安徽省芜湖市无为县2020-2021学年九年级上学期期末数学试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证:CD是⊙O的切线.
(2)若CD=6,求BC的长.
(3)若⊙O的半径为4,则四边形ABCD的最大面积为.
23.如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:
把x=1代入x2+px+1=0,即可求得p的值.
【详解】
把x=1代入把x=1代入x2+px+1=0,得
1+p+1=0,
∴p=-2.
故选D.
【点睛】
本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知ቤተ መጻሕፍቲ ባይዱ的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
2.A
【分析】
根据旋转的性质判断即可.
A. B. C. D.
3.已知函数 的图象经过点(2, 3 ),下列说法正确的是( )
A.y随x的增大而增大B.函数的图象只在第一象限
C.当x<0时,必y<0D.点(-2, -3)不在此函数的图象上
4.从 ,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )
A. B. C. D.
(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.
(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.
参考答案
1.D
【分析】
7.如图,⊙O的半径为2,△ABC为⊙O内接等边三角形,O为圆心,OD⊥AB,垂足为D.OE⊥AC,垂足为E,连接DE,则DE的长为( )
A.1B. C. D.2
8.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是( )
A. B. C. D.
9.如图,在同一直角坐标系中,正比例函数y=kx+3与反比例函数 的图象位置可能是( )
(1)用列表法或树状图表示出两次取得的小球上所标数字的所有可能结果;
(2)若把m、n分别作为点A的横坐标和纵坐标,求点A(m,n)在函数y= 的图象上的概率.
20.为了改善生活环境,近年来,无为县政府不断加大对城市绿化的资金投入,使全县绿地面积不断增加.从2021年底到2021年底,我县绿地面积变化如图所示,求我县绿地面积的年平均增长率.
A. B. C. D.
10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()
14.2021年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_____.
三、解答题
15.解方程:x(x﹣3)+6=2x.
16.已知,反比例函数的图象经过点M(2,a﹣1)和N(﹣2,7+2a),求这个反比例函数解析式.
5.如图已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是60°,则∠C的度数是( )
A.25°B.40°C.30°D.50°
6.如图,一边靠墙(墙有足够长),其它三边用12 m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是( )
A.16 m2B.12 m2C.18 m2D.以上都不对
18.已知:如图,将△ADE绕点A顺时针旋转得到△ABC,点E对应点C恰在D的延长线上,若BC∥AE.求证:△ABD为等边三角形.
19.现有红色和蓝色两个布袋,红色布袋中有三个除标号外完全相同的小球,小球上分别标有数字1,2,3,蓝色布袋中有也三个除标号外完全相同的小球,小球上分别标有数字2,3,4小明先从红布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从蓝布袋中随机取出一个小球,用n表示取出的球上标有的数字.
安徽省芜湖市无为县2020-2021学年九年级上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知x=1是方程x2+px+1=0的一个实数根,则p的值是( )
A.0B.1C.2D.﹣2
2.如图,把正三角形绕着它的中心顺时针旋转60°后,是( )
17.如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:
(1)画出△ABC关于原点O的中心对称图形△A1B1C1;
(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是.
A. B. C. D.
二、填空题
11.方程(x+1)(x﹣2)=5化成一般形式是_____.
12.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.
13.用一个圆心角90°,半径为8㎝的扇形纸围成一个圆锥,则该圆锥底面圆的半径为.
【详解】
解:∵把正三角形绕着它的中心顺时针旋转60°,
∴图形A符合题意,
故选:A.
【点睛】
本题考查的是图形的旋转,和学生的空间想象能力,熟练掌握旋转的性质是解题的关键.
3.C
【解析】
∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C正确.故选C.
21.如图,反比例函数y= 的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标为3.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.
(1)求反比例函数y= 与直线y=x+m的函数关系式
(2)求梯形ABCD的面积.
22.如图,四边形ABCD的三个顶点A、B、D在⊙O上,BC经过圆心O,且交⊙O于点E,∠A=120°,∠C=30°.
(2)若CD=6,求BC的长.
(3)若⊙O的半径为4,则四边形ABCD的最大面积为.
23.如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:
把x=1代入x2+px+1=0,即可求得p的值.
【详解】
把x=1代入把x=1代入x2+px+1=0,得
1+p+1=0,
∴p=-2.
故选D.
【点睛】
本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知ቤተ መጻሕፍቲ ባይዱ的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
2.A
【分析】
根据旋转的性质判断即可.
A. B. C. D.
3.已知函数 的图象经过点(2, 3 ),下列说法正确的是( )
A.y随x的增大而增大B.函数的图象只在第一象限
C.当x<0时,必y<0D.点(-2, -3)不在此函数的图象上
4.从 ,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )
A. B. C. D.
(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.
(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.
参考答案
1.D
【分析】
7.如图,⊙O的半径为2,△ABC为⊙O内接等边三角形,O为圆心,OD⊥AB,垂足为D.OE⊥AC,垂足为E,连接DE,则DE的长为( )
A.1B. C. D.2
8.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是( )
A. B. C. D.
9.如图,在同一直角坐标系中,正比例函数y=kx+3与反比例函数 的图象位置可能是( )
(1)用列表法或树状图表示出两次取得的小球上所标数字的所有可能结果;
(2)若把m、n分别作为点A的横坐标和纵坐标,求点A(m,n)在函数y= 的图象上的概率.
20.为了改善生活环境,近年来,无为县政府不断加大对城市绿化的资金投入,使全县绿地面积不断增加.从2021年底到2021年底,我县绿地面积变化如图所示,求我县绿地面积的年平均增长率.
A. B. C. D.
10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()
14.2021年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_____.
三、解答题
15.解方程:x(x﹣3)+6=2x.
16.已知,反比例函数的图象经过点M(2,a﹣1)和N(﹣2,7+2a),求这个反比例函数解析式.
5.如图已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是60°,则∠C的度数是( )
A.25°B.40°C.30°D.50°
6.如图,一边靠墙(墙有足够长),其它三边用12 m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是( )
A.16 m2B.12 m2C.18 m2D.以上都不对
18.已知:如图,将△ADE绕点A顺时针旋转得到△ABC,点E对应点C恰在D的延长线上,若BC∥AE.求证:△ABD为等边三角形.
19.现有红色和蓝色两个布袋,红色布袋中有三个除标号外完全相同的小球,小球上分别标有数字1,2,3,蓝色布袋中有也三个除标号外完全相同的小球,小球上分别标有数字2,3,4小明先从红布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从蓝布袋中随机取出一个小球,用n表示取出的球上标有的数字.
安徽省芜湖市无为县2020-2021学年九年级上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知x=1是方程x2+px+1=0的一个实数根,则p的值是( )
A.0B.1C.2D.﹣2
2.如图,把正三角形绕着它的中心顺时针旋转60°后,是( )
17.如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:
(1)画出△ABC关于原点O的中心对称图形△A1B1C1;
(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是.
A. B. C. D.
二、填空题
11.方程(x+1)(x﹣2)=5化成一般形式是_____.
12.如图,正方形ABEF与正方形BCDE有一边重合,那么正方形BCDE可以看成是由正方形ABEF绕点O旋转得到的,则图中点O的位置为_____.
13.用一个圆心角90°,半径为8㎝的扇形纸围成一个圆锥,则该圆锥底面圆的半径为.
【详解】
解:∵把正三角形绕着它的中心顺时针旋转60°,
∴图形A符合题意,
故选:A.
【点睛】
本题考查的是图形的旋转,和学生的空间想象能力,熟练掌握旋转的性质是解题的关键.
3.C
【解析】
∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C正确.故选C.
21.如图,反比例函数y= 的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标为3.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.
(1)求反比例函数y= 与直线y=x+m的函数关系式
(2)求梯形ABCD的面积.
22.如图,四边形ABCD的三个顶点A、B、D在⊙O上,BC经过圆心O,且交⊙O于点E,∠A=120°,∠C=30°.