数学建模--个人认识和心得体会精品
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】活动、生物、政治、设计、语文、方案、建议、情况、道路、思路、方法、条件、动力、前提、成绩、空间、领域、效益、质量、模式、增长、行动、计划、传统、认识、问题、亮点、难点、要点、系统、机制、有效、全力、密切、主动、深入、继续、充分、现代、平稳、合理、健康、快速、合作、配合、沟通、执行、保持、发展、建设、细化、建立、提出、发现、掌握、了解、研究、规律、特点、位置、关键、稳定、网络、内涵、意识、信心、理想
数学建模的体会思考
经过这段时间的学习,了解了更多的关于这门学科的知识,可以说是见识了很多很多,作为一个数学系的学生,一直都有一个疑问,数学的应用在那里。对了,就在这里,在这里,我看到了很多,也学到了很多,关于各个学科,各个领域,都少不了数学,都是用建模的思想,来解决实际问题,很神奇。
数学建模给了我很多的感触:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。
数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。
数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不是任何专业中都能涉猎得到的。它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。从现在我们的学习来看,我们都是直接受益者。就拿数学建模比赛写的论文来说。原本以为这是一件很简单的事,但做起来才发觉事情并没有想象中的简单。因为要解决问题,凭我们现有的知识根本不够。于是,自己必须要充分利用图书馆和网络的作用,查阅各种有关资料,以尽量获得比较全面的知识和信息。在这过程中,对自己眼界的开阔,知识的扩展无疑大有好处,各学科的交叉渗透更有利于自己提高解决复杂问题的能力。毫不夸张的说,建模过程挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发出了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,数学建模也培养了我们的概括力和想象力,也就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,紧紧抓
住问题的本质方面,使问题尽可能简单化,这样才能解决问题。其实,在我们做论文之前,考虑到的因素有很多,如果把这一系列因数都考虑的话,将会花费更多的时间和精神。因此,在我们考虑一些因素并不是本质问题的时候,我就将这些因数做了假设以及在模型的推广时才考虑。这就使模型更加合理和理想。数学建模还能增强我们的抽象能力以及想象力。对实际问题再进行“翻译”,即进行抽象,要用我们熟悉的数学语言、数学符号和数学公式将它们准确的表达出来。
下面用一个具体的实例,来介绍建模的具体应用:
传染病问题的研究
一﹑模型假设
1.在疾病传播期内所考察的地区范围不考虑人口的出生、死亡、流动等种群动力因素。总人口数N(t)不变,人口始终保持一个常数N 。人群分为以下三类:易感染者(Susceptibles),其数量比例记为s(t),表示t 时刻未染病但有可能被该类疾病传染的人数占总人数的比例;感染病者(Infectives),其数量比例记为i(t),表示t 时刻已被感染成为病人而且具有传染力的人数占总人数的比例;恢复者(Recovered),其数量比例记为r(t),表示t 时刻已从染病者中移出的人数(这部分人既非已感染者,也非感染病者,不具有传染性,也不会再次被感染,他们已退出该传染系统。)占总人数的比例。
2.病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。该模型的缺陷是结果常与实际有一定程度差距,这是因为模型中假设有效接触率传染力是不变的。
二﹑模型构成
在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:
在假设1
s(t) + i(t) + r(t) = 1
对于病愈免疫的移出者的数量应为
不妨设初始时刻的易感染者,染病者,恢复者的比例分别为0s (0s >0),0i (0i >0),0r =0. SIR 基础模型用微分方程组表示如下:
s(t) , i(t)的求解极度困难,在此我们先做数值计算来预估计s(t) , i(t)的一般变化规律。
三﹑数值计算
在方程(3)中设λ=1,μ=0.3,i (0)= 0.02,s (0)=0.98,用MATLAB 软件编程: function y=ill(t,x)
a=1;b=0.3;
y=[a*x(1)*x(2)-b*x(1);-a*x(1)*x(2)];
ts=0:50;
x0=[0.20,0.98];
[t,x]=ode45('ill',ts,x0);