线面垂直、面面垂直
2021高中数学线线,线面,面面垂直的证明(含解析)
线线,线面,面面垂直的证明一、线面垂直(共9题;共85分)1.(2021高一下·岑溪期末)如图,四棱锥的底面是边长为2的菱形,底面.(1)求证:平面;2.(2021高一下·和平期末)如图,斜三棱柱中,侧面是菱形,与交于点,E是AB的中点.求证:(2)若,求证:.3.(2021高一下·宁波期末)已知三棱锥,平面,是以为斜边的等腰直角三角形,是以为斜边的直角三角形,为上一点,为上一点,且.(Ⅰ)现给出两个条件:① ;② 为中点.从中任意选一个条件为已知条件,求证:平面;4.(2021高一下·怀化期末)如图,在正方体中.(1)求证:面;5.(2021高一下·绍兴期末)如图,四棱台的底面是矩形,,,,.(Ⅰ)证明:平面;6.(2021高二下·二道期末)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面PAD是正三角形,侧面底面ABCD,M是PD的中点.(1)求证:平面PCD;7.(2021高一下·长春期末)如图,AB是的直径,PA垂直于所在的平面,C是圆周上不同于A,B的一动点.8.(2021高一下·河北期末)如图,在正四棱锥中,点E,F分别在棱PB,PD上,且.(1)证明:平面PAC.9.(2021高一下·天津期末)如图,在四棱锥中,平面,底面是菱形,(2)求证:直线平面二、线线垂直(共7题;共70分)10.(2021高一下·海南期末)如图所示,三棱柱中,,,,.(1)证明:;11.(2021·全国甲卷)已知直三棱柱ABC-A1B1C1.中,侧面AA1B1B为正方形,AB= BC = 2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF丄A1B1.(1)证明:BF⊥DE;12.(2021·全国甲卷)已知直三棱柱中,侧面为正方形.分别为和的中点,.(2)已知为棱上的点,证明:.13.(2021·新高考Ⅰ)如图,在三棱锥A-BCD中.平面ABD丄平面BCD,AB=AD.O为BD的中点.(1)证明:OA⊥CD:14.(2021高一下·广东期末)如图,在三棱锥中,,点是线段的中点,平面平面.(2)求证:.15.(2021高二下·湖北期末)中国是风筝的故乡,南方称“鹞”,北方称“鸢”,如图,某种风筝的骨架模型是四棱锥,其中于,,,平面.(1)求证:;16.(2021·浙江)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.(1)证明:;三、面面垂直(共9题;共105分)17.(2021·新高考Ⅱ卷)在四棱锥中,底面是正方形,若.(1)证明:平面平面;18.(2021高一下·滨海新期末)如图,在三棱柱中,平面,,是的中点.(2)求证:平面平面;19.(2021高一下·和平期末)如图,在四棱锥中,平面平面,四边形为矩形,,,为的中点.(2)求证:平面平面;20.(2021高一下·龙岩期末)如图,是圆锥的顶点,是底面圆的直径,为底面圆周上异于的点,为的中点.(1)求证:平面平面21.(2021高一下·东丽期末)如图,三棱柱,底面,且为正三角形,,为中点.(2)求证:平面平面.22.(2021高一下·湖北期末)如图,在三棱台中,上底面为等腰直角三角形,,,,在上,.(1)证明:平面平面;23.(2021高一下·重庆期末)如图1,在平行四边形ABCD中,,,,将沿折起,使得平面平面,如图2.(1)证明:平面平面BCD;24.(2021高一下·河北期末)如图,在三棱柱中,,点为的中点,,.(1)证明:平面平面ABC.25.(2021·全国乙卷)如图,四棱锥P-ABCD的底面是矩形,PD 底面ABCD,M为BC的中点,且PB AM.(1)证明:平面PAM 平面PBD;线线,线面,面面垂直的证明参考答案一、线面垂直(共9题;共85分)1.(2021高一下·岑溪期末)如图,四棱锥的底面是边长为2的菱形,底面.(1)求证:平面;【答案】(1)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PD⊥平面ABCD,平面ABCD,所以PD⊥AC,又,AC⊥平面PBD2.(2021高一下·和平期末)如图,斜三棱柱中,侧面是菱形,与交于点,E是AB的中点.求证:(2)若,求证:.(2)∵侧面是菱形∴∵,,平面,平面∴平面∵平面∴.3.(2021高一下·宁波期末)已知三棱锥,平面,是以为斜边的等腰直角三角形,是以为斜边的直角三角形,为上一点,为上一点,且.(Ⅰ)现给出两个条件:① ;② 为中点.从中任意选一个条件为已知条件,求证:平面;【答案】解:(Ⅰ)若选①证明:∵平面,平面,∴,又,,∴平面.又平面,∴.又,,∴平面.又平面,∴.又,,∴平面.若选② 为中点证明:∵平面,平面,∴.又,,∴平面.又平面,∴.又,,∴平面.又平面,∴.又为等腰直角三角形斜边中点,则,,∴平面.4.(2021高一下·怀化期末)如图,在正方体中.(1)求证:面;【答案】(1)证明:因为为正方体,所以ABCD为正方形,所以,又因为平面ABCD,平面ABCD,故,又,平面,所以平面.5.(2021高一下·绍兴期末)如图,四棱台的底面是矩形,,,,.(Ⅰ)证明:平面;【答案】解:(Ⅰ)证明:因为底面是矩形,所以,又,,所以平面,又因为,所以平面.6.(2021高二下·二道期末)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面PAD是正三角形,侧面底面ABCD,M是PD的中点.(1)求证:平面PCD;【答案】(1)在正方形ABCD中,,又侧面底面ABCD,侧面底面,所以平面PAD,平面PAD,所以,是正三角形,M是PD的中点,所以,又,所以平面PCD.7.(2021高一下·长春期末)如图,AB是的直径,PA垂直于所在的平面,C是圆周上不同于A,B的一动点.(1)证明:BC⊥面PAC;【答案】(1)证明见解析PA垂直于所在的平面PA⊥BCAB是的直径AC⊥BCBC⊥面PAC8.(2021高一下·河北期末)如图,在正四棱锥中,点E,F分别在棱PB,PD上,且.(1)证明:平面PAC.【答案】(1)证明:如图,连接,记,连接PO,由题意可得四边形ABCD是正方形,,则O为AC的中点,且,因为,所以,因为平面,面,且,所以平面,因为,所以,则平面PAC;9.(2021高一下·天津期末)如图,在四棱锥中,平面,底面是菱形,(2)求证:直线平面【答案】(2)因为四边形是菱形,所以又因为平面平面所以又因为所以平面二、线线垂直(共7题;共70分)10.(2021高一下·海南期末)如图所示,三棱柱中,,,,.(1)证明:;【答案】(1)∵,,.∴,∴.∵,,∴.又∵,平面,∴平面.∵平面,∴.11.(2021·全国甲卷)已知直三棱柱ABC-A1B1C1.中,侧面AA1B1B为正方形,AB= BC = 2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF丄A1B1.(1)证明:BF⊥DE;【答案】法一法2(1)因为三棱柱是直三棱柱,所以底面,所以因为,,所以,又,所以平面.所以两两垂直.以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.所以,.由题设().因为,所以,所以.12.(2021·全国甲卷)已知直三棱柱中,侧面为正方形.分别为和的中点,.(2)已知为棱上的点,证明:.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体,如图所示,取棱的中点,连结,正方形中,为中点,则,又,故平面,而平面,从而.13.(2021·新高考Ⅰ)如图,在三棱锥A-BCD中.平面ABD丄平面BCD,AB=AD.O为BD的中点.(1)证明:OA⊥CD:【答案】(1),为中点,,面,面面且面面,面,.14.(2021高一下·广东期末)如图,在三棱锥中,,点是线段的中点,平面平面.(2)求证:.【答案】(2)证明:∵,∴,∴,∵平面平面,且平面平面,平面,∴平面,∵平面,∴.15.(2021高二下·湖北期末)中国是风筝的故乡,南方称“鹞”,北方称“鸢”,如图,某种风筝的骨架模型是四棱锥,其中于,,,平面.(1)求证:;【答案】(1)证明:∵平面,平面,∴,又,,平面,平面,∴平面,又平面.∴.16.(2021·浙江)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.(1)证明:;【答案】(1)证明:在中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以三、面面垂直(共9题;共105分)17.(2021·新高考Ⅱ卷)在四棱锥中,底面是正方形,若.(1)证明:平面平面;【答案】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.18.(2021高一下·滨海新期末)如图,在三棱柱中,平面,,是的中点.(2)求证:平面平面;【答案】(2)∵,是的中点,∴,∵三棱柱中,平面,∴平面∵AD 平面,∴,又、BC是平面内的两条相交直线∴平面∵AD 平面∴平面平面19.(2021高一下·和平期末)如图,在四棱锥中,平面平面,四边形为矩形,,,为的中点.(2)求证:平面平面;【答案】(2)因为平面平面,平面平面,,所以平面,因为平面,所以,又, 平面,所以平面,又平面,所以,又,所以,又平面,所以平面,又平面,所以平面平面;20.(2021高一下·龙岩期末)如图,是圆锥的顶点,是底面圆的直径,为底面圆周上异于的点,为的中点.(1)求证:平面平面【答案】(1)由圆锥的性质可知,底面圆∵在底面圆上,∴,∵在圆上,为直径,∴,又点分别为的中点,∴∴又,且平面,∴平面,又平面,∴平面平面.21.(2021高一下·东丽期末)如图,三棱柱,底面,且为正三角形,,为中点.(2)求证:平面平面.【答案】(2)∵面,面,∴.又,,∴,面,∴面.又面,∴面面.22.(2021高一下·湖北期末)如图,在三棱台中,上底面为等腰直角三角形,,,,在上,.(1)证明:平面平面;【答案】(1)因为三棱台中,因为,所以,由,所以,所以,又由,所以,因为,且平面,所以平面,又因为平面,所以平面平面.23.(2021高一下·重庆期末)如图1,在平行四边形ABCD中,,,,将沿折起,使得平面平面,如图2.(1)证明:平面平面BCD;【答案】(1)在中,因为,,,由余弦定理得,所以,所以,所以如图所示:作于点,因为平面平面,平面平面,所以平面,所以,又因为,所以平面,因为平面,所以,又由,所以平面.所以平面平面BCD;24.(2021高一下·河北期末)如图,在三棱柱中,,点为的中点,,.(1)证明:平面平面ABC.【答案】(1)证明:因为,所以,,在三棱柱中,,所以,又因为,所以平面ABC,又因为平面,所以平面平面ABC;25.(2021·全国乙卷)如图,四棱锥P-ABCD的底面是矩形,PD 底面ABCD,M为BC的中点,且PB AM.(1)证明:平面PAM 平面PBD;【答案】(1)因为底面,平面,所以,又,,所以平面,而平面,所以平面平面.。
高中数学必修2立体几何专题-线面、面面垂直专题总结
∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.
【精选】立体几何平行垂直所有判定定理和性质定理
①面面平行→线面平行(面面平行性质定理1) ②面面平行→线线平行(面面平行性质定理2)
复习 空间中的垂直关系
判定直线与直线垂直的方法:
① 定义(成角90°) ② 线线平行→线线垂直(a∥b,a⊥c则b⊥c) ③ 线面垂直→线线垂直(线面垂直定义)
直线和直线垂直的性质:
① 线线垂直→线面垂直(线面垂直判定定理)
复习 空间中的平行关系
判定直线与直线平行的方法:
① 定义(在同一平面内且不相交的两条直线) ② 平面几何方法: ③ 线线平行→线线平行(平面性质公理4) ④ 线面平行→线线平行(线面平行性质定理) ⑤ 面面平行→线线平行(面面平行性质定理2)
直线和直线平行的性质:
① 线线平行→线线平行(平面性质公理4) ② 线线平行→线面平行(线面平行判定定理) ③ 线线平行→面面平行(面面平行判定定理推
论2)
判定平面与平面垂直的方法
①定义 ②线面垂直→面面垂直(面面垂直判定定理)
平面与平面垂直的性质
①面面垂直→线面垂直(面面垂直性质定理)判定直线与平面垂直的方法:
①线线垂直→线面垂直(线面垂直判定定理) ②面面垂直→线面垂直(面面垂直性质定理) ③线线平行→线面垂直(线面垂直判定定理推论1)
直线和平面垂直的性质:
① 线面垂直→线线垂直(线面垂直定义) ② 线面垂直→面面垂直(面面垂直判定定理) ③ 线面垂直→线线平行(线面垂直判定定理推
论)
判定直线与平面平行的方法:
① 定义(直线与平面没有公共点) ② 线线平行→线面平行(线面平行判定定理) ③ 面面平行→线面平行(面面平行性质定理1)
直线和平面平行的性质:
① 线面平行→线线平行(线面平行性质定理) ② 线面平行→面面平行(面面平行判定定理)
面面垂直线面垂直的判定定理
面面垂直线面垂直的判定定理一、引言在几何学中,面面垂直是一个基本的概念。
当两个平面垂直时,我们称它们是面面垂直的。
本文将介绍面面垂直线面垂直的判定定理。
二、定义1. 面:在三维空间中,由无数条线段组成的平坦曲面。
2. 平行:两条线或两个平面在同一平面内,且不相交。
3. 垂直:两条线或两个平面相交于一个角度为90度的交点。
4. 面面垂直:当两个平面相互垂直时,它们被称为“面面垂直”。
三、定理如果一条直线同时与两个不同的平面相交,并且这条直线与其中一个平面的交线是另一个平面上的一条直线,则这两个平面是“面面垂直”的。
四、证明假设有两个不同的平面A和B,并且这两个平面相互垂直。
我们需要证明如果一条直线同时与这两个不同的平面相交,并且这条直线与其中一个平面A的交线是另一个平面B上的一条直线,则这两个平面是“ 面面垂直”的。
首先,我们需要证明这条直线存在。
假设这两个平面A和B相交于一条直线L。
因为这两个平面相互垂直,所以它们的交角为90度,因此直线L与平面A和平面B的交线都是垂直的。
接下来,我们需要证明这条直线与平面A和平面B的交线是垂直的。
假设这条直线与平面A的交点为P,与平面B的交点为Q,并且PQ 在平面B上。
我们需要证明AP和BQ是垂直的。
由于PQ在平面B上,所以PQ与平面A的交线PA也在平面B上。
因此,我们可以得到三角形APQ和三角形BPQ共享一个角度PQB,并且它们有一个共同边界PQ。
根据余弦定理:cos(APQ) = (AQ² + PQ² - AP²) / (2 * AQ * PQ)cos(BPQ) = (BQ² + PQ² - BP²) / (2 * BQ * PQ)由于AP = BQ(因为它们都等于L),所以AP² = BQ²。
将其代入上式中可得:cos(APQ) = cos(BPQ)因此,APQ = BPQ因此,AP和BP是垂直的。
面面垂直的性质
面面垂直的性质
面面垂直性质定理如下:
性质:若两平面垂直,则在一个平面内与交线垂直的直线垂直于另一平面;若两平面垂直,则与一个平面垂直的直线平行于另一平面或在另一平面内。
其判定定理是:一个面如果过另外一个面的垂线,那么这两个面相互垂直。
即一个平面过另一平面的垂线,则这两个平面相互垂直。
定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
面面垂直的判定定理如下:一个平面过另一平面的垂线,则这两个平面相互垂直。
垂直的性质是如下:在同一平面内,过一点有且只有一条直线与已知直线垂直。
垂直一定会出现90°。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
垂直是指一条线与另一条线相交并成直角,这两条直线互相垂直。
通常用符号“⊥”表示。
对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的问题,其难点是线面垂直的定义及其对判定定理成立的条件的理解;两平面垂直的判定定理及其运用和对二面角有关概念的理解。
高中数学 线面、面面垂直的性质定理
线面、面面垂直的性质定理教学目标:1. 掌握垂直关系的性质定理,并会应用。
2. 通过定理的学习,培养和发展空间想象能力、推理论证能力、运用图形语言进行交流的能力、几何直观能力。
3. 通过典型例子的分析和自主探索活动,理解数学概念和结论形成过程,体会蕴涵在其中的思想方法.重 难 点: 垂直关系的性质定理是重点也是难点。
课时安排: 1课时.教学手段: 多媒体.教学过程:一、复习引入线线垂直 线面垂直 面面垂直二 、性质定理的引入(一)问题探究一为了改善小区电力供应,政府决定在大雄家外的马路边立两根电线杆,如果你是工程师,你有办法保证这两根电线杆平行吗?答:令它们都垂直于地面!【抽象概括】定理6.3 如果两条直线同垂直与一个平面,那么这两条直线平行.(文字描述)b a b a //,⇒⊥⊥αα (数学语言,学生归纳)※归纳线面垂直的性质:1、线线垂直2、线线平行 (图形符号)【练习】(二)问题探究二在探究一中,如果大雄家有一面在马路边而且垂直于地面的围墙,那么你怎么保证电线杆都垂直于地面呢?答:令每一条电线杆紧贴墙面且都垂直于墙面与地面的交线!【抽象概括】a bαααααααααα⊥⇒⊥⊥⇒⊥⊥⇒⊥⇒⊥⊥n n m m n m n m n m n mnm n m n m ,//)4(//,)3(,//)2(//,)1(.__________中,正确的命题序号有表示平面,则下列命题表示直线,、若定理6.4 如果两个平面互相垂直,那么在一个平面内垂直与它们交线的直线垂直于另一个平面. (文字描述) (数学语言,学生归纳) (图形符号) ※归纳面面垂直性质:线面垂直 线面垂直 面面垂直【练习】设两个平面互相垂直,则( )A. 一个平面内的任何一条直线都垂直与另一个平面B. 过交线上一点垂直于一个平面的直线必在另一个平面上C. 过交线上一点垂直于交线的直线,必垂直于另一个平面D. 分别在两个平面上的两条直线互相垂直分析:利用逆向思考的方法寻找证明思路.四 、 小结: 线线平行 面面平行1、线线垂直 线面垂直 面面垂直2、几何证明中常常使用逆向思考的方法.五、作业:P49 B3 、 P70 C2P68 A5-A8 在书上⎪⎩⎪⎨⎧⊥=⊥l m m l βαβα ,β≠⊂α⊥⇒m αβm l .MN 2AB MN 1M BC MN BCC B MN D C B A ABCD 1111111垂直的所有平面与直线)找出与(的关系,说明理由与)判断(于内,且平面在中,在长方体例⊥-D 1C 1B 1A 1D C B A N M .A B PBC PAB ABC PA PABC 2B C ⊥⊥⊥,求证:面面,面中,如图,在四面体例C B A P。
高中数学立体几何之线线垂直、线面垂直、面面垂直(公开课)(共16张PPT)
∵ OM是Rt△AOC斜边AC上的中线,∴ OM=
2 ∴ 由余弦定理可得:cos∠OEM= 4
1 AC=1, 2
【例2】四面体ABCD中,点O,E分别是BD,BC的中
A
点,CA=CB=CD=BD=2,AB=AD= 2 .
(3)求点E到平面ACD的距离.
(3)设点E到平面ACD的距离为h.∵ VE-ACD=VA-CDE
D1
A1
1 1
B1
C1
D
2
C
E B
A
例题讲解
实战演练
作业布置
【例1】如图,长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,
点E是AB的中点. (1)求三棱锥D1-DCE的体积. 1 解:V= 3 · h·S△ECD
D1
A1
1
B1 D
2
C1
1 1 = 3· D1D · 2 S△ECD
∴ AE⊥A1D,
又∵ AD1∩AE=A,
D1 A1 D A
B1
C1
∴ A1D⊥平面AD1E,
D1E⊂平面AD1E,
C
E
B
∴ D1E⊥A1D.
例题讲解
实战演练
作业布置
【例2】如图,四面体ABCD中,点O,E分别
是BD,BC的中点,CA=CB=CD=BD=2,
AB=AD= 2 (1)求证:AO⊥平面BCD. (2)求异面直线AB与CD所成角的余弦值. (3)求点E到平面ACD的距离.
A M O
(2)求异面直线AB与CD所成角的余弦值. 解: (2)取AC的中点M,连接OM,ME,OE,
∵点O,E分别是BD,BC的中点
∴ OE
D E
线线垂直推面面垂直符号语言
线线垂直推面面垂直符号语言线线垂直推面面垂直符号语言的解析与应用1. 导言在我们的日常生活中,我们会经常接触到各种符号语言,无论是文字、图表还是数学公式,它们都承载着丰富的信息。
而作为一种特殊的符号语言,线线垂直推面面垂直符号语言(简称LLTSPFV)在某些领域中具有独特的价值和应用。
本文将从深度和广度两个方面探讨LLTSPFV的含义、特点、应用以及个人观点。
2. 含义与特点LLTSPFV是一种基于线线垂直推面面垂直概念的符号语言,它通过不同排列和组合方式来代表不同的意义。
其中,“线线垂直推”表示线段在垂直平面上的推移,而“面面垂直”则表示平面之间的垂直关系。
这些符号能够用简明扼要的方式呈现出空间关系,使得信息传达更加高效。
3. 应用领域LLTSPFV的应用领域十分广泛,下面就让我们来看看其中几个重要的领域。
3.1 建筑设计在建筑设计领域,LLTSPFV可以通过简洁准确的符号表示建筑物各部分之间的垂直关系,帮助建筑师更好地理解和沟通设计意图。
线线垂直推面面垂直符号可以用于描述楼层之间的垂直关系,从而优化建筑结构和空间布局。
3.2 数学几何在数学几何中,LLTSPFV也有着重要的应用。
通过使用这种符号语言,我们可以更加直观地理解和表达平面图形或立体图形之间的垂直关系。
这对于掌握几何学的基本概念以及解决几何难题都具有重要意义。
3.3 信息科学LLTSPFV在信息科学领域也起到了关键作用。
在信息传输和编码方面,LLTSPFV可以用于表示不同的二进制状态,从而实现对信息的编码和解码。
结合其他算法和技术,LLTSPFV还可以应用于图像处理和模式识别等领域,提高信息处理和分析的效率。
4. 个人观点与理解对于LLTSPFV这种符号语言,我个人认为它在某些领域中确实具有独特的优势和应用潜力。
通过简单的组合与排列方式,LLTSPFV可以传递复杂的垂直空间关系,使信息传达更加高效和精确。
然而,由于LLTSPFV的特殊性和局限性,它并不适用于所有场景,如表达非垂直关系的情况。
证明线面垂直的三种途径
证明线面垂直问题是高考数学试题中的常见题型之一,主要考查同学们的空间想象能力和数学运算能力.对于简单的证明线面垂直问题,通常可直接运用直线与平面垂直的定义进行证明,对于一些较为复杂的证明线面垂直问题,利用定义法无法证明结论,此时需利用转化思想,把线面垂直问题转化为线线垂直问题、面面垂直问题、空间向量问题来求解.下面重点探讨一下如何证明线面垂直.一、利用线面垂直的判定定理进行证明线面垂直的判定定理:如果一条直线与一个平面内的两条相交直线垂直,那么这条直线与此平面垂直.运用线面垂直的判定定理,需通过证明线线垂直来推出线面垂直.而证明线线垂直的常用手段有:(1)利用等腰三角形的三线合一性质(或等腰梯形上下底的中点连线与上下底垂直);(2)利用菱形的对角线互相垂直;(3)利用勾股定理;(4)利用圆的性质:圆的直径所对的圆周角是直角.例1.在直三棱柱ABC-A1B1C1中,M为棱AC的中点,AB=BC,AC=2,AA1=2.求证:BM⊥平面ACC1A1.证明:∵点M为棱AC的中点,AB=BC,∴BM⊥AC,∵AA1⊥底面ABC,BM⊂平面ABC,∴AA1⊥BM,∵AA1⋂AC=A,AA1⊂平面ACC1A1,AC⊂平面ACC1A1,∴BM⊥平面ACC1A1.要证BM⊥平面ACC1A1,需要在平面ACC1A1内找到两条与BM垂直的相交直线,即AC与AA1.再利用线面垂直的判定定理加以证明.在证明BM⊥AC时,需要用到等腰三角形的三线合一性质,而证明AA1⊥BM 时,需用到直棱柱的侧棱与底面垂直的性质.例2.如图1,六面体ABCD-A1B1C1D1的底面ABCD是菱形,AA1//BB1//CC1//DD1,且BB1⊥平面ABCD,AA1=CC1, AE=λ AA1, CF=λ CC1()0<λ≤1,平面BEF 与平面ABCD的交线为l.求证:直线l⊥平面B1BDD1.证明:如图1所示,连接AC、BD,∵AA1=CC1,AA1//CC1, AE=λ AA1, CF=λ CC1(0<λ≤1),∴ AE= CF,∴AE=CF,AE//CF,∴四边形AEFC为平行四边形,∴AC//EF,∵EF⊂平面BEF,AC⊄平面BEF,∴AC//平面BEF,∵平面BEF⋂平面ABCD=l,AC⊂平面ABCD,∴AC//l,∵四边形ABCD是菱形,∴AC⊥BD,∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,∵BD⋂BB1=B,BD⊂平面B1BDD1,BB1⊂平面B1BDD1,∴AC⊥平面B1BDD1,∵AC//l,∴l⊥平面B1BDD1.要证明l⊥平面B1BDD1,需先根据菱形的对角线互相垂直的性质证明AC⊥BD,以及线面垂直的性质证明AC⊥BB1,从而根据线面垂直的判定定理证明AC⊥平面B1BDD1;最后根据平行线的性质证明结论.例3.如图2,在四棱锥P-ABCD中,AB//CD,BC⊥CD,侧面PAB为等边三角形,AB=BC=4,CD=PD=2,求证:PD⊥平面PAB.证明:如图2所示,过点D作DE⊥AB于点E,连接BD,∵AB//CD,BC⊥CD,∴四边形BEDC为矩形,在RtΔAED中,DE=BC=4,AE=2,∴AD=AE2+DE2=25,∵ΔPAB为等边三角形,∴PA=PB=AB=4,∵在ΔPAD中,PD=2,∴PA2+PD2=20=AD2,∴PD⊥PA,在RtΔBCD中,BC=4,CD=2,∴BD=BC2+CD2=25,∴在ΔPBD中,PB2+PD2=20=BD2,∴PD⊥PB,而PA⋂PB=P,PA⊂平面PAB,PB⊂平面PAB,∴PD⊥平面PAB.我们利用勾股定理、等边三角形的性质、矩形的性质,在平面PAB中找到与PD垂直的两条相交直线PA、PB,证明PD⊥PA、PD⊥PB,便可根据线面垂直的判定定理证明PD⊥平面PAB.图2解题宝典图1 36二、利用面面垂直的性质定理进行证明面面垂直的性质定理:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.在解题时,往往要先根据面面垂直的定义证明两个平面互相垂直;然后确定两个平面的交线,运用面面垂直的性质定理证明线面垂直.例4.如图3,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA=PD,AB//CD,CD⊥AD,AD=CD=2,AB=3,E,H分别是棱AD,PB的中点,求证:BC⊥平面PCE.证明:如图3所示,在棱AB上取点F,使得AF=2BF=2,连接CF,BE,∵AB//CD,CD⊥AD,AD=CD=2=AF,∴四边形AFCD是正方形,∴∠BAE=∠CDE=∠CFB=90°,且CF=AD=2,∵E是棱AD的中点,∴AE=DE=1,∵AB=3,∴BC=CF2+BF2=5,CE=CD2+DE2=5,BE=AE2+AB2=10,∴BE2=BC2+CE2,∴BC⊥CE,∵PA=PD,E是棱AD的中点,∴PE⊥AD,∵平面PAD⊥平面ABCD,平面PAD⋂平面ABCD=AD,∴PE⊥平面ABCD,∵BC⊂平面ABCD,∴PE⊥BC,∵PE⊂平面PCE,CE⊂平面PCE,PE⋂CE=E,∴BC⊥平面PCE.先结合图形确定平面PAD与平面ABCD的交线,根据等腰三角形三项合一的性质证明PE⊥AD,进而证明PE⊥平面ABCD,便可根据面面垂直的性质定理证明PE⊥BC;然后由勾股定理和正方形的性质可证明BC⊥CE,即可根据线面垂直的判定定理证明BC⊥平面PCE.三、利用空间向量法进行证明当几何体中出现(或可以构造)两两互相垂直的三条线时,可以考虑建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,通过空间向量运算,来证明直线的方向向量与平面的法向量平行,即可证明直线与平面垂直.例5.如图4,在四棱锥P-ABCD中,PA⊥平面ABCD,正方形ABCD的边长为2,E是PA的中点.若PA=2,线段PC上是否存在一点F,使AF⊥平面BDE?若存在,求出PF的长度;若不存在,请说明理由.解:存在.理由如下:因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD.因为ABCD为正方形,所以CD⊥DA.PA⋂DA=A,PA⊂平面ADP,DA⊂平面ADP,所以CD⊥平面ADP.以D为原点,建立空间直角坐标系D-xyz,如图4所示.则D()0,0,0,A()0,2,0,B()0,2,2,C()0,0,2,P(2,2,0),则DB=()0,2,2,而E为PA中点,所以E()1,2,0,DE=()1,2,0,设PF=λPC()0≤λ≤1,而PC=()-2,-2,2,则PF=()-2λ,-2λ,2λ,所以F()2-2λ,2-2λ,2λ,得AF=()2-2λ,-2λ,2λ,设平面BDE的法向量为n =()x,y,z,则ìíîn ∙DB=2y+2z=0,n ∙DE=x+2y=0,取y=1,则{x=-2,z=-1,得n =()-2,1,-1,当AF⊥平面BDE时,AF//n ,则2-2λ-2=-2λ,解得λ=13,所以Fæèöø23,23,23,故PF=.首先根据线面垂直的性质定理、正方形的性质及线面垂直的判定定理证明CD⊥平面ADP,即可确定两两互相垂直的三条线,据此建立空间直角坐标系;然后求出所需的各点的坐标、直线的方向向量AF、平面BDE的法向量n ;再根据AF//n ,计算出λ的值,最终求出PF的长度.在证明线面垂直时,通常要用到线面垂直的判定定理来寻找垂直关系,即便是采用空间向量法,也需要根据线面垂直的判定定理证明几何体中存在两两互相垂直的三条线,才能建立空间直角坐标系.同学们在解题受阻时,要学会灵活运用转化思想,将问题进行合理的转化,以拓宽解题的思路.本文系黑龙江省教育科学“十四五”规划教研专项重点课题《信息技术环境下的高中数学直观想象核心素养的培养研究》(课题编号:JYB1422308)研究成果.(作者单位:黑龙江省大庆铁人中学)图3F图4解题宝典37。
线线垂直,线面垂直,面面垂直的关系
线线垂直,线面垂直,面面垂直的关系稿子一:嘿,朋友!今天咱们来聊聊线线垂直、线面垂直还有面面垂直的那些事儿。
你看哈,线线垂直就像是两个小伙伴在打架,谁也不让谁,非要争个上下。
比如说,一条直线直直地站着,另一条直线冲过来和它成了直角,这就是线线垂直啦,简单直接!那线面垂直呢,就像是一个勇敢的战士面对着一堵墙,直直地站在那,和墙面成了直角。
而且不管墙面怎么变化,这个战士都坚定不移,这就是线面垂直哦。
面面垂直可就更有趣啦!想象一下两个大板子,一个板子立得直直的,另一个板子和它碰到一起,还形成了直角,这就是面面垂直。
你说它们之间有没有关系呢?当然有啦!线线垂直可以推出线面垂直,就好像是一个小小的胜利积累成了大的成功。
而线面垂直又能推出面面垂直,就像一步一步升级打怪一样。
这三者的关系就像一个有趣的链条,一环扣一环,是不是很有意思呀?稿子二:亲爱的小伙伴,咱们来唠唠线线垂直、线面垂直、面面垂直的关系呗!先说线线垂直,这就好比两根针,针尖对着针尖,谁也不退缩,这就是垂直啦,多干脆!线面垂直呢,就像是一根旗杆立在地面上,直直的,和地面成了直角,稳稳当当。
不管刮多大风,它都不会歪。
面面垂直呢,你就想想两块大木板,相互靠在一起,还成直角,是不是感觉很结实?其实呀,它们之间的关系可密切啦!如果线线垂直了,那么就有可能出现线面垂直的情况。
就好像是积累了足够多的小胜利,终于迎来了大突破。
而线面垂直一旦成立,面面垂直也就不远啦。
这就像多米诺骨牌,一个接着一个倒,顺理成章。
比如说,在一个房间里,墙面和地面就是面面垂直的,这都是因为线线垂直和线面垂直在背后起作用呢。
怎么样,是不是觉得这三者的关系很神奇,也很有趣呀?。
线线、线面、面面垂直的证明
例 9. 如图,在四棱锥 S ABCD 中,平面 SAD 平面 ABCD . 四边形 ABCD 为正方形,且 P 为 AD 的中点, Q 为 SB 的中点. (Ⅰ)求证: CD 平面 SAD ; (Ⅱ)求证: PQ // 平面 SCD ;
例 10. 在等腰梯形 ABCD 中, AD / / BC , AD
线线、线面、面面垂直的证明方法
一、线线垂直的常用证明方法 *1.共面垂直的常用方法
(1)勾股定理逆定理
(2)等腰(或等边)三角形的中线
(3)菱形对角线互相垂直 (4)1:1:2的直角梯形中的隐藏垂直关系 (5)特殊的三角形
例 1. 如图,在三棱锥 S ABC 中,侧面 SAB 与 侧面 SAC 均为等边三角形, BAC 90°, O 为 BC 中点. 求证:SO⊥AO
a 平面
ab
b 平面
两个条件
例 3.如图,四棱锥 P ABCD 中, 底面 ABCD 为平行四边形, DAB 60 ,
AB 2 AD , PD 底面 ABCD.
证明: PA BD
例 4. 如图,四棱锥 S ABCD 的底面是正方形,
SD 平面 ABCD , E 是 SD 上的点.
例 2.如图: PD 平面 ABCD ,四边形 ABCD 为直角梯形,
AB // CD , ADC 90 , PD CD 2 AD 2 AB 2
求证:(1) BC ⊥BD
(2) BC ⊥PD
2.异面垂直的证明(重点考察内容)
定理:如果一条直线垂直于一个平面,那么,这条直 线垂直于这个平面内的任意一条直线
求证: AC BE ;
二、线面垂直的常用证明方法 *1.由线线垂直推出线面垂直
两个平面垂直的判定和性质(201911整理)
教学目的 1、使学生掌握两个平面垂直的性质定理及它
们的证明,并会进行灵活的应用。 2、掌握线面垂直、面面垂直之间的相互转化
在解题中的应用。
重点难点分析 重点:两个平面垂直的判定和性质的应用。 难点:两个平面垂直的性质定理及推论的形成 及推理。
复习与回顾 两个平面垂直的判定方法
的平面角。
AB是⊙O的直径,故∠ACB=90o.
∴面VBC⊥面BAC。 又D、E分别是VA、VC的中点,
则DE//AC。 而AC⊥VC,即DE⊥VC, 那么DE⊥面VBC。 运用面面垂直的判定及面面垂直的性质。 转化关系:二面角是直二面角 面面垂直
线面垂直
解法二:∵VC⊥面ABC,AC 面ABC,
a .
例2、如图,AB是⊙O的直径,点C是⊙O上的 动点,过动点C的直线VC垂直于⊙O所在平面, D、E分别是VA、VC的中点。直线DE与平面 VBC有什么关系?试说明理由。 解法一:
VC 面ABC, AC 面ABC, BC 面ABC
VC AC,VC BC. 则∠ACB就是面VBC果两个平面垂直,那么在一个平面内垂直
于它们交线的直线垂直于另一个平面。
已知:α ⊥ β, α β, AB ⊂α, AB ⊥α 于B。
求证:AB .
E
BA
C
证明:在平面 内作BE⊥CD,垂足为B。
则∠ABE就是二面角 CD 的平面角。 由α ⊥β可知AB⊥BE。
又AB⊥CD,BE与CD是 内两条相交
直线,
AB .
ED
BA
C
; 代写工作总结 https:/// 代写工作总结 ;
线面垂直面面垂直的性质定理
a
l
a
a l 作用: 面面垂直线面垂直
何时用:已知面面垂直时. 关键:在一个平面内作整理(课找件 )出垂直于交线的直线10 .
例1:如图,AB是⊙O的直径,C是圆周上不同 于A,B的任意一点,平面PAC⊥平面ABC,
(1)判断BC与平面PAC的位置关系,并证明。
(2)判断平面PBC与平面PAC的位置关系。
的位置关系有哪几种可能?
α l
β
平行
α
l
β
相交
α
l β
线在面内
整理课件
8
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
α
β
整理课件
9
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
β
符号语言:
a
l
A α
一条直线与一个平面内的 两条相交线都垂直,则该 直线与此平面垂直.
线面垂直则线线垂直. 线线垂直则线面垂直.
整理课件
3
(1)长方体ABCDA'B'C'D'中,棱AA',BB', CC',DD'所在直线与平面ABCD的位置关 系怎样?它们之间又具有什么位置关系?
D'
A'
C'
B'
D
C
A
B
整理课件
4
(2)如 图 ,a ,b ,那 么 直 线 a,b 一 定
(1)证明:∵ AB是⊙O的直径,PΒιβλιοθήκη C是圆周上不同于A,B的任意一
点 ∴∠ACB=90°∴BC⊥AC
面面垂直→线线垂直判定定理
面面垂直→线线垂直判定定理
平面垂直的判定定理:
一个平面过另一平面的,则这两个平面相互垂直。
面面垂直性质定理:
定理1:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
定理2:如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
定理3:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
平面垂直的判定定理和性质如下:
平面垂直的判定定理:
一个平面过另一平面的,则这两个平面相互垂直。
推论1:如果一个平面的垂线平行于另一个平面,那么这两个平面互相垂直。
推论2:如果两个平面的垂线互相垂直,那么这两个平面互相垂直。
(可理解为垂直的平面互相垂直)
面面垂直性质定理1:
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
定理2:如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
定理3:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
推论:三个两两垂直的平面的交线两两垂直。
定理4:如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)
推论:如果两个平面互相垂直,那么分别垂直于这两个平面的两条垂线也互相垂直。
(判定定理推论2的逆定理)。
高中数学线面、面面垂直的判定与性质
线面、面面垂直的判定与性质知识回顾1.直线与平面垂直的判定(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α垂直,记作l ⊥α.(2)判定定理文字表述:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号表述:⎭⎪⎬⎪⎫l ⊥a l ⊥b⇒l ⊥α. 2.直线与平面垂直的性质文字表述:垂直于同一个平面的两条直线平行。
符号表述:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒ a ∥b 3. 直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.4.平面与平面的垂直的判定(1)定义:如果两个平面相交,且它们所成的二面角是直角,就说这两个平面互相垂直.(2)面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β⇒α⊥β. 5.平面与平面垂直的性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号表示为:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 6.二面角二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角.题型讲解题型一例1、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交 B.相交但不一定垂直C.垂直但不相交 D.不垂直也不相交答案:C例2、如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.1答案:A例3、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.证明在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.题型二例4、若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( ) ①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒M ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α.A .1B .2C .3D .4答案:C例5、如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1. ∵A 1D∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC . ∴ON12CD 12AB , ∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.题型三例6、直线a 与平面α所成的角为50°,直线b ∥a ,则直线b 与平面α所成的角等于( )A .40°B .50°C .90°D .150°答案:B例7、在正方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与平面ABCD 所成的角是________; (2)直线A 1B 与平面ABC 1D 1所成的角是________; (3)直线A 1B 与平面AB 1C 1D 所成的角是________. 答案:(1)45° (2)30° (3)90° 题型四例6、在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( ) A .13 B .12 C .223 D .32答案:B [如图所示,由二面角的定义知∠BOD 即为二面角的平面角. ∵DO =OB =BD =32, ∴∠BOD =60°.]例7、过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.答案:45° 题型五例8、下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC.若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β答案:C例9、如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.9.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.在Rt△PAB中,tan∠PBA=PAAB=3,则∠PBA=60°.故二面角A—BE—P的大小是60°.题型六例10、平面α⊥平面β,直线a∥α,则()A.a⊥β B.a∥βC.a与β相交 D.以上都有可能答案:D例11、如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD 是等边三角形,已知BD=2AD=8,AB=2DC=45.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.11.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD2+BD2=AB2.∴AD⊥BD.又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD⊂面ABCD,∴BD⊥面PAD,又BD⊂面BDM,∴面MBD⊥面PAD.(2)解过P作PO⊥AD,∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO为四棱锥P—ABCD的高.又△PAD是边长为4的等边三角形,∴PO=23.在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.在Rt△ADB中,斜边AB边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=163.跟踪训练1.正方体A 1B 1C 1D 1-ABCD 中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值等于( )A .33B .22C . 2D . 3答案:C[解析] 设AC 、BD 交于O ,连A 1O ,∵BD ⊥AC ,BD ⊥AA 1,∴BD ⊥平面AA 1O ,∴BD ⊥A 1O ,∴∠A 1OA 为二面角的平面角. tan ∠A 1OA =A 1AAO=2,∴选C.2.过两点与一个已知平面垂直的平面( ) A .有且只有一个 B .有无数个 C .有且只有一个或无数个 D .可能不存在答案:C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]3.如图,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段 答案:A[解析] ∵DD 1⊥平面ABCD , ∴D 1D ⊥AC ,又AC ⊥BD ,∴AC ⊥平面BDD 1, ∴AC ⊥BD 1.同理BD 1⊥B 1C. 又∵B 1C ∩AC =C , ∴BD 1⊥平面AB 1C.而AP ⊥BD 1,∴AP ⊂平面AB 1C.又P ∈平面BB 1C 1C ,∴P 点轨迹为平面AB 1C 与平面BB 1C 1C 的交线B 1C.故选A. 4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN =________.答案:90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M .∴∠C 1MN =90°.5.如图所示,平面α⊥平面β,A ∈α,B ∈β,AA′⊥A′B′,BB′⊥A′B′,且AA′=3,BB′=4,A′B′=2,则三棱锥A -A′BB′的体积V =________.答案: 4[解析] ∵α⊥β,α∩β=A′B′,AA′⊂α,AA′⊥A′B′, ∴AA′⊥β,∴V =13S △A′BB′·AA′=13×(12A′B′×BB′)×AA′=13×12×2×4×3=4.6. 如图所示,已知PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过点A 作AE ⊥PC 于点E .求证:AE ⊥平面PBC .证明 ∵PA ⊥平面ABC ,∴PA ⊥BC . 又∵AB 是⊙O 的直径,∴BC ⊥AC . 而PA ∩AC =A ,∴BC ⊥平面PAC . 又∵AE ⊂平面PAC ,∴BC ⊥AE .又∵PC ⊥AE ,且PC ∩BC =C ,∴AE ⊥平面PBC .7.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE.证明 取CE 的中点G ,连接FG ,BG ,AF. ∵F 为CD 的中点, ∴GF ∥DE ,且GF =12DE.∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE.则GF ∥AB. 又∵AB =12DE ,∴GF =AB.则四边形GFAB 为平行四边形.于是AF ∥BG. ∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD.∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF. 又∵CD ∩DE =D ,CD ,DE ⊂平面CDE , ∴AF ⊥平面CDE.∵BG ∥AF ,∴BG ⊥平面CDE.∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE.8.如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面PAC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.证明(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2.∴PD⊥DC.同理可证PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(2)由(1)知PD⊥平面ABCD,∴PD⊥AC.而四边形ABCD是正方形,∴AC⊥BD.又BD∩PD=D,∴AC⊥平面PBD.又AC⊂平面PAC,∴平面PAC⊥平面PBD.(3)由(1)知PD⊥BC,又BC⊥DC,∴BC⊥平面PDC.∴BC⊥PC.∴∠PCD为二面角P-BC-D的平面角.在Rt△PDC中,PD=DC=a,∴∠PCD=45°.∴二面角P-BC-D是45°的二面角.6.如图,在直三棱柱ABC—A1B1C1中,AA1=AC,且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)若D、E分别是A1C1和BB1的中点,求证:DE∥平面ABC1.11解析: (1)∵直三棱柱ABC -A 1B 1C 1中,AA 1=AC , ∴ACC 1A 1为正方形, ∴A 1C ⊥AC 1.又∵BC 1⊥A 1C ,AC 1∩BC 1=C 1,∴A 1C ⊥平面ABC 1, 又∵A 1C ⊂平面A 1ACC 1, ∴平面A 1ACC 1⊥平面ABC 1.(2)如图,取AA 1的中点F ,连接DF 、EF.∵D 、E 、F 分别为A 1C 1、BB 1、AA 1的中点, ∴DF ∥AC 1,EF ∥AB ,DF∩EF =F , ∴平面DEF ∥平面ABC 1, ∴DE ∥平面ABC 1.。
线面、面面垂直
立体几何证明垂直四.直线与平面垂直的判定定理、推论及性质定理.①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直.②过直线l 外一点P ,有且仅有一个平面与l 垂直.③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面. ④垂直于角的两边的直线必垂直角所在的平面.⑤过点A 垂直于直线a 的所有直线都在过点A 垂直于a 的平面内. A .2个 B .3个 C .4个 D .5个 2.一条直线和平面所成角为θ,那么θ的取值范围是( )A .(0°,90°)B .[0°,90°]C .(0°,90°]D .[0°,180°] 3.如图,三条相交于点P 的线段P A ,PB ,PC 两两垂直,P 在平面ABC 外, PH ⊥平面ABC 于H ,则垂足H 是△ABC 的( )A .外心B .内心C .垂心D .重心4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列说法中正确的是 ( ) A.若α⊥β,m ⊂α,n ⊂β,则m ⊥n B.若α∥β,m ⊂α,n ⊂β,则m ∥n C.若m ⊥n ,m ⊂α,n ⊂β,则α⊥β D.若m ⊥α,m ∥n ,n ∥β,则α⊥β5.下列命题正确的是( )① ⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α;② ⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ;③ ⎭⎪⎬⎪⎫a ⊥αa ⊥b ⇒b ∥α;④⎭⎪⎬⎪⎫a ∥αa ⊥b ⇒b ⊥α. A .①② B .①②③ C .②③④ D .①②④ 6. 在三棱锥P -ABC 中,PA =PB =AC =BC =2,PC =1,AB =23,则二面角P -AB -C 的大小为________.7.如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱B 1C 1、B 1B 的中点.求证:CF ⊥平面E AB .8、 如图,已知PA ⊥平面ABCD ,且四边形ABCD 为矩形,M 、N 分别是AB 、PC 的中点.(1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN ⊥平面PCD .9.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA= 3.证明:平面PBE⊥平面PAB;10、如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC 上,且DE∥BC.(1)求证:BC⊥平面PAC.(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.11.如图,四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.求证:平面EFG⊥平面EMN.12.在三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形,⑴求证:MD∥平面APC;⑵求证:平面ABC⊥平面APC.13.四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E,F分别在BC,AD上,EF∥AB.现将四边形ABEF 沿EF折起,使得平面ABEF⊥平面EFDC.⑴当BE=1,是否在折叠后的AD上存在一点P,使得CP∥平面ABEF?若存在,求出P点位置,若不存在,说明理由;⑵设BE=x,问当x为何值时,三棱锥A﹣CDF的体积有最大值?并求出这个最大值.。
高二数学面面垂直的判定和性质
α A
D
α A
β
B
C
D
β
B C
那么在已有条件的基础上,再添加什么条件,可使命题为真?
发现 猜想 证明 证明 过程 结论 问题 发现
注
性质定理
猜想,得: 若增加条件ABCD,则命题为真,即
α 直线AB 平面 α 直线AB 平面 β 。 A 平面 α 平面 β CD D AB CD
A
D
β
E
AB BE AB CD
BE β CD β
AB β 。
B
C
BE CD B
证明过程 过程 结论 问题 发现 猜想 证明 证明
注
性质定理
平面与平面垂直的性质定理是: 如果两个平面相互垂直,那么在一个平面 内垂直于它们交线的直线垂直于另一个平面。
α A
D
β
B
C
问题 发现 猜想 证明 证明过程 结论
面面垂直
线面垂直
线线垂直
3、平面 ⊥平面β ,要过平面 内一点引平面β 的垂线,
只需过这一点在平面 内作交线的垂线。
作业
P.81:
1、习题:2、3、6;
2、课后总结。
2) 若PA=AB=a, AC
6 a,求二面角A PB C的大小。 3
2 a, PA PB a , 在Rt PAB中,AE 2 6 PA a, AC a, EE 3 15 在Rt PAC中,PC a, FF 3 AF 2 5 在Rt AEF中, sin AEF 。 AE 5
PA AC 10 AF a, PC 5
平面与平面垂直的判定定理和性质定理(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线面垂直、面面垂直及其证明
一 线面垂直的判定定理
(1)线面垂直定义:如果一条直线与一个平面内的任何一条直线都垂直,那么这条直线与这个平面垂直、
(2)判定定理:如果直线l 与平面α内的两条相交的直线,m n 都垂直,那么直线l 垂直于平面α、(线面垂直→线线垂直) (3)三垂线定理及其逆定理
①三垂线定理:如果平面内一条直线与穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影、
②三垂线逆定理:在平面内的一条直线,如果它与这个平面的一条斜线垂直,那么它也与这条斜线在平面内的射影垂直、 (4)线面垂直的证明
例1已知正方体1111ABCD A B C D -,求证:1AC ⊥面11AB D . 例2 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过A
且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.
例3已知ABC ∆中90ACB ∠=o ,SA ⊥面
ABC ,AD SC ⊥,求证:AD ⊥面SBC . 例4在正方体1111ABCD A B C D -中,M 为1CC 的中
点,AC 交BD 于点O ,求证:1AO ⊥平面MBD 、 练习1 在正方体1111ABCD A B C D -中、 (1)求证:AC ⊥平面11B D BD 、
(2)求证:1BD ⊥平面1ACB 、
S
D
C
B
A
D 1
O
D
B
A C 1
B 1
A 1
C
练习2在三棱锥A BCD -中,BC AC =,AD BD =,作BE CD ⊥,E 为垂足,作
AH BE ⊥于H 、求证:AH ⊥平面BCD 、
练习3 在四棱锥P ABCD -中,PA ⊥底面
ABCD ,AB AD ⊥,AC CD ⊥,60ABC ︒∠=,PA AB BC ==,E 就是PC 的中点、
(1)求证:CD AE ⊥、 (2)求证:PD ⊥面ABE 、
二 面面垂直
(1)二面角定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面,若棱为l ,两个面分别为,,αβ二面角记作为l αβ--、
(2)二面角的平面角定义:在二面角l αβ--棱l 上取一点O ,在半平面α与β内,从点O 分别作垂直于棱l 的射线,OA OB ,射线组成AOB ∠、则AOB ∠叫做二面角的平面角、
二面角的取值范围为[0,180]︒︒
、
(3)面面垂直定义:若两个平面的二面角为直二面角(平面角就是直角的二面角),则
这两个平面互相垂直、
(4)面面判定定理:一个平面过另一个平面,则这两个面相互垂直、 (5)面面垂直的正面即:面面垂直→线面垂直→线线垂直、 例1如图,在正方体1111ABCD A B C D -中,E 就是1AA 的中点、
(1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE 、 、
例2如图,直三棱柱111C B A ABC -中,侧棱垂直于底
面,90ACB ︒∠=12
1
AA BC AC ==,D 就是棱1AA 的中点,求
证:平面1BDC 平面BDC .
练习 如图,过S 引三条长度相等但不共面的线段,,SA SB SC ,且
60ASB ASC ︒∠=∠=,90BSC ︒∠=,求证:平面ABC ⊥平面BSC .
A
C
B
1
B 1
A D
1
C
三 立体几何高考证明
例1(2013江苏)如图,在三棱锥ABC S -中,平面⊥SAB 平面
SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱
SC SA ,的中点.求证:
(1)平面//EFG 平面ABC ; (2)SA BC ⊥.
例2(2012江苏)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别就是棱
1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.
求证:
(1) 平面ADE ⊥平面11BCC B ; (2) 直线1//A F 平面ADE .
例3如图,四棱锥P ABCD -中,底面ABCD 为平行四四边形,60DAB ︒∠=,2AB AD =,PD ⊥底面ABCD 、 (1)证明:PA BD ⊥
(2)设1PD AD ==,求棱锥D PBC -的高、
练习1如图,几何体E ABCD -就是四棱锥,V ABD 为正三角形,,CB CD EC BD =⊥、 (Ⅰ)求证:BE DE =;
(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC 、
练习2(2011天津)如图,在四棱锥P ABCD -中,底面ABCD 就是
平行四边形,45ADC ∠=︒,1AD AC ==,O 为AC 的中点,PO ABCD ⊥平面,2PO =,M 为PD 的中点.
(Ⅰ) 证明://PB ACM 平面;
A
B
C
S
G
F E
O M
D
C
B
A
P
平面;
(Ⅱ) 证明:AD PAC
(Ⅲ) 求直线AM与平面ABCD所成角的正切值.。