2013年线性代数考研资料真题及答案解析

合集下载

数二考研线性代数真题及答案合集

数二考研线性代数真题及答案合集
(22)(本题满分 12 分)
2a 1
设矩阵
A
=
a
2
2a
1
, 现 矩 阵 A 满 足 方 程 AX = B , 其 中
a2
2a n×n
X = ( x1,, xn )T , B = (1, 0,, 0) ,
(1)求证 A= (n +1) an ;
(2) a 为何值,方程组有唯一解,并求 x1 ; (3) a 为何值,方程组有无穷多解,并求通解.
Aij + aij = 0(i, j = 1,2,3) ,则 A =

22.本题满分 11 分)
设 A = 11
a 0
,
B
=
10
1 b
,问当
a,
b
为何值时,存在矩阵
C,使得
AC

CA
=
B
,并求出
所有矩阵 C. 22.本题满分 11 分)
设 A = 11
a 0
,
B
=
10
1 b
,问当
a,
b
为何值时,存在矩阵
(9)设向量组α1,α2 ,α3 线性无关,则下列向量组线性相关的是
线性相关,则
(A) α1 − α2 ,α2 − α3,α3 − α1
(B) α1 + α2 ,α2 + α3,α3 + α1
(C) α1 − 2α2 ,α2 − 2α3,α3 − 2α1 . (D) α1 + 2α2 ,α2 + 2α3,α3 + 2α1 .
(23)(本题满分 10 分)
设 A 为 3 阶 矩 阵 , α1,α2 为 A 的 分 别 属 于 特 征 值 −1,1 特 征 向 量 , 向 量 α3 满 足

2013年考研数学一真题及答案解析(全国硕士研究生入学统一考试数学一试题)

2013年考研数学一真题及答案解析(全国硕士研究生入学统一考试数学一试题)

2013年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)已知极限0arctan limkx x xc x →-=,其中,c k 为常数,且0c ≠,则( )(A )12,2k c ==-(B )12,2k c ==(C )13,3k c ==-(D )13,3k c ==(2)曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) (A )2x y z -+=- (B )2x y z ++= (C )23x y z -+=- (D )0x y z --=(3)设1()2f x x =-,102()sin (1,2,...)n b f x n xdx n π==⎰,令1()sin n n S x b n x π∞==∑,则9(4S -=( ) (A )34 (B )14(C )14-(D )34-(4)设222222221234:1,:2,:22,:22,l x y l x y l x y l x y +=+=+=+=为四条逆时针的平面曲线,记33((2)(1,2,3,4)63ii l y x I y dx x dy i =++-=⎰Ñ,则()i MAX I =( )(A )1I (B )2I (C )3I (D )3I(5)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(6)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件为 (A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=(7)设123X X X ,,是随机变量,且22123~N(0,1)~N(~(5,3)X N ,X 0,2),X ,{22}(1,2,3),j j P P X j =-≤≤=则( )(A )123P P P >> (B )213P P P >> (C )312P P P >> (D )132P P P >>(8)设随机变量~(),~(1,),X t n Y F n 给定(00.5),a a <<常数c 满足{}P X c a >=,则2{}P Y c >=( ) (A )α (B )1α-(C )2α (D )12α-二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设函数()f x 由方程(1)x y y x e --=确定,则1lim (()1)n n f n→∞-= .(10)已知321xx y exe =-,22x x y e xe =-,23x y xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程的通解为y = .(11)设sin sin cos x t y t t t=⎧⎨=+⎩(t 为参数),则224t d y dx π== .(12)21ln (1)xdx x +∞=+⎰.(13)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则(14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{1|}P Y a Y a ≤+>=________。

2013考研数学一数学二数学三(真题及答案)完美打印word版

2013考研数学一数学二数学三(真题及答案)完美打印word版

2013考研数学(一、二、三)真题及答案解析第一部分:数一真题及答案解析1.已知极限arctan limkx x xc x →-=,其中k ,c 为常数,且0c ≠,则() A.12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案:D解析:用洛必达法则221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x cx kx kx x k x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案:A 解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。

3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()s i n n n S x b n x π∞==∑,则( )A .34 B. 14 C. 14- D. 34-答案:C解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。

91111()()()()44444s s s f -=-=-=-=-。

《线性代数》(经科社2013版)习题解答_20141104224704

《线性代数》(经科社2013版)习题解答_20141104224704

··· ··· ··· ···
an an ··· an + b
n 仿教材例1.4.4 n−1 ∑ = = = = = = = = = = = =b ( ai + b). i=1 或例1.4.6
a1 ··· a1
当b ̸= 0, 且
ai + b ̸= 0时, 方程组仅有零解.
i=1
13. 见《线性代数学习指导》P28例31.
−1 1
2
1 (4)A31 + A32 + A33 + A34 = 3 1
2 3 1
−3 6 3 1 3 1 .
3 4 1 8 3.(1)第i行减去末行的ai 倍(i = 1, 2, · · · , n), 再按末列展开. (2)仿教材例1.4.4. (3)从第一行开始, 上一行的x倍加到下一行, 再按末行展开. (4)按末列展开. 4.(1)见《线性代数学习指导》P25例25. (2)见《线性代数学习指导》P26例26. 或: 第一行减去第二行, 按第一行展开, 得递推关系式; 列同样 处理. 联立解之. 注: ::::::::: 此题较难,::::::::::: 可不作要求. (3)从第一行开始, 用上一行消下一行, 化为上三角行列式. 1 5. M11 + M21 + M31 + M41 = A11 − A21 + A31 − A41 = −1 1 −1 1 A11 + A12 + A13 + A14 = 1 −1 1 1 3 1 0 1 1 −5 3 −3 . −5 1 3 −4 2 0 1 1 −5 3 .
第 2章 矩 阵
习 题2.1
略.
习题 2.2
5.(1)待定系数法. 仿教材例2.2.6.

2013-15年考研数学一、二、三答案

2013-15年考研数学一、二、三答案

2013年考研数学一真题与解析一、选择题 1—8小题.每小题4分,共32分.1.已知c xxx k x =-→arctan lim0,则下列正确的是 (A )21,2-==c k (B )21,2==c k(C )31,3-==c k (D )31,3==c k【分析】这是0型未定式,使用洛必达则即可.或者熟记常见无穷小的马克劳林公式则可快速解答.【详解1】c kx x kx x x x x x k x k x kx ==+=--→-→→12012200lim 1lim arctan lim ,所以k ,c k 121==-,即31,3==c k .【详解2】 因为)(31arctan 33x o x x x +-=,显然331arctan x x x =-,当然有31,3==c k .应该选(D) 2.曲面0)cos(2=+++x yz xy x 在点)1,1,0(-的切平面方程为(A )2-=+-z y x (B )0=++z y x (C )32-=+-z y x (D )0=--z y x【分析】此题考查的是空间曲面在点),,(000z y x M 处的法向量及切平面的方程.其中法向量为()),,(000|,,z y x z y x F F F =.【详解】设x yz xy x z y x F +++=)cos(),,(2,则在点点)1,1,0(-处())1,1,1(|,,000,,(-==z y x z y x F F F ,从而切平面方程为0)1()1()0(=++---z y x ,即2-=+-z y x .应该选(A)3.设21)(-=x x f ,),2,1(d sin )(210 ==⎰n x x n x f b n π,令∑∞==1sin )(n n x n b x S π,则=⎪⎭⎫⎝⎛-49S(A)43 (B)41 (C)41- (D)43【分析】此题考查的是傅立叶级数的收敛性. 【详解】由条件可知,∑∞=1sin n n x n b π为21)(-=x x f 的正弦级数,所以应先把函数进行奇延拓,由收敛定理可知∑∞==1sin )(n nx n b x S π也是周期为2的奇函数,故41414141)49(-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=-f S S S ,应选(C).4.设1:221=+y x L ,2:222=+y x L ,22:223=+y x L ,22:224=+y x L 为四条逆时针方向的平面曲线,记)4,3,2,1(32633=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎰i dy x x dx y y I i L i ,则{}=4321,,,max I I I I (A)1I (B)2I (C)3I (D)4I 【分析】此题考查的是梅林公式和二重积分的计算. 【详解】由格林公式,⎰⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=i i i D i D L i dxdy y x D S dxdy y x dy x x dx y y I 2)(21326222233. .8343)(43)2(403202222222222R dr r d dxdy y x dxdy y x R R y x R y x πθπ==+=+⎰⎰⎰⎰⎰⎰≤+≤+ 所以πππ85831=-=I ,248322πππ=⋅-=I ; 在椭圆D :12222≤+by a x 上,二重积分最好使用广义极坐标计算:πθθθθθθθπππ4)2(cos 4)2(sin 2cos 4sin 21cos )2(222022220222210222222201222222b a ab d ba ab b a ab abrdrr b r a d dxdy y x b y ax +=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=+⎰⎰⎰⎰⎰⎰≤+故ππ82523-=I ,πππ222224=-=I . 显然π224=I 最大.故应选(D). 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设函数)(x f y =由方程)1(y x e x y -=-确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∞→11lim n f n n .【详解】当0=x 时,1)0(==f y ,利用隐函数求导法则知1)0('=f .1)0('1)0(1lim 11lim ==-⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∞→∞→f nf n f n f n n n . 10.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则该方程的通解为 .【详解】显然x e y y 331=-和x e y y =-32是对应的二阶常系数线性齐次微分方程两个线性无关的解,由解的结构定理,该方程的通解为x x x xe e C e C y 2231-+=,其中21,C C 为任意常数.11.设⎩⎨⎧+==t t t y t x cos sin sin t 为参数,则==422|πt dx y d .【详解】t dx dy tdt t dy tdt dx ===,cos ,cos ,t t dxy d sec cos 122==, 所以2|422==πt dx yd .12.=+⎰∞+x d x x12)1(ln . 【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 三、解答题15.(本题满分10分) 计算⎰10)(dx xx f ,其中⎰+=x dt t t x f 1)1ln()(. 【分析】被积函数中含有变上限积分,所以应该用分部积分法.【详解】π282ln 414|)1ln(4)1ln(4)1ln(2|)(2)(2)(1010110101010-+-=+++-=+-=+-==⎰⎰⎰⎰⎰dx xxx x x d x dx x x x x f x x d x f dx xx f16.(本题满分10分)设数列{}n a 满足条件:)2(0)1(,1,3110≥=--==-n a n n a a a n n ,)(x S 是幂级数∑∞=0n n n x a 的和函数. (1)证明:0)()(=-''x S x S ; (2)求)(x S 的表达式.【详解】(1)证明:由幂级数和函数的分析性质可知,;)(100∑∑∞=∞=+==n n n n nn x a a x a x S∑∑∑∑∑∞=+∞=+∞=-∞=∞=++=+==+==1110111100)1()1()'()'()('n n n n nn n n n n nn n nn x a n a x a n xna x a a x a x S ;∑∑∑∞=+∞=-+∞=+++=+=++=''02111111)2)(1()1()')1(()('n n n n n n n nn x a n n xa n n x a n a x S ,由条件可得n n a a n n =+++2)2)(1(, 所以)()2)(1()('02x S x a x a n n x S n nn n nn ==++=''∑∑∞=∞=+, 也就有0)()(=-''x S x S .(2)解:由于,)(100∑∑∞=∞=+==n n n n nn x a a xa x S 所以3)0(0==a S∑∞=+++=111)1()('n n n x a n a x S ,所以1)0('1==a S ,解微分方程1)0(',3)0(,0)()(===-''S S x S x S , 可得x x e e x S 2)(+=-. 17.(本题满分10分)求函数yx e x y y x f +⎪⎪⎭⎫ ⎝⎛+=3),(3的极值.18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f . 【详解】证明:(1)由于)(x f 为奇函数,则0)0(=f ,由于)(x f 在[]1,1-上具有二阶导数,由拉格朗日定理,存在)1,0(∈ξ,使得101)0()1()('=--=f f f ξ.(2)由于)(x f 为奇函数,则)('x f 为偶函数,由(1)可知存在)1,0(∈ξ,使得()1'=ξf ,且()1'=-ξf , 令)1)('()(-=x f e x x ϕ,由条件显然可知)(x ϕ在[]1,1-上可导,且0)()(==-ξϕξϕ, 由罗尔定理可知,存在)1,1(),(-⊂-∈ξξη,使得(),0'=ηϕ即1)()(='+''ηηf f . 19.(本题满分10分)设直线L 过,)0,0,1(A )1,1,0(B 两点,过L 绕Z 轴旋转一周得到曲面∑,曲面∑与平面2,0==z z 所围成的立体为Ω.(1)求曲面∑的方程;(2)求立体Ω的质心坐标. 【详解】(1)直线L 的对称式方程为1111zy x ==--, 设),,(z y x M 为曲面∑上的任意一点,并且其对应于直线L 上的点为),,(0000z y x M , 由于过L 绕Z 轴旋转一周得到曲面∑,所以有如下式子成立⎪⎪⎪⎩⎪⎪⎪⎨⎧==--+=+=11110002202200z y x y x y x z z ,整理可得,122222+-=+z z y x ,这就是曲面∑的方程. (2)设Ω的质心坐标为()z y x ,,,由对称性,显然0,0==y x ,57310314)122()22(2220231222012220222222==+-+-===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-≤++-≤+ΩΩππππdz z z dz z z z dxdy zdzdxdy dzdvzdv z z z y x z z y x , 所以Ω的质心坐标为()⎪⎭⎫ ⎝⎛=57,0,0,,z y x .2013年考研数学二真题及答案一、选择题 1—8小题.每小题4分,共32分.1.设2)(),(sin 1cos παα<=-x x x x ,当0→x 时,()x α ( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小(C )与x 同阶但不等价无穷小 (D )与x 等价无穷小 【详解】显然当0→x 时)(~21~)(sin ,21~)(sin 1cos 2x x x x x x x ααα--=-,故应该选(C ). 2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∞→12lim n f n n ( )(A )2 (B )1 (C )-1 (D )-2 【分析】本题考查的隐函数的求导法则信函数在一点导数的定义.【详解】将0=x 代入方程得1)0(==f y ,在方程两边求导,得01')')(sin(=+-+-yy xy y xy ,代入1,0==y x ,知1)0(')0('==f y .2)0('22)0()2(lim 212lim ==-=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛∞→∞→f nf n f n f n n n ,故应该选(A ). 3.设⎩⎨⎧∈∈=]2,[,2),0[,sin )(πππx x x x f ,⎰=x dt t f x F 0)()(则( )(A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点. (C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导. 【详解】只要注意π=x 是函数)(x f 的跳跃间断点,则应该是⎰=x dt t f x F 0)()(连续点,但不可导.应选(C).4.设函数⎪⎪⎩⎪⎪⎨⎧≥<<-=+-e x xx e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ⎰∞+收敛,则( )(A )2-<α (B )2>a (C )02<<-a (D )20<<α 【详解】⎰⎰⎰∞++-∞++-=e e dx xx x dx dx x f 1111ln 1)1()(αα, 其中⎰⎰---=-10111)1(e e t dt x dxαα当且仅当11<-α时才收敛;而第二个反常积分x x dx xx x eαξαααln lim 11|ln 1ln 111+∞→∞+-∞++-=-=⎰,当且仅当0>a 才收敛. 从而仅当20<<α时,反常积分()dx x f ⎰∞+才收敛,故应选(D).5.设函数()xy f x y z =,其中f 可微,则=∂∂+∂∂yz x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 【详解】)('2)(')(1)(')(22xy yf xy yf xy f xxy f x y xy f x y y x y z x z y x =++⎪⎪⎭⎫ ⎝⎛+-=∂∂+∂∂.应该选(A ). 6.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9. =⎪⎭⎫⎝⎛+-→xx x x 10)1ln(2lim . 【详解】21)(21(lim)1ln(lim 101022202)1ln(1lim )1ln(2lim e eex x x x x x x o x x x xx x xx xx x x ===⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-+--+-→→→→.10.设函数dt e x f x t ⎰--=11)(,则)(x f y =的反函数)(1y f x -=在0=y 处的导数==0|y dydx. 【详解】由反函数的求导法则可知11011|1|--==-==e dxdy dy dx x y .11.设封闭曲线L 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤-=663cos πθπθr t 为参数,则L 所围成的平面图形的面积为 .【详解】12cos 313cos 2121202662662πθθθπππππ====⎰⎰⎰--dt t d d r A所以.答案为12π.12.曲线上⎪⎩⎪⎨⎧+==21ln arctan ty tx 对应于1=t 处的法线方程为 .【详解】当1=t 时,2ln 21,4==y x π,1|111|'1221=++===t t t t ty ,所以法线方程为 )4(12ln 21π--=-x y ,也就是042ln 21=--+πx y .13.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则满足1)0(',0)0(==y y 方程的解为 .【详解】显然x e y y 331=-和x e y y =-32是对应的二阶常系数线性齐次微分方程两个线性无关的解,由解的结构定理,该方程的通解为x x x xe e C e C y 2231-+=,其中21,C C 为任意常数.把初始条件代入可得1,121-==C C ,所以答案为x x x xe e e y 23--= 三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,.【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当0→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a .16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35320253a dx x dx y V a ax ===⎰⎰;πππ37340762)(2a dx x dx x xf V a ay ===⎰⎰;由条件y x V V =10,知77=a .17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2. 【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx xx D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f . 【详解】证明:(1)由于)(x f 为奇函数,则0)0(=f ,由于)(x f 在[]1,1-上具有二阶导数,由拉格朗日定理,存在)1,0(∈ξ,使得101)0()1()('=--=f f f ξ.(2)由于)(x f 为奇函数,则)('x f 为偶函数,由(1)可知存在)1,0(∈ξ,使得()1'=ξf ,且()1'=-ξf , 令)1)('()(-=x f e x x ϕ,由条件显然可知)(x ϕ在[]1,1-上可导,且0)()(==-ξϕξϕ, 由罗尔定理可知,存在)1,1(),(-⊂-∈ξξη,使得(),0'=ηϕ即1)()(='+''ηηf f . 19.(本题满分10分)求曲线)0,0(133≥≥=+-y x y xy x 上的点到坐标原点的最长距离和最短距离. 【分析】考查的二元函数的条件极值的拉格朗日乘子法. 【详解】构造函数)1(),(3322-+-++=y xy x y x y x L λ令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=-+=∂∂=-+=∂∂10)3(20)3(23322y xy x x y y y Ly x x x L λλ,得唯一驻点1,1==y x ,即)1,1(1M . 考虑边界上的点,)0,1(),1,0(32M M ;距离函数22),(y x y x f +=在三点的取值分别为1)0,1(,1)1,0(,2)1,1(===f f f ,所以最长距离为2,最短距离为1.20.(本题满分11) 设函数xx x f 1ln )(+=⑴求)(x f 的最小值;⑵设数列{}n x 满足11ln 1<++n n x x ,证明极限n n x ∞→lim 存在,并求此极限.【详解】 (1)22111)('xx x x x f -=-=, 令0)('=x f ,得唯驻点1=x ,当)1,0(∈x 时,0)('<x f ,函数单调递减;当),1(∞∈x 时,0)('>x f ,函数单调递增. 所以函数在1=x 处取得最小值1)1(=f . (2)证明:由于11ln 1<++n n x x ,但11ln ≥+nn x x ,所以n n x x 111<+,故数列{}n x 单调递增. 又由于11ln ln 1<+≤+n n n x x x ,得到e x n <<0,数列{}n x 有界.由单调有界收敛定理可知极限n n x ∞→lim 存在.令a x n n =∞→lim ,则11ln 1ln lim 1≤+=⎪⎪⎭⎫ ⎝⎛++∞→a a x x n n n ,由(1)的结论可知1lim ==∞→a x n n .21.(本题满分11) 设曲线L 的方程为)1(ln 21412e x x x y ≤≤-=. (1)求L 的弧长.(2)设D 是由曲线L ,直线e x x ==,1及x 轴所围成的平面图形,求D 的形心的横坐标. 【详解】(1)曲线的弧微分为dx xx dx x x dx y dx )1(211411'12+=⎪⎭⎫ ⎝⎛-+=+=, 所以弧长为41)1(2121+=+==⎰⎰e dx x x ds s e .(2)设形心坐标为()y x ,,则)7(4)32(31271632324324ln 214101ln 21410122---=---===⎰⎰⎰⎰⎰⎰⎰⎰--e e e e e e dy dx dy xdx dxdy xdxdyx x x x x eD D.2013年考研数学三真题及答案一、选择题 1—8小题.每小题4分,共32分.1.当0→x 时,用)(x o 表示比x 高阶的无穷小,则下列式子中错误的是( )(A ))()(32x o x o x =⋅ (B ))()()(32x o x o x o = (C ))()()(222x o x o x o =+ (D ))()()(22x o x o x o =+【详解】由高阶无穷小的定义可知(A )(B )(C )都是正确的,对于(D )可找出反例,例如当0→x 时)()(),()(2332x o x x g x o x x x f ===+=,但)()()(x o x g x f =+而不是)(2x o 故应该选(D ). 2.函数xx x x x f xln )1(1)(+-=的可去间断点的个数为( )(A )0 (B )1 (C )2 (D )3 【详解】当0ln →x x 时,x x ex xx xln ~11ln -=-,1ln ln limln )1(1lim)(lim 0==+-=→→→x x x x x x x x x f x xx x ,所以0=x 是函数)(x f 的可去间断点.21ln 2ln limln )1(1lim)(lim 011==+-=→→→xx xx xx x x x f x xx x ,所以1=x 是函数)(x f 的可去间断点. ∞=+-=+-=-→-→-→xx x x xx x x x f x x x x ln )1(ln limln )1(1lim)(lim 111,所以所以1-=x 不是函数)(x f 的可去间断点.故应该选(C ).3.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk kk D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ). 4.设{}n a 为正项数列,则下列选择项正确的是( ) (A )若1+>n n a a ,则∑∞=--11)1(n n n a 收敛;(B )若∑∞=--11)1(n n n a 收敛,则1+>n n a a ;(C )若∑∞=1n na收敛.则存在常数1>P ,使n pn a n ∞→lim 存在;(D )若存在常数1>P ,使n pn a n ∞→lim 存在,则∑∞=1n na收敛.【详解】由正项级数的比较审敛法,可知选项(D )正确,故应选(D).此小题的(A )(B )选项想考查的交错级数收敛的莱布尼兹条件,对于选项(A ),但少一条件0lim =∞→n n a ,显然错误.而莱布尼兹条件只是交错级数收敛的充分条件,不是必要条件,选项(B )也不正确,反例自己去构造.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设曲线)(x f y =和x x y -=2在点()0,1处有切线,则=⎪⎭⎫⎝⎛+∞→2lim n n nf n . 【详解】由条件可知()1)1(',01==f f .所以2)1('22222)1(221lim 2lim -=-=-+⋅+--⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫⎝⎛+∞→∞→f nn n f n f n n nf n n 10.设函数()y x z z ,=是由方程()xy y z x=+确定,则=∂∂)2,1(|xz. 【详解】设()xy y z z y x F x-+=)(,,,则()1)(),,(,)ln()(,,-+=-++=x z x x y z x z y x F y y z y z z y x F ,当2,1==y x 时,0=z ,所以2ln 22|)2,1(-=∂∂xz. 11.=+⎰∞+x d x x12)1(ln .【详解】2ln |1ln )1(1|1ln 11ln )1(ln 111112=+=+++-=+-=+∞+∞+∞+∞+∞+⎰⎰⎰x x dx x x x x x xd x d x x 12.微分方程041=+'-''y y y 的通解为 . 【详解】方程的特征方程为041=+-λλr,两个特征根分别为2121==λλ,所以方程通解为221)(xe x C C y +=,其中21,C C 为任意常数.三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,.【分析】主要是考查0→x 时常见函数的马克劳林展开式. 【详解】当0→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与nax 是等价无穷小,所以2,7==n a .16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 【详解】由微元法可知πππ35032253a dx x dx y V a a x ===⎰⎰;πππ370340762)(2a dx x dx x xf V a a y ===⎰⎰;由条件y x V V =10,知77=a . 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰D dxdy x 2.【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx x x D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18.(本题满分10分)设生产某产品的固定成本为6000元,可变成本为20元/件,价格函数为,100060QP -=(P 是单价,单位:元,Q 是销量,单位:件),已知产销平衡,求: (1)该的边际利润.(2)当P=50时的边际利润,并解释其经济意义. (3)使得利润最大的定价P . 【详解】(1)设利润为y ,则6000100040)206000(2--=+-=Q Q Q PQ y , 边际利润为.50040'Q y -= (2)当P=50时,Q=10000,边际利润为20.经济意义为:当P=50时,销量每增加一个,利润增加20.(3)令0'=y ,得.40100002000060,20000=-==P Q19.(本题满分10分)设函数()x f 在),0[+∞上可导,()00=f ,且2)(lim =+∞→x f x ,证明(1)存在0>a ,使得();1=a f(2)对(1)中的a ,存在),0(a ∈ξ,使得af 1)('=ξ. 【详解】证明(1)由于2)(lim =+∞→x f x ,所以存在0>X ,当X x >时,有25)(23<<x f , 又由于()x f 在),0[+∞上连续,且()00=f ,由介值定理,存在0>a ,使得();1=a f (2)函数()x f 在],0[a 上可导,由拉格朗日中值定理, 存在),0(a ∈ξ,使得aa f a f f 1)0()()('=-=ξ.2014年考研数学一真题与解析一、选择题 1—8小题.每小题4分,共32分.1.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin += (D )xx y 12sin+= 2.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≤'')(x f 时,)()(x g x f ≥ (D )当0≤'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≤'')(x f 时,曲线是凸的,即())()()()(212111x f x f x x f λλλλ+-≥+-,也就是)()(x g x f ≥,应该选(C )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≤'')(x f 时,曲线是凸的,从而010==≥)()()(F F x F ,即0≥-=)()()(x g x f x F ,也就是)()(x g x f ≥,应该选(C )3.设)(x f 是连续函数,则=⎰⎰---y y dy y x f dy 11102),((A)⎰⎰⎰⎰---+210011010x x dy y x f dx dy y x f dx ),(),((B)⎰⎰⎰⎰----+010111012x x dy y x f dx dy y x f dx ),(),((C)⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020dr r r f d dr r r f d(D)⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d【分析】此题考查二重积分交换次序的问题,关键在于画出积分区域的草图. 【详解】积分区域如图所示如果换成直角坐标则应该是⎰⎰⎰⎰---+xx dy y x f dx dy y x f dx 10101012),(),(,(A ),(B ) 两个选择项都不正确;如果换成极坐标则为⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d .应该选(D )4.若函数{}⎰⎰-∈---=--ππππdx x b x a x dx x b x a x Rb a 2211)sin cos (min)sin cos (,,则=+x b x a s in c o s 11(A)x sin 2 (B)x cos 2 (C)x sin π2 (D)x cos π2 【详解】注意3232πππ=⎰-dx x ,222πππππ==⎰⎰--dx x dx x sin cos ,0==⎰⎰--dx x x dx x x ππππsin cos cos , πππ2=⎰-dx x x sin ,所以b b a dx x b x a x πππππ42322232-++=--⎰-)()sin cos ( 所以就相当于求函数b b a 422-+的极小值点,显然可知当20==b a ,时取得最小值,所以应该选(A ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的切平面方程为 .【详解】曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的法向量为()),,(|,,),,(1121101--=-y x z z ,所以切平面方程为0110112=--+--+-))(())(()(z y x ,即012=---z y x .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f . 【详解】当[]20,∈x 时,C x x dx x x f +-=-=⎰2122)()(,由00=)(f 可知0=C ,即x x x f 22-=)(;)(x f 为周期为4奇函数,故1117==-=)()()(f f f .11.微分方程0=-+)ln (ln 'y x y xy 满足31e y =)(的解为 .【详解】方程的标准形式为x y x y dx dy ln =,这是一个齐次型方程,设xyu =,得到通解为1+=Cx xe y ,将初始条件31e y =)(代入可得特解为12+=x xey .12.设L 是柱面122=+y x 和平面0=+z y 的交线,从z 轴正方向往负方向看是逆时针方向,则曲线积分⎰=+Lydz zdx .【详解】由斯托克斯公式⎰⎰⎰∑∂∂∂∂∂∂=++RQ P z y x dxdy dzdx dydz Rdz Qdy Pdx L 可知π===+=+⎰⎰⎰⎰⎰⎰⎰∑∑xyD Ldxdy dxdy dzdx dydz ydz zdx .其中⎩⎨⎧≤+=+∑1022y x z y :取上侧,{}122≤+=y x y x D xy |),(. 三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限.【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)设函数)(x f y =由方程06223=+++y x xy y 确定,求)(x f 的极值. 【详解】解:在方程两边同时对x 求导一次,得到0223222=++++)(')(xy y y x xy y , (1)即222232xxy y xyy dx dy ++--=, 令0=dx dy 及06223=+++y x xy y ,得到函数唯一驻点21-==y x ,. 在(1)式两边同时对x 求导一次,得到(022*******=+++++++y y x xy y y x xy y yy ")(')''(把0121=-==)(',,y y x 代入,得到0941>=)("y ,所以函数)(x f y =在1=x 处取得极小值2-=y . 17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u x cos =,则)cos ()(y e f u f z x ==,y e u f y e u f xze uf xzx x y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z x x xcos )('sin )(",sin )('-=∂∂-=∂∂2222; xx x e y e f e u f yz x z 222222)cos (")("==∂∂+∂∂ 由条件xx e y e z yz x z 222224)cos (+=∂∂+∂∂,可知 u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程. 对应齐次方程的通解为:u ue C eC u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*.故非齐次方程通解为u e C e C u f u u 412221-+=-)(. 将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 18.(本题满分10分)设曲面)(:122≤+=∑z y x z 的上侧,计算曲面积分:dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑【详解】设⎩⎨⎧≤+=∑11221y x z :取下侧,记由1∑∑,所围立体为Ω,则高斯公式可得 123322222221120(1)(1)(1)(3(1)3(1)1)(33766)(337)(37)4rx dydz y dzdx z dxdy x y dxdydzx y x y dxdydz x y dxdydzd rdr r dz πθπ∑+∑ΩΩΩ-+-+-=--+-+=-++--=-++=-+=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰在⎩⎨⎧≤+=∑11221y x z :取下侧上,0111111133=-=-+-+-⎰⎰⎰⎰∑∑dxdy dxdy z dzdx y dydz x )()()()(, 所以dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑=π4111133-=-+-+-⎰⎰∑+∑dxdy z dzdx y dydz x )()()( 19.(本题满分10分) 设数列{}{}n n b a ,满足2020ππ<<<<n n b a ,,n n n b a a cos cos =-且级数∑∞=1n nb收敛.(1) 证明0=∞→n n a lim ;证明级数∑∞=1n nnb a 收敛. 【详解】(1)证明:由n n n b a a cos cos =-,及2020ππ<<<<n n b a ,可得20π<-=<n n n b a a cos cos ,所以20π<<<n n b a ,由于级数∑∞=1n nb收敛,所以级数∑∞=1n na也收敛,由收敛的必要条件可得0=∞→n n a lim .(2)证明:由于2020ππ<<<<n n b a ,,所以2222nn n n n n n n a b a b b a b a -≤-+≤+sin ,sin2sinsin cos cos 22n n n n n n nn nn a b b aa ab b b b +--==222222222n n n nn n n n n n n a b b a b a b b b b b +--≤=<=由于级数∑∞=1n n b 收敛,由正项级数的比较审敛法可知级数∑∞=1n nnb a 收敛. 2014年考研数学二真题一、选择题 1—8小题.每小题4分,共32分.1.当+→0x 时,若)(ln x 21+α,α11)cos (x -均是比x 高阶的无穷小,则α的可能取值范围是( )(A )),(+∞2 (B )),(21 (C )),(121 (D )),(210 2.下列曲线有渐近线的是( )(A )x x y sin += (B )x x y sin +=2(C )xx y 1sin += (D )xx y 12sin+= 3.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤4.曲线⎩⎨⎧++=+=14722t t y t x ,上对应于1=t 的点处的曲率半径是( ) (A)5010(B)10010 (C)1010 (D)105 5.设函数x x f arctan )(=,若)(')(ξxf x f =,则=→22xx ξlim( )(A)1 (B)32 (C)21(D)316.设),(y x u 在平面有界闭区域D 上连续,在D 的内部具有二阶连续偏导数,且满足02≠∂∂∂yx u及02222=∂∂+∂∂y ux u ,则( ). (A )),(y x u 的最大值点和最小值点必定都在区域D 的边界上; (B )),(y x u 的最大值点和最小值点必定都在区域D 的内部; (C )),(y x u 的最大值点在区域D 的内部,最小值点在区域D 的边界上;(D )),(y x u 的最小值点在区域D 的内部,最大值点在区域D 的边界上.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.⎰∞-=++12521dx x x .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f .11.设),(y x z z =是由方程4722=+++z y x e yz 确定的函数,则=⎪⎭⎫ ⎝⎛2121,|dz .12.曲线L 的极坐标方程为θ=r ,则L 在点⎪⎭⎫⎝⎛=22ππθ,),(r 处的切线方程为 . 13.一根长为1的细棒位于x 轴的区间[]10,上,若其线密度122++-=x x x )(ρ,则该细棒的质心坐标=x . 三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.16.(本题满分10分)已知函数)(x y y =满足微分方程''y y y x -=+122,且02=)(y ,求)(x y 的极大值和极小值. 17.(本题满分10分) 设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy y x y x x )sin(22π 18.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (2) []b a x a x dt t g xa,,)(∈-≤≤⎰0;⎰⎰≤⎰+badtt g a adx x g x f dx x f ba )()()()(.20.(本题满分11分)设函数[]101,,)(∈+=x xxx f ,定义函数列 )()(x f x f =1,))(()(x f f x f 12=, )),(()(,x f f x f n n 1-=设n S 是曲线)(x f y n =,直线01==y x ,所围图形的面积.求极限n n nS ∞→lim .21.(本题满分11分) 已知函数),(y x f 满足)(12+=∂∂y yf,且y y y y y f ln )()(),(--+=212,求曲线0=),(y x f 所成的图形绕直线1-=y 旋转所成的旋转体的体积.2014年考研数学三真题与解析一、选择题 1—8小题.每小题4分,共32分.1.设0≠=∞→a a n n lim ,则当n 充分大时,下列正确的有( )(A )2a a n >(B )2a a n <(C )n a a n 1-> (D)na a n 1+< 【详解】因为0≠=∞→a a n n lim ,所以0>∀ε,N ∃,当N n >时,有ε<-a a n ,即εε+<<-a a a n ,εε+≤<-a a a n ,取2a =ε,则知2a a n >,所以选择(A )2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2 (C )xx y 1sin += (D )xx y 12sin += 【分析】只需要判断哪个曲线有斜渐近线就可以. 【详解】对于x x y 1sin +=,可知1=∞→x y x lim且01==-∞→∞→xx y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )3.设32dx cx bx a x P +++=)(,则当0→x 时,若x x P tan )(-是比3x 高阶的无穷小,则下列选项中错误的是( )(A )0=a (B )1=b (C )0=c (D )61=d 【详解】只要熟练记忆当0→x 时)(tan 3331x o x x x ++=,显然31010====d c b a ,,,,应该选(D ) 4.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≥'')(x f 时,曲线是凹的,即())()()()(212111x f x f x x f λλλλ+-≤+-,也就是)()(x g x f ≤,应该选(D )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设某商品的需求函数为p Q 240-=(p 为商品的价格),则该商品的边际收益为 . 【详解】2240p p pQ p R -==)(,边际收益p p R 440-=)('.10.设D 是由曲线01=+xy 与直线0=+y x 及2=y 所围成的有界区域,则D 的面积为 . 【详解】22112101ln +=+=⎰⎰⎰⎰--yydx dy dx dy S 11.设412=⎰ax dx xe ,则=a . 【详解】411241244120202+-=-==⎰)(|)(a e x e dx xe a ax ax .所以.21=a12.二次积分=⎪⎪⎭⎫ ⎝⎛-⎰⎰dx e xe dy y y x 11022. 【详解】)()(12111010101010100110101102222222222-==+-=--=-=⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e dy ye dy ye dy e edy y e dy x ex d dx e dy dy x e dx dx e x e dy y y y dxx xy x x y y x y y x三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限. 【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy y x y x x )sin(22π 【详解】由对称性可得432112121212022222222-==+=+++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰D D D Ddr r r d dxd y x dxdy y x y x y x dxd y x y x y dxd y x y x x πθπππππsin )sin()sin()()sin()sin(17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足xx e y e z yz x z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u xcos =,则)cos ()(y e f u f z x==,y e u f y e u f xz e u f xzxx y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z xx x cos )('sin )(",sin )('-=∂∂-=∂∂2222; x x x e y e f e u f yzx z 222222)cos (")("==∂∂+∂∂由条件x x e y e z yzx z 222224)cos (+=∂∂+∂∂,可知u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程.对应齐次方程的通解为:u u e C e C u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*. 故非齐次方程通解为u e C eC u f u u412221-+=-)(.将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 18.(本题满分10分) 求幂级数∑∞=++031n nxn n ))((的收敛域、和函数.【详解】 由于11=+∞→nn n a a lim,所以得到收敛半径1=R .当1±=x 时,级数的一般项不趋于零,是发散的,所以收敛域为()11,-. 令和函数)(x S =∑∞=++031n nxn n ))((,则3211121112131111234)('"'")())(()()(x xx x x x x x x n x n n x n n x S n n n n n nn nn n--=⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=++++=++=∑∑∑∑∑∞=+∞=+∞=∞=∞=19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (3) []b a x a x dt t g xa,,)(∈-≤≤⎰0;。

2013年全国硕士研究生入学统一考试数学(二)真题及答案解析

2013年全国硕士研究生入学统一考试数学(二)真题及答案解析

2013考研数学二真题ঞㄨḜ解析ZZZ ZHQGXHGX FRP一、选择题1.设cos x -1=x sin ()x α,其中|()x α|<2π,则当x →0时,()x α是()而()0lim 0x F x πππ−−→′==−∫∫,()()()0lim 2xx f t dt f t dtF x ππππ++→−′==−∫∫,()()(),F F F x ππ−+′′≠∴∵在x π=处不可导。

故()F x 在x π=处连续但不可导。

4.设函数f (x )=1,1,(1)11,.ln(1)x e x x e x xαα⎧<<⎪−−⎪⎨⎪≥⎪+⎩若反常积分∫∞+1f (x )d x 收敛,则()解:[]21320,0,()0,(()0),D I I I y x d y x σ===+−>+−>∫∫∵[]44()0,(()0),D I y x d y x σ=+−<+−<∫∫∵所以选(B )。

7.设A 、B 、C 均为n 阶矩阵,若AB=C ,且B 可逆,则(A)矩阵C 的行向量组与矩阵A 的行向量组等价(B)矩阵C 的列向量组与矩阵A 的列向量组等价(C)矩阵C 的行向量组与矩阵B 的行向量组等价(D)矩阵C 的列向量组与矩阵B 的列向量组等价答案:(B )解:1212(,,,)(,,,),(1)n n i i A A i n βββγγγβγ==≤≤⋯⋯,即C 的列向量组可由A 的列向量组线性表示。

⎪⎪⎩⎭10.设函数(),xf x −=∫则y =f (x )的反函数)(1y f x −=在0=y 处的导数______|0==y dydx解:=0y 即=-1x,=0y dy dx dx dy。

故32xxx y e exe =−+−。

14.设A=()ij a 是3阶非零矩阵,|A |为A 的行列式,Aij 为ij a 的代数余子式,若0(,1,2,3)ij ij a A i j +==,则|A |=______________答案:-1解:2*3*=-,=(-1)=-=0=-1T ij ij A a A A A A A A A =−⇒⇒或。

13年考研线代真题

13年考研线代真题

13年考研线代真题2013年考研数学一真题中,线性代数是一个重要的考点。

掌握线性代数的基础知识和解题方法对于考生来说至关重要。

本文将针对2013年考研线性代数真题进行详细分析和解答,帮助考生更好地理解和应用线性代数的知识。

一、题目描述题目要求考生证明一个关于矩阵的性质,具体表述如下:已知一个n阶实对称矩阵A,存在实数a,使得矩阵A-aI的秩为r。

证明:当a不等于矩阵A的特征值时,秩r=n-1。

二、问题分析根据题目要求,我们需要证明当a不等于矩阵A的特征值时,矩阵A-aI的秩r=n-1。

首先,我们需要了解矩阵A-aI的秩和特征值之间的关系。

对于一个给定的矩阵A,如果a是矩阵A的特征值,那么矩阵A-aI的秩r=n-1。

这是因为矩阵A-aI与矩阵A的差别在于矩阵A的对角线元素减去a,而对角线元素减去特征值后,矩阵A的秩会减少1。

三、解题步骤1. 首先,我们需要证明当矩阵A的特征值等于a时,矩阵A-aI的秩r=n。

根据线性代数的基本性质,矩阵A的特征值等于a,表示矩阵A-aI的行列式为0。

2. 接下来,我们要证明当a不等于矩阵A的特征值时,矩阵A-aI的秩r=n-1。

假设矩阵A有k个特征值等于a,我们可以将矩阵A进行特征值分解,得到矩阵A=PDP^-1,其中D是对角矩阵,对角线上的元素是矩阵A的特征值。

3. 根据步骤2的分解形式,我们可以得到矩阵A-aI=P(D-aI)P^-1。

根据矩阵的乘法性质,我们可以将矩阵A-aI展开为AD-aIP^-1。

4. 我们知道对于任意一个非零向量x,有Ax=ax,其中x是特征值对应的特征向量。

根据这个性质,我们可以得到Ax-aIx=0。

将这个等式代入步骤3的结果中,我们可以得到AD-aIP^-1x=0。

5. 由于特征向量对应的特征值是矩阵A的特征值,我们可以将步骤4的等式简化为D-aI的特征值对应的特征向量等于0。

由于我们假设了矩阵A有k个特征值等于a,那么D-aI至少有一个特征值等于0。

2013年10月自考线性代数真题及答案

2013年10月自考线性代数真题及答案

全国2013年10月高等教育自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共5小题,每小题1分,共5分) 1.设行列式1122a b a b =1,1122a c a c =-2,则111222a b c a b c ++=( ) A .-3 B .-1 C .1 D .3 2.设矩阵A =10010021003⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,则A -1=( ) A .001020300⎛⎫ ⎪ ⎪ ⎪⎝⎭ B .100020003⎛⎫ ⎪ ⎪ ⎪⎝⎭ C .300020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ D .003020100⎛⎫ ⎪ ⎪ ⎪⎝⎭3.设A 为m ×n 矩阵,A 的秩为r ,则( ) A .r =m 时,Ax =0必有非零解 B .r =n 时,Ax =0必有非零解 C .r<m 时,Ax =0必有非零解D .r<n 时,Ax =0必有非零解4.设4阶矩阵A 的元素均为3,则r(A )=( ) A .1 B .2 C .3 D .45.设1为3阶实对称矩阵A 的2重特征值,则A 的属于1的线性无关的特征向量个数为( ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分)6.设A 为2阶矩阵,将A 的第1行加到第2行得到B ,若B =1234⎛⎫ ⎪⎝⎭,则A =__________.7.设A 为3阶矩阵,且|A |=2,则|2A |=__________.8.若向量组12(2,1,),(4,,4),T T a a ==αα线性无关,则数a 的取值必满足__________. 9.设向量T T (1,0,1),(3,5,1)==αβ,则2-βα=__________. 10.设A =111221223132a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭,b =123b b b ⎛⎫⎪ ⎪ ⎪⎝⎭,若非齐次线性方程组Ax =b 有解,则增广矩阵A 的行列式A =__________.11.齐次线性方程组x 1+x 2+x 3=0的基础解系中所含解向量的个数为__________. 12.设向量(3,4)T =-α,则α的长度α=__________. 13.已知-2是矩阵A =022x -⎛⎫⎪⎝⎭的特征值,则数x =__________.14.已知矩阵A =122212221⎛⎫ ⎪ ⎪ ⎪⎝⎭与对角矩阵D =10001000a -⎛⎫ ⎪- ⎪ ⎪⎝⎭相似,则数a =__________.15.已知二次型222123123(,,)f x x x x x tx =++正定,则实数t 的取值范围是__________. 三、计算题(本大题共7小题,每小题9分,共63分) 16.计算行列式D =222222a b c a ab b ac b c c c a b------. 17.已知向量11(1,2,),(1,,),23k ==αβ且3,T T ==A βααβ,求(1)数k 的值; (2)A 10.18.已知矩阵A =123231340⎛⎫⎪⎪ ⎪⎝⎭,B =101200-⎛⎫ ⎪⎝⎭,求矩阵X ,使得XA =B .19.求向量组1234(1,0,2,0),(1,1,2,0),(3,4,4,1),(6,14,6,3)T T T T ==---=--=--αααα的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.20.已知齐次线性方程组Ax =0的一个基础解系为12231,001ξξ-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求r(A )及该齐次线性方程组.21.设向量组123(1,1,1,1),(1,1,0,0),(1,1,2,0)T T T =--==-ααα.求一个非零向量4α,使得4α与123,,ααα均正交.22.用配方法化二次型22123121323(,,)2248f x x x x x x x x x =--+为标准形,并写出所用的可逆性变换.四、证明题(本题7分)23.设A 是m ×n 矩阵,证明齐次线性方程组Ax =0与A T Ax =0同解.全国2013年10月线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共5小题,每小题1分,共5分)1-5 BBDAC二、填空题(本大题共10小题,每小题2分,共20分)6.1222⎛⎫ ⎪⎝⎭7.16 8.2a = 9.T(1,5,1)- 10.0 11.2 12.5 13.-4 14.5 15.(0,)+∞三、计算题(本大题共7小题,每小题9分,共63分)16.解:311111122002200a b c b b a c b a b c a b c a b c c c c a b a b c++--=++---=++-----原式=()()(). 17.解:(1)因为1113, 3.3k k =++==T 则βα(2)A 1011231099991122333211(()332(1,,)321331⎛⎫⎛⎫ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭T T T T )= αβ αβαβαβ 18.解:(A T ,B T )= 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 234 0 00-1-2 -2 -40-1-2 -2 -43 10 -1 00 -5-9 -4 -60 0 1 6 14⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 2 0 -17 -40 1 0 0 3 8 0-1 0 10 24010 -10 -240 0 1 6 140 01 6 14⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则T 3 8 X -10 -24 6 14⎛⎫⎪= ⎪ ⎪⎝⎭,故 3 -10 6X 8 -24 14⎛⎫= ⎪⎝⎭19.解:1234 1 -1 -3 -6 1 -1 -3 -6 1 -1 -3 -6 0 -1 4 14 0 -1 4 14 0 1 -4 -14 (,,,) 2 -2 -4 -6 0 0 2 60 0 1 30 0 1 3 0 0 1 3 ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪αααα=→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0 0 0 0 ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭1 -1 0 3 1 0 0 1 0 1 0 -2 0 1 0 -2 0 0 1 30 0 1 30 0 0 00 0 0 0⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭向量组的秩为3,一个极大线性无关组为123,,ααα,且412323α=α-α+α. 20.解:易知n =3,且()2,n r A -=则r(A )=1又自由未知量为23,x x ,则0Ax =同解方程组为12323x x x =-+,即123230x x x +-=为所求方程组. 21.解:设41234(,,,)x x x x α=,由于4α与123,,ααα均正交,则123412123002 0x x x x x x x x x --+=⎧⎪+=⎨⎪-+=⎩,系数矩阵 1 -1 -1 1 1 -1 -1 1 1 1 0 0 0 2 1 -11 -1 2 00 0 3 -1A ⎛⎫⎛⎫ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2133111122331113331 -1 0 1 0 0 1 -1 -1 10 1 -0 1 0 -0 1 0 -0 0 1 -0 0 1 -0 0 1 -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪→→→⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭同解方程组为1143124431343,x x x x x x x =-⎧⎪=⎨⎪=⎩为自由未知量一个基础解系为T (1,1,1,3)-,即T 4(1,1,1,3)=-α.22.解:配方法得22212313233(,,)2()2(2)6f x x x x x x x x =---+,令113223332y x x y x x y x =-⎧⎪=-⎨⎪=⎩ 即可逆线性变换为1122331 0 -10 1 -20 0 1y x y x y x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故标准行为222123123(,,)226f y y y y y y =-+.四、证明题(本题7分)23.证明:22212120,0,0.0()0,,()0,0(1,2,),0000.T T T T T T T T n n i T A A A A Ax A A A A A A A a a a A A a a a a i n A Ax Ax A Ax =======+++======设则即是的解若,则令(,,,)则=故即=,是的解.综上可知,和同解ξξξηηηηηηηηηη。

2013年全国硕士研究生入学考试数学一真题答案及解析

2013年全国硕士研究生入学考试数学一真题答案及解析

1 a 1 2 0 0 【解析】设 A a b a ,B 0 b 0 ,因为 A与 B 为实对称矩阵, 1 a 1 0 0 0
则 A与B 相似的充要条件是 A 的特征值分别为 2,b, 0 ,
1
A的特征方程 E-A a 1
1 /2 1 2 2 1 1 /2 2 1 3 2 sin d r dr 2 2 4 cos d sin d 0 0 0 0 2 0 4 2 0 4 1!! 1 1 1!! 1 11 . 2 2 4 4 2 2!! 2 4 2 2!! 2 4 2 8 8
/2 1 1 cos 2 d sin 2 d 0 4 4
I 3 I 4 故应选 (D). .
高学网教研中心整理

2013年考研真题
高学网权威发布
(5)设 A, B, C 均为 n 阶矩阵,若 AB C ,且 B 可逆,则( ). (A)矩阵 C 的行向量组与矩阵 A 的行向量组等价. (B)矩阵 C 的列向量组与矩阵 A 的列向量组等价. (C)矩阵 C 的行向量组与矩阵 B 的行向量组等价. (D)矩阵 C 的列向量组与矩阵 B 的列向量组等价. 【答案】B. 【解析】将 A, C 按列分块,若 A=(1 ,..., n ),C=( 1 ,..., n ) 由于 AB C ,故
a
1

a
1
b
a
a 0 b a 1 0 2a 2
[( b)( 2) 2a 2 ]
因为 0, 2,b 是 A 的特征值,所以 2a 0,即a 0 .
2
当a 0时

2013年考研数学一真题解答

2013年考研数学一真题解答

2013硕士研究生入学考试数学一真题及解析1. 已知极限0arctan lim k x x xc x →-=,其中k ,c 为常数,且0c ≠,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )2221121000011arctan 1111lim lim lim lim (1)k k k k x x x x x x x x x c k x kx kx x x ---→→→→--+-+====+因此112,k c k -==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为( ) A. 2x y z -+=- B. 0x y z ++= C. 23x y z -+=- D. 0x y z --= 答案(A )法向量(0,1,1)(,,)(2sin()1,sin(),),|(1,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。

3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n π==⎰ ,令1()sin n n S x b n x π∞==∑,则9()4-=S ( ) A .34 B. 14 C. 14- D. 34- 答案(C )01():(cos sin )2n n n a n n l f x a x b x l l ππ=++∑周期为2的函数对应的三角级数将函数在[0,1]展开成傅里叶级数(只含正弦项),做两次延拓函数后:它的傅里叶级数的和函数()s x 以2为周期的奇函数则当(1,1)x ∈-且()f x 在x 处连续时,()()s x f x =。

91111()()()()44444s s s f -=-=-=-=-。

2013年考研数学一真题与解析完整版

2013年考研数学一真题与解析完整版

2013硕士研究生入学考试数学一真题及解析来源:文都教育1.已知极限0arctan limkx x xc x ®-=,其中k ,c 为常数,且0c ¹,则()A. 12,2k c ==-B. 12,2k c ==C. 13,3k c ==-D. 13,3k c ==答案(D )解析:用洛必达法则222112100011arctan 1111lim limlim lim (1)kk k k x x x x xx x x x cx kx kx x k x ---®®®®--+-+====+因此112,k c k-==,即13,3k c ==2.曲面2cos()0x xy yz x +++=在点(0,1,1)-处的切平面方程为()A. 2x y z -+=-B. 0x y z ++=C. 23x y z -+=-D. 0x y z --=答案(A )解析:法向量(0,1,1)(,,)(2sin()1,sin(),),|(1(1,,1,1)x y z n F F F x y xy x xy z y n -==-+-+=-切平面的方程是:1(0)1(1)1(1)0x y z ---++=,即2x y z -+=-。

3.设1()2f x x =-,102()sin (1,2,)n b f x n xdx n p ==ò,令1()s i n nnS x b n x p ¥==S ,则()A .34B. 14C. 14-D. 34-答案(C )解析:根据题意,将函数在[1,1]-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1||,(0,1)2()1||,(1,0)2x x f x x x ì-Îïï=íï-+Î-ïî,它的傅里叶级数为()s x ,它是以2为周期的,则当(1,1)x Î-且()f x 在x处连续时,()()s x f x =。

2013年考研数学真题及参考答案(数学二)

2013年考研数学真题及参考答案(数学二)

π
2
, 则当 x → 0 时, α ( x ) 是
【 】 .
(A) 比 x 高阶的无穷小 (C) 与 x 同阶但不等价的无穷小 【答案】 答案】C.
(B) 比 x 低阶的无穷小 (D) 与 x 等价的无穷小
【考点】 考点】计算极限的方法:常用的等价无穷小.
【解析】 解析】 x sin α ( x) = cos x − 1 ~ −
(D) I 4 > 0
【解析】 解析】在第 II 象限除原点外被积函数 y − x > 0 ,因此 I 2 > 0 . 【评注】 评注】在第 IV 象限除原点外被积函数 y − x < 0 ,因此 I 4 < 0 ; 在第 I 象限和第 III 象限,根据轮换对称性得
I1 = I 3 = 0 .
(7)设 A, B, C 均为 n 阶矩阵,若 AB = C ,且 B 可逆,则 (A) 矩阵 C 的行向量组与矩阵 A 的行向量组等价 (C) 矩阵 C 的行向量组与矩阵 B 的行向量组等价 【答案】 答案】B. 【考点】 考点】向量组的线性表示方法. 【解析】 解析】将矩阵 A 和 C 按列分块,设 A = (α1 , α 2 ,⋯ , α n ) , B = (bij ) , C = (γ 1 , γ 2 ,⋯ , γ n ) . ①由 AB = C 组线性表示; 【 】 . (B) 矩阵 C 的列向量组与矩阵 A 的列向量组等价 (D) 矩阵 C 的列向量组与矩阵 B 的列向量组等价
π
6
≤θ ≤
π
6
),则 L 所围平面图形的面积为

【答案】 答案】
π
12
.
【考点】 考点】计算极坐标曲线所围图形的面积.

2003-2013数二考研线性代数真题及答案合集

2003-2013数二考研线性代数真题及答案合集

1 0 0 1 0 0 1 0 , P2 = 0 0 1 ,则 A =( 得单位矩阵。记 P 1 = 1 0 0 1 0 1 0
(A) P 2 1P (B) P 1 P 2
* −1

(C) P2 P 1
(D) P2 P 1
T
−1
(8) 设 A = (α 1 , α 2 , α 3 , α 4 ) 是 4 阶矩阵,A 为 A 的伴随矩阵。 若 (1 ,0,1,0) 是方程组 Ax = 0 的一个基础解系,则 A* x = 0 的基础解系可为( (A) α 1 , α 3 (B) α 1 , α 2 ) (D) α 2 , α 3 , α 4


a1 b1 α = a 2 , β = b2 . a b 3 3
(1)证明二次型 f 对应的矩阵为 2αα + ββ ;
T T
(2)若 α , β 正交且为单位向量,证明 f 在正交变换下的标准形为 2 y1 + y 2 .
2 2
考研数学二(2003-2013) 线性代数历年真题及答案汇总
2013 7.设A,B,C均为 n 阶矩阵,若AB=C,且B可逆,则 (A)矩阵 C 的行向量组与矩阵 A 的行向量组等价. (B)矩阵 C 的列向量组与矩阵 A 的列向量组等价. (C)矩阵 C 的行向量组与矩阵 B 的行向量组等价. (D)矩阵 C 的列向量组与矩阵 B 的列向量组等价. ( )
2 −1 . −1 2
(C )
1 −2 . −2 1
(14)设 3 阶矩阵 A 的特征值为 2,3, λ .若行列式 2 A = −48 ,则 λ = ___ . (22) (本题满分 12 分)

2013线性代数考研题

2013线性代数考研题


C
=
⎜⎜⎝⎛1 +
k1 + k1
k2
− k1 k2
⎟⎟⎠⎞
=
⎜⎜⎝⎛
1 0
0 0
⎟⎟⎠⎞
+
k1⎜⎜⎝⎛11
−01⎟⎟⎠⎞
+
k2
⎜⎜⎝⎛
1 0
10 ⎟⎟⎠⎞
k1, k2 任意
5.(13-1,2,3-11)设二次型 f (x1, x2, x3) = 2(a1x1 + a2 x2 + a3x3)2 + (b1x1 + b2 x2 + b3x3)2 ,
⎜ ⎝
a1a3
a2a3
a22
⎟ ⎠
⎜ ⎝
b1b3
b2b3
b22
⎟ ⎠
(2) 注意到α Tα = 1, β Tα = 0, β Tβ = 1,从而有
Aα = (2αα T + ββ T )α = 2α , Aβ = (2αα T + ββ T )β = β
即 2 和 1 是 A 的特征值.又由于 r( A) = r(2αα T + ββ T ) ≤ r(2αα T ) + r(ββ T ) = 2
f = (2a12 + b12 )x12 + (2a22 + b22 )x22 + (2a32 + b32 )x32 + (4a1a2 + 2b1b2 )x1x2 + (4a1a3 + 2b1b3)x1x3 + (4a2a3 + 2b2b3)x2x3
故二次型 f 对应的矩阵为
⎜⎛ 2a12 + b12

2013年考研数一真题答案解析

2013年考研数一真题答案解析

一、选择题(1) D解用洛必达法则 1 l—x arctanx 1 + x 2 1 + x 2—11X l im· =l im =l i m =—hm =c #-O ,x 丑X, 一-ok x k -lx-0 k x k -l (1 +X z) k x 勺x k -11因此k -1 =Z, 一-c ,即k=3,c -一故应选D.k3CZ) A解F:=zx-ys i n(xy)+L F:=-xs i n(xy)+z, F:=y曲面x 2+c os(xy) + y z十X =0在点(0'1,—1)处的切平面的法向晕n={l ,-1,1},切平面方程为:1• (x—0)—(y—1) + 1• (z + 1)= 0, 即x—y +z --Z故应选A.(3)C解观察到S(x)是f(x)的正弦函数,对J进行奇延拓,其周期为z 故S(x)f(x). 9 1 1 s (-—) =S(--—s -=- 1 144) (4)1(了)=勹一故应选C(4)D解由格林公式得I ,-f (y +f )山+(Zx -�) d y =』(1—x 2-f )心d y'其中D 1:x z+y z冬1,D 2:x 2+y 2�z,D3:f +y 2冬1,yD 口x z+��l.z显然在几内有y y l-x 2 -—>O , 在队外有l -x 2-—<O ,z z又如图有D1C D4 ,D4 C D z 由重积分性质知I1>I1,I4>Iz.y 又D4=几+D4\D 5,几=D5+D3\D 5,在D3\D 5上l -x 2--<0,在D4\D5上z1 2 y-x -—z>O ,2013年(数一)真题答案解析故J4=II (1-x 2—f)dxd y + II (1—X 2 --f )dxd y D5D八D s>13=』(1y —x 2勹)dxdy + I I (1—.亢2飞)dxdy. 故应选D.D5D叭D5(5) B解由千A B =C,那么对矩阵A,C按列分块,有,、`丿,,“` , . . . , 2”, ,1”, ( _ --n nn 12…nb b b ��…�22212…”b b b11112…n b b b) "" , . . . ,2", 1 "( Y1 =b 11a1 +b心+…+b.1a.,即{了:,�b ,,a +b 心+…+b .,a.,r. =b1na1 +b z.az +…+ b n.an. 这说明矩阵C的列向最组r 口rz '…,r. 可由矩阵A的列向量组a1,a2, …, a. 线性表出.又矩阵B可逆,从而A=CB飞那么矩阵A的列向量组也可由矩阵C的列向械组线性表出.由向量组等价的定义可知,应选B .(6) B解记A�[�:�'考察矩阵A的特征值为2,b ,O的条件.首先,显然1At �:,因L是A的特征值.其次,矩阵A的迹t r (A )=2 t -b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个特征值于是“充要条件”为2是A的特征值.由lzE—A l=—a 2-b—a =—4a 2 =O 气=O .—l -al因此充要条件为a =O,b为任意实数,故应选B.(7) A解将随机变量义和x3化成标准正态后再比较其大小.P 1 =P {—2�X1�2} =<P (2) -中(—2)'—2X z2Pz=P {-2�X三2}=P {—《—《—}气(1)-<P (-1)'22 2 p3 =P {-2�X3�2} -2—5 x3—5 2-5 =P {3� —3� 2 } =iP (-1)—叶习=<P行)-<P(l )'由右图正态分布曲线下的面积所代表的概率可知P1 > Pz > p 3.故应选A .x7l 3(8)C解当X-t(n)时,X 2-FO,n),又Y-FO,n),故Y与xz同分布.当C > 0时,由t 分布的对称性有P{Y>c 2}=P{X 2>c 2}==P{ X >c}=P{X>cUX<—c}=2P{X>c}=2a.故应选C.二、填空题(9)1解把X =O 代入方程有八0)=1. 方程y -X = e xO -y )两端同时对x 求导有f'(工)-1 = e [l -f(x )] [1-f (x ) -x f'(x ) J . 把X =O 代入上式得厂(0)=2 -f(O) =l.又limf 釭)-]-=f '(O)=l,x-oX1三卢—1]飞巴!(-;;}—l气尸�1nOO)C 1e 立+c z 产-xe红解由常系数非齐次线性微分方程解的性质可得Y 1 -Y 3 = e3x,Y 2 -Y 3 = ex是相应二阶齐次线性微分方程的两个特解.故相应二阶齐次线性微分方程的通解为Y O = C I e 3·x + C 2 e .所以所求非齐次方程的通解可表示为y = C1e x + C 2芒—X e2x•(11)心解•• dxdy· —= cost , -= t c ost ,dt dt. dy tcost•• -= =t,dxcost 叶店)d 2y d dy dt -=--(—)=—一=-1 c!x2 dx cl x clxcostc!t心1从而dx 2,-f =亢=迈.cos—4(12)lnZ解厂l n x2dx = _ l n x += +厂dx =O+l n x1+==O —l n _l =ln 2 1O+x)l+x 1 2 l+x 1 1O+x)x(13) -1解题设条件"a ;;+A ;; = 0 "即A T =—A*'于是A =—[Al'可见A只可能是0或—1.又r(A)= r (A T ) = r (-A *) = r (A 天),则rCA)只可能为3或0.而A为非零矩阵,因此r (A)不能为o ,从而r(A) = 3 , A [ #-0 , [ A [ = -1.或,用特例法.取一个行列式为—1的正交矩阵满足A T=-A勹故应填-1.104)1——e解由于X�E(l),a>O,则由指数分布的分布函数有P{Y冬a+IY>a}=P{Y>a,Y,s;:;a+l } =P{a<Y,s;:;a+l}P {Y >a}1—P{Y冬a}1-e 一(a +])—0-e -")e -a —e -a -1 1 = = =l —e -1 = 1—— l —(1—e -a )-a e e 三、解答题05)解由条件显然有J(l )=O, J'(x)=由分部积分法及换元积分法有『八x)d x =2f J(x)d 左。

2013考研数学线性代数答案及详解.doc

2013考研数学线性代数答案及详解.doc

求标准型,标准型就是求特征值量,右边乘阿尔法得特征值2,右边乘贝塔得特征值1,另外一个在哪?就一个字—秩。

阿尔法乘阿尔法转置这种典型告诉你RA等于2,说明行列式等于0,另外一个特征值肯定等于0,说明210就是标准型。

22题考的是一维随机变量函数分布,教材第二章唯一可能考大题的就是一为随机函数的分布。

今年有一点意外的就是今年没考二维随机变量,不管是二维离散或者连续的分布还是函数的分布,还是协方差、相关系数的这些都没有。

2013年考研数学真题及参考答案(数学一)

2013年考研数学真题及参考答案(数学一)

求所有矩阵 C . (21) (本题满分 11 分)
a1 设 二次 型 f ( x1 , x2 , x3 ) 2( a1 x1 a2 x2 a3 x3 ) (b1 x1 b2 x2 b3 x3 ) , 记 a2 , a 3
2
b1 b2 b 3
x arctan x 【详解】由于 c lim lim x 0 x 0 xk lim
所以 k 3 , c ⑵ 应选(A).
1
1 1 x2 kx k 1
x2 1 lim k 3 . x 0 kx k 1 x 0 kx
1 .故应选(D). 3
【分析】考查偏导数的几何应用.先求出曲面在点 (0,1, 1) 的法向量,然后利用平面点法 式方程写出切平面方程. 【详解】法向量 n {2 x y sin xy 1, x sin xy z , y}
⑻ 设随机变量 X t ( n) ,Y F (1, n) ,给定 (0 0.5) ,常数 c 满足 P X c , 则P Y c

2


(A) (B) 1 (C) 2 (D) 1 2 二、填空题:9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸 指定位置上. ... ⑼ 设函数 y f ( x) 由方程 y x e ⑽ 已知 y1 e
(1 x 2
Di
y2 )dxdy . 2
2
1 2 1 y 0 x2 y 2 1 , 所 以 被 积 函 数 在 2 2 1 1 D1 : x 2 y 2 1 内,恒有 f ( x, y ) 0 ;且 x 2 y 2 1 时,有 f ( x, y ) 0 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

把这个实对称矩阵称为二次型的矩阵.并把它的秩称为二次型的秩, 如果二次型 f(x1,x2,…,xn)的矩阵为 A, X=(x1,x2,…,xn)T, 则 f(x1,x2,…,xn)= X TAX. 标准二次型的矩阵为对角矩阵. 规范二次型的矩阵为规范对角矩阵.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
② 求作正交矩阵 Q 和对角矩阵 ,使得 Q T AQ . 解:(1)A 的特征值为 0、0、3,属于 0 的特征向量: c1 1 c2 2 , c1 , c 2 不全为 0, 属于 3 的特征向量: c 3,c 0 。 (2) Q T AQ 即 Q 1 AQ ,对 2 作施密特正交化, 2, 1 , 1 先不动,修改
2007 年题
T 3 阶实对称矩阵 A 的特征值为 1,2,-2, 1 =(1,-1,1) 是 A 的属于 1 的特征向
量.记 B=A5-4A3+E. (1)验证 1 也是 B 的特征向量. (2)求 B 的特征值和特征向量. (3) 求 B.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
, ) 0 ,则说 和 正交. 如果 (
如果向量组 … n 中的每个都是单位向量,并且两两正交,则称它们为 2, 1, 单位正交向量组.
2. 正交矩阵 定义 n 阶矩阵 Q 称为正交矩阵,如果它是实矩阵,并且 QQT=E(即 Q-1=QT). 命题 Q 是正交矩阵Q 的列向量组是单位正交向量组. Q 的行向量组是单位正交向量组.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
标准二次型 规范二次型
交叉项的系数都为 0 的二次型. 形如 x12+…+xp2-xp+12…-xp+q2 的二次型.(p+qn)
1.二次型的矩阵 二次型可以用矩阵乘积的形式表示:
此时 1 , 2 , 3 是和 3 等价的正交非零向量组. 2 , 1 ,
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
(2)作 1 交向量组.
1 , 2 2 , 3 3 ,则 1 , 2 , 3 是和 3 等价的单位正 2 , 1 , 1 3 2
' 2
1 1
Q
3 6 2 6 3 ' 2 3 6 3 2 , , ' 0 , 3 3 2 2 3 6 3 2 3 6 2 2 0 2 2 3 3 0 0 0 3 T 1 , Q AQ Q AQ 0 0 0 。 3 0 0 3 3 3
x ,
1
x2 , x3
a11 a12 a21 a22 a 31 a32
a13 a23 a33
x1 x2 x 3
=
a11 x12
+
a 22
x22
+
a33 x32 a12 a21 x1 x2 a13 a31 x1 x3 a23 a32 x2 x3
解:(2)B 为 A5 4 A3 E f ( A) , f ( x) x 5 4 x 3 1 , A 的特征值 1、2、-2,B 的特征值-2、1、1, B 1 2 1, B 的属于-2 的特征向量为 c 1,c 0 ; B 的属于 1 的特征向量是 ( B E ) X 0 的非零解,它们又与 1 正交,从而满足
6 6 6 3 6 6
第七讲 一.基本概念 1.二次型
二次型
n 个变量的二次型是它们的二次齐次多项式函数. 例如 3 元的二次型的一般形式为 f(x1 x2 x3)= a11x12+a22x22+a33x32+2a12x1x2+2a13x1x3+2a23x2x3. 平方项,交叉项 实二次型 如果二次型的系数都是实数,并且变量 x1,x2,…,xn 的变化范围也 限定为实数,则称为实二次型.
EP 0 0
0 EP 0
0 0 0
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军

内积的性质: (1)
, ) 0 ,并且 ( , ) 0 0 . 正定性: (
2 2 . ( , ) a12 a2 an
, ) ( , ). (2)对称性: (
(3) 线性性质:
( , 1 2 ) ( , 1 ) ( , 2 ) ; ( 1 2 , ) ( 1 , ) ( 2 , ) .
(c , ) c( , ) ( , c) .(c 为任意实数)
实向量 的长度: ( , ). 显然 c c , 0 0 .
如果 不是零向量,则
是单位向量,称为 的单位化.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
0 1 1 1 1 ( 3 1 1 , 2) 2 0 , 2 1 2 1 2 1 1 ( 6 2 2 1 , 1) 1 1 2 1
例 27 设 3 阶 实 对 称 矩 阵 A 的 各 行 元 素 之 和 都 为 3, 向 量
T T 1 ( 1,2, 1) , 2 (0, 1,1) 都是齐次线性方程组 AX=0 的解.
① 求 A 的特征值和特征向量.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
x1 x2 x3 0 , ( B E ) X 0 与 x1 x2 x3 0 同解,
T 基础解系: ,1)T , 2 (1,1,0) , 3 (0,1
B 的属于 1 的特征向量为 c1 2 c 2 3 , c1 , c 2 不全为 0. (3)由矩阵方程 B( (略) 1 , 2 3 ) ( 2 1 , 2 , 3 ) 求 B。 例 23 设 3 阶实对称矩阵 A 的特征值为 1,1,-1,(0,1,1)T 是属于-1 的特征向
4. 实对称矩阵的对角化 如果 A 是实对称矩阵,A 的特征值和特征向量有以下特点: (1) 特征值都是实数. (2) 对每个特征值,其重数=n-r(A-E). 即实对称矩阵可对角化, (3) 属于不同特征值的特征向量互相正交. 可以用正交矩阵将实对称矩阵 A 对角化。 构造正交矩阵 Q(使得 Q-1AQ 是对角矩阵)的步骤: (1)求出 A 的特征值; (2)对每个特征,求(A-E)X=0 的单位正交基础解系,合在一起得到 A 的 n 个单位正交的特征向量; (3)用它们为列向量构造正交矩阵 Q.
四. 内积, 正交矩阵和实对称矩阵的对角化 约定向量的分量和矩阵的元素都要求是实数(称为实向量和实矩阵). 1. 实向量的内积 定义 两 个 n 维 实 向 量 (a1 , a2 ,an )T , (b1 , b2 ,, bn )T 的 内 积 规 定
T 为: ( , ) a1b1 a2 b2 an bn .
3. 施密特正交化 这是把线性无关向量组改造为单位正交向量组的方法. 以 3 个线性无关向量 3 为例. 2 , 1 , (1)令 1 1,
2 2
( ( , ) ( 3 , 1 ) 2, 1) 1 , 3 1 3 2 2 . 3 ( 1 , 1 ) ( 1 , 1 ) ( 2 , 2 )
量,求 A.(95 一)
例 24
设 3 阶实对称矩阵 A 的特征值为 1,2,3,(1,1,-1)T 和(-1,2,1)T 分别是
属于 1 和 2 的特征向量,求属于 3 的特征向量,并且求 A.(97 三)
例 25 设 3 阶实对称矩阵 A 的秩为 2,又 6 是它的二重特征值,向量(1,1,0)T 和 (2,1,1)T 和(-1,2,-3)T 都是属于 6 的特征向量. (1)求 A 的另一个特征值与相应的特征向量. (2)求 A.(04 四)
a11 a12 Q a 21 a 22 a 31 a32 a11 Q T Q a12 a 13 a13 a 23 a33 a 21 a 22 a 23 a31 a11 a12 a32 a 21 a 22 a33 a31 a32 a13 1 0 0 a 23 0 1 0 a33 0 0 1
x12+2x22+2x1x2-2x1x3+2x2x3= x1
x2
1 ? ? x1 x3 ? 2 ? x2 ? ? 0 x 3
对角线外的元素不是唯一的,但是如果要求中间的矩阵对称,则是唯一确定的
x
1
x2
1 1 1 x1 x3 1 2 1 x2 1 1 0 x 3
相关文档
最新文档