第七章 典型的光学系统
第七章典型光学系统ppt课件
通用显微镜物镜从物平面到像平面的距离(共轭距),不论放大 率如何都是相等的,约为180mm;对生物显微镜,我国规定为 195mm。 把物镜和目镜取下后,所剩的镜筒长度称为机械筒长,也是固定 的,有160mm、170mm、190mm 。我国以 160mm作为物 镜目镜定位面的标准距离。
二、显微镜的线视场
当物在 无限远( =0) E
1 L
4 23
D2 f 2
对大视场物镜,其视场边缘的照度要比视场中心小很多。
EM E cos4 w
表明:感光底片上的照度分布极不均匀。同一次暴光中, 可能中心过度,边缘不足。一般通过采用可变光阑(光圈 )来控制孔径光阑的大小。使用者根据天气选择。 国标规定F数为:1,1.4,2,2.8,4,5.6,8,11,16, 22,32。 像面照度E′与暴光时间t的乘积为暴光量。若F提高一档,则 暴光时间增加一倍,才能保证暴光量不变。
照明聚 光镜
大孔径聚 光镜
29
折反式 聚光镜
三、对投影系统的要求 ①物面照明要尽可能均匀以保证像面照度的均匀性。 ②接收屏上的实像要有足够的亮度。 ③成像质量良好。 ④有的投影系统(光刻)对畸变有极高要求。
30
DVD/CD激光头
31
32
被测件 全息球面透镜
准直透镜 反射镜
聚焦光学点
音圈马达 分光镜
常有:电影放映机、幻灯机、测量投影仪、光刻投影系统 、多媒体投影仪、微缩胶片阅读仪等。 二、投影系统中的照明系统 由于像面的照度与放大率的平方成正比,而投影系统的放 大率一般较大,尤其在反射照明时大部分光能损失掉,因28
此,要提高像面的照度,需选用强光源照明,或增加光 源数目,增大聚光镜口径,并且让照明系统提供的光能 量全部进入成像系统。 为实现物面均匀照明,采用柯勒照明方式。测量投影仪 器采用物方远心光路以保证测量精度,故照明系统也应 采用像方远心光路与之相衔接。
典型光学系统-工程光学
5)景深公式及其影响原因:
2a, P, f’
6)摄影物镜旳种类:(5种)
一般、大孔径、广角、远摄、变焦距
7
8. 有关投影系统:
1)系统旳基本要求(像差、照明) 2)主要光学参数(4个 :f ' 2' D)
f'
3)其照明系统旳衔接条件(2条)
8
第七章 经典光学系统
1.正常眼、近视眼和远视眼旳定义和特征是 什么?应怎样校非正常眼?调整能力旳计 算公式是什么? 2.什么是视觉放大率?体现式及其意义?它 与光学系统旳角放大率有何异同?
y'i l' tg' tg' y'e l' tg tg
1
3.放大镜旳视觉放大率为何?(注意条件)
0=D/f '=250/f '
2)摄影物镜旳3个主要参数及其影响作用:
焦距f ’(像旳大小)、相对孔径D/f ’(像面 照度、辨别率)和视场角2(成像旳范围)
3)辨别率公式:1/N=1/NL+1/Nr
NL=1/σ=D/1.22λf ’
6
4)光圈旳定义及其与孔径光阑、辨别率、 像面照度、景深旳关系: 光圈数:F=f’/D, 光圈F, 光圈2a,光圈
500NA/Г
3
5)物镜旳辨别率: a 0.61 0.61
n sin u NA
6)显微镜旳有效放大率:500NA≤Г≤1000NA
7)物镜旳景深:NA,
8)视度调整:x
Nf
'
2 e
5f
'
2 e
(mm)
1000 1000
5. 临界照明和坷拉照明中旳光瞳衔接关系?
+第七章典型光学系统 122页PPT文档
立体视
觉半径
L m a b x m i6 nm 2 2 m 01 6 '' 0 1 22 m 60 50 式(7-9)
★ 立体视觉半径以外的物体,人眼不能分辨其远近。 ★ 在某些情况下,观察点虽在体视半径以内,仍有可能不产生 或难于产生立体视觉。 (1)若两物体(例如线)位于两眼基线的垂直平分线上,由于 此时的像不位于视网膜的对应点,在目视点以外的点产生双 像,破坏立体视觉。此时只要把头移动一下,便可恢复立体视觉.
第二节 放大镜
一、视觉放大率
★ 人眼感觉的物体大小取决于其像在视网膜上的大小,由于 眼睛光学系统的焦距是一定的,故也取决于物体对人眼所张的 视角大小。
★ 被观察的物体细节对眼睛节点的张角大于眼睛的分辨率 60″时,眼睛才能分辨。
★ 目视光学仪器的基本工作原理:物体通过这些仪器后,其 像对人眼的张角大于人眼直接观察物体时对人眼的张角。
▲ 散光
若水晶体两表面不对称,则使细光束的两个主截面的光线不
交于一点,即两主截面的远点距也不相同,视度Rl≠R2,其差作 为人眼的散光度AST 。
ASTR1R2
式(7-3)
散光的校正——为校正散光可用柱面或双心柱面透镜。
用两正交的黑白线条图案可 以检验散光眼。由于存在像散, 不同方向的线条不能同时看清。 具 有 0.5D 的 像 散 不 足 为 奇 , 不 必校正。
六、眼睛的景深
眼睛的景深:当眼睛调焦在某一对准平面时,眼睛不必调节 能同时看清对准平面前和后某一距离的物体,称作眼睛的景深。
远景平面
对准平面
近景平面
对准平面P上物点A在视网膜上形成点像A’,在远景平面Pl和 近景平面P2上的A1和A2在视网膜上形成弥散斑,弥散斑的大小 对应人眼的极限分辨角ε。所以A1和A2在视网膜上形成的像等 效于对准平面上ab两点在视网膜上形成的像a’b’,因节点处的
第七章典型光学系统_工程光学 ppt课件
0=D/f '=250/f '
=2501 P' f' f'
第七章典型光学系统_工程光学
3
4. 关于显微镜系统:
1)组成(光学结构特点)、成像关系、
光束限制(生物显微镜和测量显微镜)
2)视觉放大率公式: ttg g' f2'05f '0 e e Г=250/f '
3)线视场公式:
50tg0' 50tg0'
4)有效分辨率和第七工章典作型光分学系辨统_工率程光:学
6
7. 关于摄影系统:
1)组成(光学结构特点)、成像关系、
光束限制
2)摄影物镜的3个主要参数及其影响作用:
焦距f ’(像的大小)、相对孔径D/f ’(像面照度、分 辨率)和视场角2(成像的范围)
3)分辨率公式:1/N=1/NL+1/Nr
NL=1/σ=D/1.22λf ’
第七章典型光学系统_工程光学
7
4)光圈的定义及其与孔径光阑、分辨率、 像面照度、景深的关系: 光圈数:F=f’/D, 光圈F, 光圈2a,光圈
分辨率,光圈像面照度 ,光圈 景深
5)景深公式及其影响因素:
2a, P, f’
6)摄影物镜的种类:(5种)
普通、大孔径、广角、远摄、变焦距
第七章典型光学系统_工程光学
第七章典型光学系统_工程光学
第七章 典型光学系统
1.正常眼、近视眼和远视眼的定义和特征是什 么?应如何校正非正常眼?调节能力的计算 公式是什么?
2.什么是视觉放大率?表达式及其意义?它与
光学系统的角放大率有何异同?
y'i l'tg' tg' y'e l'tg tg
光学第7章_典型光学系统
镜 头
快门速度(Shutter Speed) 快门是控制曝光时间长短的装置(机械或电子)。一般 从 1/8000秒到30秒之间不等。
光圈快门及其相互关系 光圈是相机镜头中的可以改变中间孔的大小的 机械装置,快门是控制曝光时间长短的装置。 二者结合,共同控制曝光量。
将近点校正到250mm处: 光焦度
1 1 1 1 1 3.2(m 1 ) 3.2( D) f ' l ' l 1.25 0.25
即应配 320 度的眼镜。
三、眼睛的分辨率 人眼能分辨两像点间的最小距离=视神经细 胞的直径——分辨能力。 当两像点落在同一视觉细胞上时,人眼无法 分辨;但当两像点距离大于等于细胞直径时, 两像点不可能落在相邻细胞上,则眼睛可分辨
五、远心光路
显微系统用于测量尺寸时,视场光阑处常 放分划板,调焦使被测物的像与之重合。
调焦不准带来测量误差。 孔径光阑位于物镜像方焦平面上:物方远心光路
远心成像镜头
第四节
望远镜系统
望远镜是为了看清楚远处物体。
倒立像
视觉放大率:
对于开普勒望远镜:
tg ' tg f0 ' D / D' fe '
望远镜的物距几乎是无限大,实用中调节物距是无效 的.故我们可以调节物镜和目镜的间距,使物镜的像 正好落在目镜的焦平面上.
第六节 摄影系统
一、摄影物镜的光学特性 1.视场 成像范围
2.分辨率 像平面上每mm内能分辨开的线对数。 NL = 1475 D/f’ = 1475/F F = f’/D 物镜的光圈数
工程光学第七章典型光学系统
•适用于长焦 距(小放大率 )的放大镜
•当眼紧靠放大镜时 , P′=0,则:
•常用放大镜的被率在2.5~25倍之间,若用单透镜(平 凸或双凸),通常不超过3倍。 •若放大镜的物是前面光学系统所成的像,则这样的放 大镜称为目镜。
•二、光束限制
•放大镜与眼组合构成目视光学系统,眼瞳是孔阑,又 是出瞳。放大镜框是视场光阑,又是出、入窗,同时放 大镜本身又是渐晕光阑。
•二、眼睛的调节及校正
•(一)调节 •指眼睛通过睫状肌的作用,本能地改变水晶体光焦度的大 小,以看清不同距离物体的过程。
•远点:肌肉完全放松时,眼睛能看清的最远点。 •近点:肌肉处于最紧张状态时,能看清的最近点。 •近点和远点到眼睛物方主点的距离,称为远点距离和近点 距离。则眼的调节能力为:
•远
•近
点距
点距
•R为远点视度,P为近点视度离 ,单位为屈离光度(D)=1/m。Biblioteka •医学上, 1D=100度。
•随着年龄增大,肌肉调节能力下降,调节范围减小。
•(二)眼的缺陷及校正
•眼睛的远点在无限远或眼光学系统的后焦点在视网膜上,称 为正常眼。
•正常眼观察近物时,物体距眼最适宜的距离是250mm,称 为明视距离M。
•①角膜和巩膜 •眼球被一层坚韧的膜所包围,前面凸出的透明部分称为角 膜,其余为巩膜,光线首先经过角膜。 •②前室 •角膜后充满透明液体的空间。 •③虹膜和瞳孔 •前室的后壁为虹膜,中间的圆孔为瞳孔,其直径能随外界 景物亮暗程度的变化而本能的改变大小,以调节进入眼睛 的光能量,是孔径光阑。 •④水晶体 •在虹膜之后,它是由多层折射率不同的薄膜构成的,可看 成一个双凸透镜,水晶体周围睫状肌的紧张和松弛能使其 表面的曲率半径发生改变,从而使不同距离的物体都能清 晰成像在网膜上。 •⑤后室 •水晶体后面的空间,充满着胶状透明液体。
(整理)第七章典型光学系统
第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。
解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-= m P l p 1.01011-=-==③f D '=1∴m f 1-=' ④D D R R 1-=-='m l R1-='⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'=' m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。
已知:放大镜 mmf 25='mmD 18=放 mm P 50='mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①f DP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtgeyeDytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg mm tg y 45*250='='ωmml 200-='mm fe 250='mm l 2.22-=yy l l X'==='=92.22200β mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f ll'=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x 3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。
工程光学习题参考答案第七章 典型光学系统
第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。
解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。
eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200β mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。
工程光学第七章 典型光学系统(2013总第13讲)
第八节
波像差
从物点发出的波面经理想光学系统后,其出射波面应是球面,而实际 波面与其存在一定偏差。当实际波面与理想波面在出瞳处相切时,两波面 间的光程差即波像差。 波像差也是孔径的函数,几何像差越大波像差也越大。对轴上物点, 单色光的波像差与球差有如下关系:
n' W 2
0
Um
'
L du
'
'2
波像差越小系统的成像质量也越好。瑞利判断法认为,光学系统
正弦差仅适用于小视场,而彗差可用于任何视场。
计算正弦差时,在计算球差的基础上,只需计算一条“第二近轴光 线”;彗差必须对每一视场计算相对主光线对称入射的上、下两条光线。
第五节
像散和场曲
一、像散:用子午细光束焦点和弧矢细光束焦点投影到光轴上的间距表示 轴外点发出的宽光束经单个折射球面存在彗差。若将光阑缩到无限小,则入 射光线为无限细光束,此时出射光线交于一点,彗差不存在,但存在像散和场曲。 存在像散时,平面物在像方会形成子午像面和弧矢像面,均为对称于光轴的 旋转曲面,相切于理想像面与光轴的交点。无像散时,子午像面和弧矢像面重合。 像散的校正:使某一视场(一般是0.7视场)的像散值为零,但其它视场仍 有剩余像差存在。对单个折射,没有正弦差的物点位置(齐明点)和光阑位置 (光阑在球心)也不存在像散。消像散系统一般由正、负透镜适当组合而成。 二、场曲:垂直于光轴的物平面经光学系统后成像在以光轴为对称的弯曲表面。 场曲的校正通常是对细光束而言,方法与球差校正方法类似。像散和场曲同 时矫正的匹兹伐条件:将镜头使用的单镜片数,加在各单镜片的折射率乘以焦点 距离的积的倒数上,它的和最好等于零,这个和叫做匹兹伐和数。
第二节 光线的光路计算
对有特征意义的光线进行光路计算,比较理想光学系统成像情况与实际光 线成像特性,研究不同视场的物点对应不同孔径和不同色光的像差值。
(工程光学教学课件)第7章 典型光学系统
D' l'z D lz
[例7-4] 有一显微镜,物镜的放大率β=-40×,目镜的倍率 为Γe=15(均为薄透镜),物镜的共轭距为195mm,求物 镜和目镜的焦距、物体的位置、光学筒长、物镜和目镜的间 距、系统的等效焦距和总倍率。
解: 已知物镜的共轭距L=195mm和放大率β=-40×
11 1
l' l f0'
眼睛的视角分辨率相适应,即光学系统的放大率和被观察物体所
需的分辨率的乘积等于眼睛的分辨率。
五、眼睛的对准精度
对准:是指在垂直于视轴方向上的重合或置中过程; 对准误差:对准后,偏离置中或重合的线距离或角距离。
六、眼睛的景深
当眼睛调焦在某一对准平面时,眼睛不必调节 能同时看清对准平面前和后某一距离的物体, 称作眼睛的景深。
设艾里斑的半径为 a,则 :
a 0.61 n'sin u'
道威判断:两个相邻像点之间的两衍射斑中心距为 0.85a 时,则能被光学系统分辨。
设显微镜能分辨的物方两点间最短距离为
由瑞利判断可得:
a 0.61 0.61 n sin u NA
(7-28)
由道威判断或得:
0.85a 0.5 NA
眼睛的调节能力:用能清晰调焦的极限距离表示, 即远点距离lr和近点距离lp。以远点距离lr和近点 距离lp的倒数差来度量:
1 1 RP A lr lp
(7-1)
正常眼:眼睛的像方焦点F’与视网膜重合; 远点位于人眼前无限远处。
近视眼:眼睛的像方焦点F’位于视网膜前方; 远点位于人眼前有限距离处。
开普勒望远镜746三望远镜的视场孔径光阑渐晕光阑y为分划板半径2一般在1015伽利略望远镜孔径光阑视场光阑例76有一架开普勒望远镜视觉放大率为6物方视场角28出瞳直径d5mm物镜和目镜之间距离l140mm假定孔径光阑与物镜框重合系出瞳距离目镜口径分划板直径物镜口径和目镜焦距物镜焦距目镜的作用类似于放大镜把物镜所成的像放大在人眼的远点或明视距离供人眼观察其光学特性参数有
工程光学习题解答--第七章-典型光学系统
工程光学习题解答--第七章-典型光学系统第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。
解: ① 21-==rl R )/1(m∴ ml r5.0-=②PR A -= D A 8= D R 2-=∴D A R P 1082-=--=-=m P l p1.01011-=-== ③f D '=1 ∴m f 1-=' ④D D R R 1-=-=' m l R1-='⑤P R A '-'= DA 8=D R 1-='DA R P 9-=-'='m l P11.091-=-='2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。
已知:放大镜 mm f 25=' mmD 18=放mm P 50='mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①f D P '-'-=Γ125501252501250-+=''-+'=f P feye92110=-+=②由%50=K 可得:18.050*2182=='='P D tg 放ωωωtg tg '=Γ ∴02.0918.0==ωtg D y tg =ω ∴mmDtg y 502.0*250===ω∴mm y 102= 方法二:18.0='ωtg Θmmtg y 45*250='='ωmml 200-='mmfe 250='mm l 2.22-=yy l l X'==='=92.22200βΘmm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='l l =-'1125112001=--lmml 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e25='。
工程光学 典型光学系统PPT课件
眼睛及其光学系统
放大镜 显微镜系统 望远镜系统
目视 光学系统
目镜
第一节 眼睛及其光学系统
一、眼睛(Eyes)的结构
调节肌
1、巩膜:包围眼球的白色 不透明外层,D≈25mm.
2、角膜(Cornea):眼球前突出的透明球面膜,
r≈8mm,n ≈1.38;
——主要折射成像界面(角膜—空气)
眼球横切面
3、前室:角膜后水晶体前的空间,充满透明水状液n =1.336。
1、调焦(对准)平面上的物点——视网膜上的点像
2、远景、近景平面上的物点——视网膜上的像为弥散斑
若弥散斑可看作一像点, 则要求其对人眼张角小于极限分辨角。
八、双目立体视觉
1,视差角
A
A
A
B
l
B
a1
a2 b2a2源自b1 a1b视觉基线
2,视差、体视锐度
视差:
视差越大,两物体的纵向 深度越大,反之越小
二、瑞利判据 :等亮度的两个物点,其一衍射图样的中央 极大与另一衍射图样的第一级极小重合时,认 为刚好能分辨这两个物点。
——能分辨的两个等亮度点间的距离对应于艾里斑半径。
无限远物点被理想光学系统成衍射图案: 第一暗环半径对出瞳中心的张角:
=1.22 / D,入瞳直径D的函数
——能分辨的二点间的最小角距离
2、眼睛+目视光学仪器:视角可被目视光学仪器放大。 观察物体所需分辨率×目视光学仪器的放大率=眼睛分辨率
★ 不同的目视光学仪器,通常选择的物距为: 1)放大镜、显微镜:观察物位于明视距离附近; 2)望远镜:观察物位于远处或无穷远。
第二节 放大镜 (The Magnifying Glass)
一、放大镜的成像原理
工程光学第7章典型光学系统
物体位于明视距离处对人眼的张角放大镜的工作原理250mm,r=−两块密接透镜构成的放大镜显微镜物镜物平面到像平面的距离称为共轭距。
各国生产的通用显微物镜的共轭距离大约为190mm 左右。
我国适用于远视眼的视度调节适用于近视眼的视度调节F eF F eF满足齐焦要求:调换物镜后,不需再调焦就能看到像——物镜共轭距不变加反射棱镜、平行平板镜的焦面上,然后通过目镜成像在无限远供人眼观察。
无限筒长显微镜:被观察物体通过物镜以后,成在无限远,在物镜的后面,另有一固定不变的镜筒透镜(我国规定焦距250mm),再把像成在目镜的焦面上。
7.3 望远镜§7.3.1 望远镜的工作原理望远镜系统的结构望远镜中的轴外光束走向'tan 'o y f ω=−视角放大率:'tan 'f ω望远镜系统中平行于光轴的光线(a)开普勒望远镜系统和(b)伽利略望远镜系统(a)(b)两类望远镜系统中的轴外光束走向开普勒式望远系统加入场镜的系统=1:2.8照相镜头可变光圈孔径光阑探测器视场光阑−UU′聚光镜显微物镜光源物面孔径光阑孔径光阑可变,调节进入显微物镜的能量,调节入射至显微物镜的光束孔径角,与显微物镜的数值孔径相匹配。
其缺点是光源亮度的不均匀性将直接反映在物面上。
双目望远镜系统望远镜系统简化出瞳距望远镜系统简化'30mmD D =Γ=''tan 8mmo y f ω=−='5mmD =光阑位置D 物D 分D 目l z '01.22d λ=艾里斑Airy disk2)实验系统相同,所用光波波长愈短则艾里斑愈小;U ′刚能分辩的两个像点min0.15≈角距离时人眼还2mm视觉细胞的直径,约5μm U′显微物镜的分辨率'σβσ=显微镜的几何景深2''x u δ≈Δ⋅弥散斑。
第七章 典型的光学系统
显然,从公式中见, Γ 是一个变量,它随着 p' (放大镜与人眼距离)和 l ' (虚像 与放大镜的距离)的变化而变化。 讨论:1)当 l ' = ∞ 时,即物放于透镜前焦点上时,从上式有: Γ =
D = 250 / f ' f'
2)但是实际上由于人眼观察物体最佳距离为明视距离,250 毫米处,故
为了舒适起见,一般将放大镜所成的虚像成像于明视距离处,而不是无穷远。
图 7—10
显微镜成像原理
在整个成像过程中,目镜起到了一个放大镜的作用,所以它对物体所起的放 大是一个视觉放大,而物镜所起的则是一个垂轴放大作用。显然整个显微镜的视 觉放大率既与物镜的垂轴放大率有关,也与目镜的视觉放大率有关。
Γ = β o ⋅ Γe x'1 250∆ 250 ∆ =− ⇒Γ=− = f 'o f 'o f 'o f 'e f'
∆ L = ∆θ L2 b
c 1 d
c 2 d
1
2
体视半径
可见, ∆L 与 L 及视差有关,随着它们取值的不同,有不同的 ∆L 值。
§7-2
一、视觉放大倍率
放大镜
P' y'
ω'
y F' -l' f'
图 7-8 1、定义:
放大镜成像原理
通过放大镜观察物体时,其像对眼睛所张角度的正切,与眼直接看物体时对 眼所张角度的正切之比。
a
c
) )
δ =( ~
1 6
)
d
b
对准形式
1 )ε 10
)
A C
图 7—5
1 1 ' J C 1 ' A 1 ' B
第七章典型光学系统
三、眼睛的分辨率:
眼睛的分辨率:眼睛能分辨开两个最靠近点的能力。 极限分辨角:刚好能分辨开的二点对眼睛物方节点所张的 角。分辨率与分辨角成反比。 视网膜上的最小鉴别距离至少等于两个视神经细胞的直径, 约0.006mm。 物体对人眼的张角,称作视角;人眼能分辨的物点间最小视 角,称作视角鉴别率ε。
8
四、眼睛的景深:
①近视眼及校正:远点位于眼前有限远处。 由于眼球过长,后焦点位于视网膜之前所致。 校正:加负透镜。 ②远视眼及校正:远点位于眼后有限远处。 由于眼球过短,后焦点位于视网膜之后所致。 校正:加正透镜。
7
③散光及校正:水晶体两表面不对称,使细光束在两个主截面 的光线不交于一点。 校正:加圆柱面或双心圆柱面透镜。
500 NA 1000 NA
四、显微镜的照明方法:
显微镜对照明的要求: ①足够的亮度;②照明均匀;③有一定的孔径角,且与物 镜相配合;④有一定大小的照明范围(视场)。
21
常用的照明方法: ①透射光亮视场照明;②反射光亮视场照明; ③透射光暗视场照明;④反射光暗视场照明。 其中,第一种照明方法应用较多,照明方式分为两种:临界 照明和柯勒照明。
2y 500tg
mm
所以,视觉放大率越大,物空间的线视场越小。
19
(3)显微镜的景深:
当把显微镜调焦到某一平面时,在对准平面前后的一定范 围内也能成清晰的像,这一范围称为显微镜的景深。
250n 21 NA
故,显微镜的放大率越高、NA越大,景深越小。
景深大小决定显微镜的调焦误差,景深越大,调焦误差越大。 一般显微镜的景深最大不超过0.5mm。
一、显微镜的组成:
显微镜是由物镜、目镜和照明系统三部分组成。 物体经显微镜的物镜放大成像后,其像再经目镜放大以 供人眼观察。
第七章 典型光学系统
适应是指眼睛对周围空间光亮情况的自动适应程 度;是通过瞳孔的自动增大或缩小完成的。
明适应:由暗处到亮处 暗适应:由亮处到暗处
三、眼睛的调节及校正
眼睛的调节:眼睛成像系统对任意距离的物体自动 调焦的过程。 视度:眼睛的调节程度。若视网膜在物空间的共轭面离开
眼睛的距离为l(以米为单位),则l 的倒数称为视度,用 SD表示 1 SD l 正常人眼,在没有调节的自然状态下,无限远物体的像正 好成在视网膜上,即远点在无限远,此时视度为
L L2 / b
(7-10)
将b 62m m, min 10" 0.00005 代入上式, 得 L 8 104 L2
(7-11)
若通过双目光学系统来增大基线b或减少 Δθmin,则可以增大体视半径和减少立体 视觉误差。
第二节 放大镜
一、 视觉放大率
目视光学仪器的基本工作原理:使物体通过这 些仪器后,其像对人眼的张角大于直接观察 物体时对人眼的张角。
A b L
(7-8)
立体视差:不同距离的物体 对应不同的视差角, 其差 异 称为立体视差。 体视锐度:人眼能感觉到 的极限值 min 称为体视锐 度
人眼能分辨远近的最大距离
Lmax b
min
62mm 20265/ 10" 1200
(7-9)
Lmax称作立体视觉半径 立体视觉阈:双眼能分辨两点间的最 短深度距离。
第七章
典型光学系统
第一节 眼睛及其光学系统
第二节 放大镜 第三节 显微镜系统 第四节 望远镜系统 第五节 目镜 第六节 摄影系统 第七节 投影系统
第一节 眼睛及其光学系统
一、眼睛的结构——成像光学系统
工程光学第七章 典型光学系统
★ 调节肌作用改变水晶体曲率(焦距),不同距离物均成像于视网膜。
9、视网膜(Retina):后室内壁、连接脉络膜的一薄膜,由神经 细胞和神经纤维构成。 调节 ——感光和成像的位置。 肌
(1) 辐射接收器 杆状细胞:对光刺激极敏感, 感光(明暗视觉) 锥状细胞:感色(色视觉) (2) 黄斑(Macula):视网膜中部、黄色椭圆形区域。 中心凹:黄斑点中心D ≈0.25mm区域,密集感光细胞, 视觉最灵敏。 (3) 盲斑(点):视神经的出口,无感光细胞。视网膜的像被 传输至大脑形成视觉。
★ 两物点的间距逐渐变小时,对应像点的位置变化: (a) (b) (c)
★系统的分辨率:光学系统能分开两个像点的最小距离。
二、瑞利判据 :等亮度的两个物点,其一衍射图样的中央 极大与另一衍射图样的第一级极小重合时, 认为刚好能分辨这两个物点。
——能分辨的两个等亮度点间的距离对应于艾里斑半径。
无限远物点被理想光学系统成衍射图案:
第一暗环半径对出瞳中心的张角:
=1.22 / D, 入瞳直径D的函数
——能分辨的二点间的最小角距离
0.555 m
=140 / D, D(mm)
补充 2:目视光学仪器
一、裸眼直接成像:
★ 视角ω :
ye y tan l l0
y
眼睛的光心O0:眼睛节点, 主点近似看做重合的位置
4、物体经眼睛成像于视网膜 ★ 眼睛的光心O0:眼睛节点、主点近似看做重合的位置。 (进一步简化)
★ 视角ω :
y y1 tan l l0
y1
1 (
y 2 2 (
O0
l
l0
y2
y1
★ 人眼对物体大小的感觉,取决于像在视网膜上的大小; 或,视网膜上的像对眼睛光心张角(视角)的大小。 ★ 视角取决于物的大小和物距,但是物距必须在近点之外。
典型光学系统_工程光学
3)分辨率公式:1/N=1/NL+1/Nr
NL=1/σ=D/1.22λf ’
精品课件
6
4)光圈的定义及其与孔径光阑、分辨率、 像面照度、景深的关系: 光圈数:F=f’/D, 光圈F, 光圈
2a,光圈分辨率,光圈像面照度 ,光圈 景深
精品课件
2
4. 关于显微镜系统:
1)组成(光学结构特点)、成像关系、 光束限制(生物显微镜和测量显微镜)
2)视觉放大率公式: 3)线视场公式Г:=250/ f'ttg g' f2'05f '0 e e 4)数值孔径、出瞳D’:50NtAg0='nsi5nu0,tg0 D'=500NA/Г
2y e
第七章 典型光学系统
1.正常眼、近视眼和远视眼的定义和特征是什么?应如何校正非正常眼?调节能 力的计算公式是什么?
2.什么是视觉放大率?表达式及其意义?它与光学系统的角放大率有何异同?
精品课件
y'i l'tg' tg' y'e l'tg tg
1
=2501 P' f' f'
3.放大镜的视觉放大率为何?(注意条件) 0=D/f '=250/f ཆ.61
nsinu NA
6)显微镜的有效放大率:500NA≤Г≤1000NA
7)物镜的景深:NA,
8)视度调节: xN'fe2 5f 'e2(mm )
10001000
5. 临界照明和坷拉照明中的光瞳衔接关系?
精品课件
4
6. 关于望远系统(开普勒):
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)老花眼:远点位于无限远处;近点则因受调节能力的限制而距眼较远。 矫正的方法佩戴凸透镜。 4) 散光: 它所产生的原因是由于水晶体的两表面不对称,造成二个主截面方向的光焦 度并不完全一致,形成了像散光束。 矫正的方法佩戴能产生像散的元件,例如:柱面镜
图 7-3
校正散光的圆柱面透镜
5、适应:眼睛对周围空间光亮情况的自动适应能力。 1)分类: 暗适应――发生在从亮处到暗处的情况 明适应(光适应)―――发生在从暗处到亮处的情况 需要说明的是:眼的适应并不能立即完成,而是需要一个过程,花费一定的 时间,这一点所有的人都应该深有体会。尤其是从亮处到暗处,这个过程更为明 显。 2)原因: 人眼之所以能适应,主要归功于瞳孔的放大或缩小的作用。 三、眼睛分辨率 1、定义:眼能够分辨靠近的二个物点的极限值。 2、公式: 一个视神经细胞的直径为: 0.003mm , 故视神经细胞能分辨的二个像点之 间的最小距离至少应为 0.006mm 。 若将人眼作为理想的光学系统来进行考虑的话,则根据衍射理论,其极限分 辨角为:
三、 显微镜的分辨率及有效放大率 1、 分辨率:指辨别二相靠近点的极限值。 1)根据瑞利判断,能分辨的二点间的最小距离:
3.83 f ――――这是线值 D 1.22 D
若用角值表示,其分辨率为:
此公式同样适用于显微镜,那么入瞳直径
D 2 f ' sin U
1.22 2 sin u 0.61 0.61 n sin u NA
1 250 0 1 D
可见,当像成在明视距离处时,其放大率比成像在无限远时的放大率大 1。 但实际上人眼不可能紧贴人眼,即 p' 0 ,所以这两种情况下的放大率是近似相 等的。 二、 光束限制
图 7-9
放大镜的光束限制
此时,人眼瞳孔为孔径光阑;放大镜框为视场光阑。 放大镜的通光口径将对成像范围有一定的限制,但是也与系统的渐晕程度有 关,不同渐晕时的视场的大小如下: 当 k 0 时, tg '
h a' p'
h p'
当 k 0.5 时, tg '
当 k 1 时, tg ' 式中, a ' 为出瞳半高度。
h a' p'
对 k 0.5 的渐晕系数, 2 y
500h p'
式中, h 为放大镜的通光口径半高度。
§7-3
一、显微镜的视觉放大率
显微镜
显微镜由物镜与目镜构成,且有较大的光学间隔,它的物、目镜的焦距都比 较小。当物体进行成像时,物 AB 放于物镜焦面附近,经物镜之后成一放大倒立 的实像,且此实像位于 F2 附近,再经目镜二次成像,最终成一放大、倒立的虚 像。
250 f 'e
f 'o f 'e
f '
一般,一个显微镜同时配有多个物镜及目镜,这样就可以通过简单的组合获
图 7-11 得各种放大倍率。 二、显微镜的出瞳直径 设出瞳大小为 2a' ,则根据正弦条件:
n' sin u '
y n sin u y' y 1 f' f' sin u ' sin u n y' x' o x'
A C B
J1 B' 1 ' A' 1 C1
图 7—5
J2 C2' B' 2 A' 2
双目立体成像
人眼注视 A 点,将在二眼各自黄斑处产生一个像。现在 J1 AJ 2 范围内取一点 B,当物点 A 成像时,B 也将同时在双眼各自成像。但是由于 B'1 成像于黄斑的左 侧;而 B' 2 成像于黄斑的右侧,由于分别成像于黄斑的不同侧,所以成双像。 即有:在角 J1 AJ 2 范围内的空间所有点都成双像。而在角 J1 AJ 2 范围外的空 间所有点都单一像。 所以按照我们刚才的分析讨论的,当观察周围空间时应该既有双像存在,也 有单像存在的。但实际上我们感受不到双像的存在,是因为双眼不断的转动,注 视点在不断的改变的缘故,所以日常不易察觉双像的那部分空间在人眼中的影 响。 2、 双眼立体视觉 立体视觉是双眼一个非常重要的特性主要原因是视差角的不同。 1)视差角( J1 AJ 2 角)
故有:
再考虑到物方介质折射率的影响,上式为变为:
0.5 NA
2)若用道威判断有:
2、提高显微镜的分辨能力方法
1)减小波长, 2)令物方介质折射率增大, 3)提高 sin U 值。 3、有效放大率 由于显微镜是属于目视仪器,是由人眼来接收,而人眼具有分辨极限,了为 人眼舒适起见,可取 2' ~ 4'(用角值表示) ,如果把它化为线值,则设人眼所观察 的物体在明视距离处,则在考虑到人眼时,人眼所能分辨的距离为:
s' a' tgu ' f ' e sin u ' f ' e f 'e
n' 1(空气中)
tgu '
a'
f 'o sin u nf 'e x'o
又因为: x' 故有:
a' sin u nf ' NA 250 500 NA 2a'
A
A
B
θ θ
LA
B
J1 B' 1A' 1
b
J2 ' B' 2A2
图 7—6
双目成像的视差角
当人眼注视 A 点,则角 J1 AJ 2 为视差角,用 A 表示。现再取一点 B,又有 一个视差角 B 。可见,视差
A B
A
式中 L A 为视点到基线的距离。
b b ; B LA LB
(a)近视眼及其校正 图 7—2 须物要位于有限距离处。
(b)远视眼及其校正 眼睛的缺陷及其校正
从图 7—1 上看,无限远的像成像于视网膜之前,可见若想成像于视网膜上,必 弥补近视眼的缺陷,采用的方法就是戴负透镜。 该负透镜的焦距大小为:
f ' lr
2)远视眼:远点位于人眼之后;点取决于人眼的调节能力。 由于人的眼球较短,水晶体像方焦点位于视网膜之后。所以远视眼矫正的方 法,佩戴正透镜。
2)体视锐度:当 小到刚刚能分辨开二个物体的距离差异时,称此时的 为 体视锐度,用 min 表示。一般取 min 10" 3)体视半径:即人眼能辨别远近的最大距离,用 Lmax 表示。 人眼能辨别远近的范围为体视半径。
Lmax b min
式中 b 是基线距离; min 是体视锐度。 说明:并不是在体视半径内所有的情况下人眼都能产生立体的感觉,在某些 特殊情况下,即使在体视半径内也有可能不产生体视视觉。
1.22 1.22 0.00055 140" 206265"= D D入 D
此式中 555nm ,D 为入瞳直径,在此处为瞳孔直径;由于人眼在正常情 况下 D 2mm ,故上式变为:
140 70" 1' 2
所以我们常说,人眼的根限分辨角为 1' 左右。 四、人眼的对准精度 1、 对准:在垂直于视轴方向上的重合与置中过程,简称对准。 2、 对准误差:对准后偏离置中或重合的线距离或角距离。 对准误差是随着对准方式的不同而不同的,常见的对准方式有以下四种: 二 直 线 重 合 方 式 的 对 准 误 差 为 60" ; 二 直 线 端 部 对 准 方 式 的 对 准 误 差 为
图 7-1 眼结构 5、瞳孔尺寸可变,大小可以调节。 当外界亮时――变小,最小可达 2mm 当外界暗时――变大,最大可达 8mm 二、 眼睛的调节及校正 1、调节:眼睛对不同距离的物体的自动调焦的过程。 2、远点、近点、调节能力
远点:眼睛自动调焦所能看清最远的点,远点到眼物方主点的距离叫远点距 离,用 l r 。 近点: 眼睛自动调焦所能看清最近的点,近点到眼物方主点的距离叫近点距 离,用 l P 。 现若令
1 1 R, P , lr lp
RP A 调节能力表示为: 说明:人眼的调节能力不是一成不变的,它随人的年纪变化而变化。
3、正常眼、明视距离 1)正常眼:眼睛的远点在无限远,近点很近,此时水晶体的像方焦点与视网膜 重合,称这样的眼为正常眼。 2)明视距离:指在正常照明情况下( E 50lx ) ,正常眼最方便及最习惯工作 的距离。一般 l 250mm 。 4、反常眼及其矫正 常见的反常眼有三种:近视眼、远视眼和花眼。 所谓反常眼是指不符合正常眼的条件叫反常眼。 1)近视眼:远点位于眼睛前有限距离处;近点仍取决于人眼的调节能力。 言外之意,近视眼的人能够看见的仅仅是眼前有限远的距离,太远的看不见。之 所以如此,是由于其眼球太长,水晶体的像方焦点位于视网膜之前。
[考试要求] 要求考生掌握三种典型的目视光学仪器的原理光路、成像特性、相关公式 等,投影系统,人眼的成像特性。 [考试内容] 眼睛、放大镜、显微系统、望远系统、摄影系统、投影系统的原理分析、 公式、计算等。 [作业] P163:1、2、3、4、5、6、7、11、12、14
第七章
典型的光学系统
典型的光学系统可归纳为三类,即望远系统,显微系统、照相系统。所以有 必要对此三种类型的系统的特性、及工作原理进行深入的学习和了解,这样才能 为将来进行仪器设计打下坚实的基础。
10" ~ 20" ; 双线夹单线方式的对准误差为 5" ~ 10" ; 叉线对准方式的对准
误差为 10" 。
a)
c)
b)
图 7—4
1 6
d)
对准形式
1 ) 10