学必修3知识点总结
高中数学必修3知识点一:算法初步1:算法的概念(1)算法概念:通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果。
③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,但是答案是唯一的。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
2:程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
②构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
3:算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
如在示意图中,A 框和B 框是依次执行的,只有在执行完A 框指定的操作后,才能接着执行B 框所指定的操作。
(2)条件结构: 算法结构。
条件P 是否成立而选择执行A 框或B 框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法初步》知识点总结
1、在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.
算法的特征:①确定性②逻辑性③有穷性
2、程序框图
图形符号名称功能
终端框(起止框)表示一个算法的起始和结束
输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”
流程线连接程序框
连接点连接程序框图的两部分(1)输入语句
输入语句的格式:INPUT“提示内容”;变量
例如:INPUT “x=”;x
功能:实现算法的输入变量信息(数值或字符)的功能. 要求:
1°输入语句要求输入的值是具体的常量.
2°提示内容提示用户输入的是什么信息,必须加双引号,提示内容“原原本本”的在计算机屏幕上显示,提示内容与变量之间要用分号隔开.
3°一个输入语句可以给多个变量赋值,中间用“,”分隔.
形式如:INPUT“a=,b=,c=,”;a,b,c
(2)输出语句
输出语句的一般格式:PRINT“提示内容”;表达式
例如:PRINT“S=”;S
功能:实现算法输出信息(表达式)的功能.
要求:
1°表达式是指算法和程序要求输出的信息.
2°提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开.
3°如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.
形式如:PRINT “a,b,c:”;a,b,c
(3)赋值语句
赋值语句的一般格式:变量=表达式.
赋值语句中的“=”称作赋值号.
功能:将表达式所代表的值赋给变量.
要求:
1°赋值语句左边只能是变量名字,而不是表达式,右边表达式可以
是一个常量、变量或含变量的运算式.如:2=x是错误的.
2°赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”“B=A”的含义运行结果是不同的,如x=5是对的,5=x是错的,A+B=C是错的,C=A+B是对的. 3°不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等),如y=x2-1=(x-1)(x+1),这是实现不了的.在赋值号右边表达式中每一个变量的值必须事先赋给确定的值.在一个赋值语句中只能给一个变量赋值,不能出现两个或以上的“=”.但对于同一个变量可以多次赋值.
4、条件结构和条件语句
(1)一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构.
用程序框图表示条件结构如下图:
(2)条件语句
1°“IF—THEN—ELSE”语句
格式:
IF 条件THEN
语句体1
ELSE
语句体2
END IF
功能:在“IF—THEN—ELSE”语句中,“条件”表示判断的条件,“语句体1”表示满足条件时执行的操作内容;“语句体2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束.计算机在执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果符合条件,则执行THEN后面的“语句1”;若不符合条件,则执行ELSE 后面的“语句2”.
2°“IF—THEN”语句
格式:
IF 条件THEN
语句体
END IF
功能:“条件”表示判断的条件;“语句”表示满足条件时执行的操作内容,条件不满足时,直接结束判断过程;END IF表示条件语句的结束.计算机在执行“IF—THEN”语句时,首先对IF后的条件进行判断,如果符合条件就执行THEN后边的语句,若不符合条件则直接结束该条件语句,转而执行其他后面的语句.
(3)相同点:首先对IF后的条件进行判断,如果符合条件就执行THEN后边的语句.
不同点:对于“IF—THEN—ELSE”语句,若不符合条件,则执行ELSE 后面的“语句体2”.
对于“IF—THEN”语句,若不符合条件则直接结束该条件语句,转而
执行其他后面的语句.
(4)程序中的条件语句与程序框图中的条件结构存在一一对应关系如下图:
5、循环结构和循环语句
(1)循环结构
循环结构有两种形式:当型循环结构和直到型循环结构.
1°当型循环结构,如图(1)所示
2°直到型循环结构,如图(2)所示,
(1)当型循环结构(2)直到型循环结构(2)循环语句
1°当型循环语句
当型(WHILE型)语句的一般格式为:
WHILE 条件
循环体
WEND
功能:计算机执行此程序时,遇到WHILE语句,先判断条件是否成立,如果成立,则执行WHILE和WEND之间的循环体;然后返回到WHILE语句再判断上述条件是否成立,如果成立,再执行循环体,这个过程反复执行,直到一次返回到WHILE语句判断上述条件不成立为止,这时不再执行循环体,而是跳到WEND语句后,执行WEND 后面的语句.因此当型循环又称“前测试型”循环,也就是我们经常讲的“先测试后执行”“先判断后循环”.
2°直到型循环语句
直到型(UNTIL型)语句的一般格式为:
DO
循环体
LOOP UNTIL 条件
功能:计算机执行UNTIL语句时,先执行DO和LOOP UNTIL之间的循环体,然后判断“LOOP UNTIL”后面的条件是否成立,如果条件不成立,返回DO语句处重新执行循环体.这个过程反复执行,直到一次判断“LOOP UNTIL”后面的条件成立为止,这时不再返回执行循环体,而是跳出循环体执行“LOOP UNTIL条件”下面的语句.
因此直到型循环又称“后测试型”循环,也就是我们经常讲的“先执行后测试”“先循环后判断”.
(3)相同点:都是反复执行循环体语句.
不同点:当型循环语句是先判断后循环,直到型循环语句是先循环后
判断.
(4)下面为循环语句与程序框图中的条件结构的一一对应关系.
1°直到型循环结构:
2°当型循环结构:
例1编写程序,使任意输入的3个整数按从大到小的顺序输出.
算法步骤如下:
第一步,输入3个整数a,b,c.
第二步,将a与b比较,并把小者赋给b,大者赋给a.
第三步,将a与c比较,并把小者赋给c,大者赋给a(此时a已是三者中最大的).
第四步,将b与c比较,并把小者赋给c,大者赋给b(此时a,b,c 已按从大到小的顺序排列好).
第五步,按顺序输出a,b,c.
如下图所示,上述操作步骤可以用程序框图更直观地表达出来.
例2编写程序,输出两个不相等的实数a、b的最大值.
解:算法一:
第一步,输入a,b的数值.
第二步,判断a,b的大小关系,若a>b,则输出a的值,否则,输出b的值.
算法二:
第一步,输入a,b的数值.
第二步,判断a,b的大小关系,若b>a,则将b的值赋予a;否则,直接执行第三步.
第三步,输出a的值,结束.
(程序框图如下图)。