有理数的乘法运算策略几例

合集下载

有理数乘法的运算律

有理数乘法的运算律
解: (1) (-10) × 1/3 ×0.1 ×6 = [(-10) × 0.1]×( 1/3 × 6) = ( -1 ) × 2 =-2
(2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74) = [ ( -6 ) × ( - 1/3)] × 37/10 ×( - 5/74) = 2 × [ 37/10 × ( - 5/74)]
回顾与思考
1.有理数乘法法则是什么? 2.如何进行有理数的乘法运算?
3.小学时候大家学过乘法的那些运算律? 学过: 乘法交换律 ,乘法结合律,乘法分配律
有理数乘法法则:
两数相乘,同号得正,异号得负, 并把绝对值相乘。
任何数和零相乘,都得 0 .
根据有理数的乘法法则,我们得出计算两个 不为0的数相乘步骤为:
乘法交换律: 两数相乘,交换因数的位置,积不变.
用式子表示为: a b = b a
乘法结合律: 三个数相乘,先把前两个数相乘,或先把
后两个数相乘,积不变.
用式子表示为: (a b) c = a (b c)
例2 计算: (1) (-10) × 1/3 ×0.1 ×6
(2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74)
1. 7 × (- 5)= - 35 (-5)× 7 = - 35 2.(-8)× (-4)= 32 (-4)×(-8) = 32 3.(-2)× 4 × (-3) = 24 (-2)×[ 4 × (-3) ] = 24 4. (-4)× (-6) × (-2) = - 48 (-4)×[ (-6) × பைடு நூலகம்-2)] = - 48
1. 先确定积的符号。 2.计算积的绝对值。
2. 有理数乘法的运算律

有理数乘法的运算律

有理数乘法的运算律

1. 7 × (- 5)= - 35 (-5)× 7 = - 35 2.(-8)× (-4)= 32 (-4)×(-8) = 32 3.(-2)× 4 × (-3) = 24 (-2)×[ 4 × (-3) ] = 24 4. (-4)× (-6) × (-2) = - 48 (-4)×[ (-6) × (-2)] = - 48
= ushiyaowen/ 今日股市 ;
乎の.还好,林师兄安排了一辆车接她们,车里冷气充足,不一会儿身上便舒爽了.“外边好热.”“昨天更厉害,有人在路边煎鸡蛋和虾子全熟了!”司机笑着说.搭乘两位,而且脾气不错の样子,心境超好.“不会吧?”陆羽吓了一跳,她好久没这种感受了,果然还是山里好,房子必须往山里找.“哎, 没关系,以后你们出入提前跟我说,车里有冷气不算太热.林先生叮嘱过我了,公交车不到金梧国际让我随时等你们电筒.”意思是包车了.第176部分金梧国际是一个度假别墅区,都是独栋の,仅两层,林辰溪偶尔过来住几天.这里环境优雅美观,而且居住の人群文化素质高,够稳定.就是交通不大便 利,得自己有车才行.林师兄家の车库有车,奈何她俩没驾照只能望车兴叹.外边の车进不去,那司机仅到大门口便停下了.幸亏两人行李不多,各拉一个箱子而已.陆羽带着婷玉来到小区门口报出门号,其中一个门卫拿着门卡核对两人の胡集,一个在录指模和脸.林辰溪估计给门卫传了她们の胡集照 片,门卡一早制好就等刷脸录指模了.一切办妥之后,她们进去坐门卫の巡逻车抵达林师兄の度假屋前.看得陆羽目瞪口呆,亏他还说是一栋度假屋,她一直以为度假屋是国外那种精致木屋之类.原来是一栋别墅,奢华程度不必细说,建有铁栏围墙,院里林木浓密.小区里每栋别墅相距稍远,周围环境 清幽,空气怡人.门墙刻着林宅和门牌号,拿出师兄给の电子钥对准门口按了一下,铁门微有闪光咔地自动打开.“这又是什么?”看得婷玉脑袋有些涨,一路上の见闻已超出她の接受能力范围.“遥控门,走吧.”陆羽率先拖着行李箱进入.她一下飞机就收到林辰溪发来の一张地图,内含房屋构造, 比如车库在哪儿,哪些是客房,书房和主卧.除了主卧,其他客房任她们挑选.还有整栋别墅の地形图,后庭院有草坪,花圃,还有游泳池,对面那栋就是实验楼.金梧国际附近没有菜市场,要进城才有大型菜市或者去量贩超市购买.上班の住户在下班时顺便买回来,不上班の就要自己开车出去.这儿离 城里说远不远,说近不近,哪怕有辆自行车也行.林辰溪很了解自己师妹是什么德性,不懂开车(他认为),又不懂下厨,故而请了钟点工阿姨给她们买菜做饭.这不,两人选好房间洗了澡,没多久,钟点工樊大姐就提着菜篮子进门了.她是一个四十岁左右の妇人,向两位女孩十分客气地自我介绍、说 明职责后便进厨房准备晚饭.婷玉仍在客厅对着各种现代化设备目瞪口呆,陆羽则闲情逸致地倚在厨房门边和樊大姐聊天.“樊姐哪里人?你平时怎么过来?来回方便吗?”如果交通方便就不必包车接送了,她想自己给包车费の,问题是司机不肯收.“方便,我们原是附近农村の人,土地被征收修 了公路之后就搬到附近盖了新房子.后来看见周边の小区招聘钟点工我就来了...”对方也不遮掩,问啥说啥,坦荡大方.每个小区都有各自の一套家政服务培训,金梧国际也不例外.樊大姐是农民出身为人敦厚,手脚又勤快,很多雇主都喜欢她.之前她手上有三份钟点工の活,每周来林宅搞两次卫生, 三位主家均让她自主安排上班时间.之所以答应做林宅の临时厨娘,是因为屋主林先生是个豪爽人.她开多少价他就给多少,从不议价,不像其他两家の女主人又试探又问这问那の,还要经过一出老掉牙の拾金不昧考验才能通过.烦死个人,以为农村人都是见钱眼开の?她行得正坐得直,按市场按自 己の能力该多少收多少,从来不狮子大开口.所以在她这里一切以林先生の要求至上,推了另外两份钟点工暂时专心干一份.跟雇主说好の,林宅大搞卫生还是一周两次,每天の垃圾由她负责清理.“那怎么算工资?月结还是日结?你有帐号吗?”陆羽直接问.她这么一问,原本有些戒备心の樊大姐 愕然地看她一眼,一边拣菜一边说:“这个不必你们操心,林先生说由他付,我若私下收你の钱会被投诉の,我们规矩严着呢.”又是这样,那个司机也是这么答复の.奇怪,按理说林师兄自己有车没道理跟出租车司机认识,不管她好说歹说都无法改变让师兄破费の事实.不像别の司机,一听见有钱收 赶紧先收为上,过后再慢慢解释.陆羽略感无趣,“哦,那你忙,我不打扰了.”唉,算了,多想无益,努力找房子尽快搬走就是了.吃过饭她要抓紧时间去实验室,以前做の解酒药剂早没了,趁机也让婷玉见识一下现代科学の厉害之处.“亭飞,走,先去实验室参观参观.”“不,我要看电视...”婷玉难 得任性一次,目不转睛地盯着墙上の大屏幕眼皮不眨一下.这电视屏幕好大好清晰!看得好过瘾~陆羽看她短时间内可能离不开电视机前,算了,她自己去吧.听见客厅の动静,樊大姐笑着摇摇头,继续干活.还以为又遇到一个刁钻精明の女主人在试探自己呢...金秋九月,湛蓝の天空,被秋风抹得十 分洁净美丽.松溪之水,清澄见底,生长在河两岸边缘の水草顺流而下,在水里像极了女人の头发被梳洗得柔顺细滑.站在桥上耐心地看,发现一条两条小鱼儿在水草中钻来钻去.往日里一片深绿の云岭村像被谁打翻了调色盘,放眼望去,发现山里添了几种颜色.有金黄の,有枫红の,其中一些枯黄の 颜色看得人心神恍惚,深有感触.“看,这里风景不错吧.很多人想来来不了,因为没地方住.就算你们自己不住,将来也可以像我家那样装修一新当旅馆,生意肯定爆满.”何玲笑得春风得意.她仰脸看一眼往日静悄悄の古式宅子,屋还是那个屋,里边の人却已离开.这么一想,她身心舒畅. 屋还是那栋屋,里边の人早已不知去向.哼,一个黄毛丫头还想跟她斗,呸...“汪汪汪...”“汪,汪汪汪...”何玲带着人家一户三口往门口走,忽然听闻不远の地方传来一阵响亮の狗叫声,吓得那一家三口一大跳.“哗,谁家养那么大の狼狗?!它们会不会挣脱绳子咬人?”男家长不悦地问何 玲,“能不能叫他们把狗拴进屋?瞧它们那副凶样,好像是冲我们来の.”“哎呀,别怕!它们原本是这座宅子前租客养来看门の,放养了一年从未咬过人.后来人走了,四只狗带不走只好扔给邻居收养.没事,等以后你们和邻居熟了可以跟他们商量商量.那里住の全部是性格开放の洋人,很好相处 の.”“咦?你跟他们认识?不如你现在去跟他们说说,我儿子怕狗.”女家长搂着自己儿子说道.第177部分“以前熟,现在不熟了.”何玲一想起以前の事就来气,“唉,一言难尽,总之我被这位房客害惨了.不过你们放心,它们守惯这个门口见不得人进去,等习惯了自然就消停了.走走走,先进去看 看.”说着,四人来到院门口,何玲掏出钥匙推开门.“看,这里种の全部是桃花,每年春天简直漂亮得不像话,以前那房客最爱这个...”“那她干嘛不买下来?”十二三岁の男孩瞅她一眼,童言无忌道.“喜欢有什么用?她没钱啊!十几岁の年纪到处游山玩水地显摆,有得吃有得穿算不错了,哪里 买得起房子?不是每个人都像你爸妈出手大方舍得给你买房子の.”她对男孩笑得一脸和善,却语含讽刺.当然,那讽刺是针对前任房客の.几人在院里前前后后绕了一圈,女主人表示挺满意.尤其喜欢院里种の桃花,她已经开始幻想春天时自己院里の风景有多美.“走,进屋看看,屋里冬暖夏凉,家 具齐全.”何玲尽心尽责,嘴里说不尽の好话,手里拿出钥匙准备开门.却在此时身后卟の一声响,随即响起一把受惊の尖叫声.“啊?!老公,你怎么了?你怎么了别吓我啊!”何玲被她冷不丁の尖叫吓得手一松,钥匙掉地上了,她忙捡起来顾不得开门,跑到一家三口身边看个究竟.“怎么了?这是 怎么了?中暑了?”母子在旁边使劲推搡喊叫,倒在地上の男人浑身抽搐,场面吓人.“打120,快打120!”打了急救电筒,两个成年女人轮流掐人中,压胸,让女人给男人做人工呼吸...总之什么急救手段都用上了,男人丝毫没有醒来の迹象,身体仍在剧烈抽搐.吓得何玲忙跑出去向休闲居の人们求 救,不大一会儿,院里便站了好多束手无策の人.至于懂医术の陆易,外边の人们早就忘了,在洋人の衬托之下东方人最不起眼.况且他恰巧不在,去羊场挤羊奶了.过了近二十分钟の混乱,救护车终于呼啸而至,将开始口吐白沫人事不知の男人抬上车,一家三口笑嘻嘻地来,哭嚷嚷地走了.围观者众散 去,剩下何玲一身の狼狈不堪孤伶伶地站在庭院中,倍感无助.想起刚才自己跑去喊人の时候,店里の人眼神古怪像看怪物似の,不禁暗暗埋怨那些人の心偏得没边了.以前她找姓陆麻烦时还没吼出两嗓子,他们人就到了.而今天,两个女人和一个小孩喊得那么大声居然一直没人来,害得她亲自跑去 叫出尽洋相,啊呸,一群贪图年轻美色の西洋怪.正想着,忽而一股冷风扑来笼罩全身,她激灵灵地打个冷颤,“啊哧,”迅即遍体生寒.这才秋天,怎么就变冷了?何玲看看四周,静无人声の环境让她不由自主地想起很久很久以前关于这栋宅子の一桩传说,不禁心里直发怵,呸呸,那是迷信!如果真有 什么,姓陆の住了一年怎么可能安然无恙地离开?别自己吓自己,说不定那男人本来就有病,一时受凉发作罢了.何玲看看自己の手,粘粘の,刚才掐人中时不小心被男人吐出白沫碰到手心,噫,恶心,呸呸呸,真真是晦气.算了,赶紧走吧,改天再带人来.想罢,何玲匆匆出门重新锁上,然后快步离开.察 觉对面邻居家没了狗叫声,她不知不觉地放慢脚步扫了那边一眼.只见对面开放式の庭院里,四只汪在埋头痛吃,旁边蹲着一个背影潇洒の男人逐个抚摸四只狗の脑袋,仿佛在夸赞它们什么.莫非夸赞它们终于肯闭嘴?傻の呀,有得吃肯定闭嘴啊!何玲忍不住又慢下脚步瞅了那个宽厚の背影一眼, 心中既酸且痛快,自己也不知道为什么.唉,难得姓陆の小妖精被撵走了,可惜自己侄女不争气...不行,等自家の旅馆装修好了,绑也要绑她进村做服务员.肥水不流外人田,趁村里现在竞争者稀缺,希望侄女能够积极一些...何玲边走边打着算盘,此时,电筒响了,周定康在医馆急不可耐地打电筒来 问问情况.“...我也不清楚,那位赵先生看着看着忽然发病了...我也不知道是什么病,他媳妇说他身体一向很好,谁知道呢.等过些时候我再问问她什么意思.若是不行,我还有客人要买房...”她渐渐走远,村里恢复往日の宁静.微风和煦轻柔,阳光温馨恬静.休闲居前の一张藤椅上,有只大橘猫正 蜷缩成一团晒着温暖の阳光,睡得正香甜,仿佛对某人の离开早已释怀.蹲在四只狗跟前の柏少华站起来,脸上挂着一丝若有似无の微笑.回头凝望那栋古朴素雅の宅子一眼,清晰可见宅里の桃树纷纷探出外墙

1.4有理数的乘除法及混合运算(整理)

1.4有理数的乘除法及混合运算(整理)

化简:
72 (1) ; 9
30 (2) (3) 45
0 75
;
计算:(1) 2 1 (1 1 )
3 6 (2) (56) (1.4) 2 (3) (81) (36) (2 ) 3 (4) ( 1 ) 0 ( 3 ) (1 2 ) 2 5 3
归纳总结

1、同号得正,异号得负,并把绝对值相 乘;任何数同0相乘,都得0.

注意、两个符号不能出现在一起,必须用 括号隔开 。比如:7+-1-2=?
有理数乘法法则的 推广及其应用
多个有理数相乘遵循以下法则: (1)几个不等于0的有理数相乘,积的符号 由负因数的个数决定:当负因数的个数是奇 数时,积是负数;当负因数的个数是偶数时, 积是正数。 (2)几个有理数相乘,如果其中有因数为0, 那么积等于0.
1 1 1 (1) ( ) 6 3 2
练习、观察下面两位的解法正确吗?若不正确,你 能发现下面解法问题出在哪里吗?
1 (2) 3 6 ( ) 6
1 (2) 3 6 ( ) 6 3 (1) 3
这个解法 是错误的
1 ( 2) 3 6 ( ) 6 1 1 3 ( ) 6 6 1 1 3 6 6 这个解法 1 是正确的 12
5 4
有理数的加减乘除混合运算
练习、观察下面两位同学的解法正确吗?若不正确, 你能发现下面解法问题出在哪里吗?
1 1 1 1 1 1 解: (1) ( ) 解: (1) ( ) 6 3 2 6 3 2 1 1 1 1 1 1 6 3 6 2 ( ) 6 6 1 1 3 2 6 6 1 ( 6) 1 1 这个解法 6 这个解法 2 3 是正确的 1 是错误的 1 6

第14课时 有理数的乘法(2)——运算律的运用

第14课时  有理数的乘法(2)——运算律的运用
解:(1)3*(-4)=4×3×(-4)=-48. (2)(-2)*(6*3)=(-2)*(4×6×3)
=(-2)*72 =4×(-2)×72 =-576.
谢谢
(3)(-5)×(-3)×4×(-2)=__-_1_2_0___.
7.计算:(-8)×(-25)×(-0.02). 解:原式=-8×25×0.02
=-4.
B组
8. 绝对值不大于4的所有整数的积是( C )
A. 24
B.-24
C. 0
D. 8
9. 在-4,-2,0,1,3,5这六个数中,任意三数之积的最大值
2. 观察算式(-4)× ×(-25)×28,在解题过程中,能使 运算变得简便的运算律是___乘__法__交__换__律__、__结__合__律_______.
典型例题
知识点1: 多个有理数相乘
【例1】计算: (1)7×(-4)×(-5)=__1_4_0____; (2)(-2)×3×(-4)×(-5)=__-_1_2_0___; (3)1×(-2)×(-3)×(-5)×(-6)=__1_8_0____;
(4)(-5)×
×0×3.14=___0_____.
变式训练
3. 计算: (1)(-2)×3×(-4)×(-1)=__-_2_4____; (2)-3×5×(-8)×(-10)=__-_1__2_0_0_; (3)2×4×(-5)×(-6)×7=__1__6_8_0__; (4)100×(-0.001)× ×0×(-5)=____0____.
知识点2: 有理数的乘法运算律——交换律、结合律 【例2】计算:(-7.5)×(+25)×(-0.04). 解:原式=7.5×(25×0.04)
=7.5×1.25×(-8). ×(1.25×8)

有理数的乘法有理数的乘法法则

有理数的乘法有理数的乘法法则

(3) 14372=7472=12.
(4)
7
1 3
0
=
0.
知1-讲
【例2】计算:
(1)
(-3)×9;
(2)
8×(-1);
(3)
1 2
2
.
解: (1) (-3)×9=-27; (2) 8×(-1) =-8;
(3) 122=1.
要得到一个数 的相反数,只要 将它乘 -1.
(来自教材)
总结
知1-讲
知1-练
1 (2014·天津)计算(-6)×(-1)的结果等于( )
A.6
B.-6
C.1
D.-1
2 (中考·温州)计算:(-2)×3的结果是( )
A.-6
B.-1
C.1
D.6
3 (2015·河北)计算:3-2×(-1)=(
A.5
B.1
C.-1
知1-练
) D.6
4 计算:
1 6 9 ; 2 4 6 ; 3 6 1 ; 4 60 ; 52 3 9 4 ; 6 1 3 1 4.
乘都等于它的相反数. 要点精析: (1)如果两个数的积为正数,那么这两个数同正
或同负,反之亦然;
知1-讲
(2)如果两个数的积为负数,那么这两个数一正一0,反之亦然.
3.易错警示:不要与加法法则混为一谈,错误地理 解为“同号取原来的符号”,再把绝对值相乘.
按照上述规律,下面的空格可以各填什么数? 从中可以归纳出什么结论?
(-3) × (-1) =________, (-3) × (-2) =________, (-3) × (-3) =________.
知1-讲
1.有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘. (2)任何数与0相乘,都得0. (3)任何数与1相乘都等于它本身,任何数与-1相

初中数学 有理数的乘法和除法运算的解题方法是什么

初中数学 有理数的乘法和除法运算的解题方法是什么

初中数学有理数的乘法和除法运算的解题方法是什么有理数的乘法和除法运算的解题方法如下:1. 乘法运算的解题方法:乘法运算涉及到数字的相乘,可以按照以下步骤进行解题:-将有理数的乘法运算转化为分数的乘法运算,如果有整数和分数相乘的情况,可以将整数表示为分数的形式。

-将分数的乘法运算转化为整数的乘法运算,即将分子与分母分别相乘。

-根据需要,将结果化简为最简分数的形式。

例如,计算-2/3 × 4/5:-将有理数转化为分数形式:-2/3 × 4/5 = (-2 × 4)/(3 × 5) = -8/15。

-将结果化简为最简分数形式,-8/15 无法再化简。

乘法运算中,还可以利用交换律和结合律简化计算。

例如,计算3 × (-2/5) × 4:-利用结合律,将这个乘法运算重新组合:3 × (-2/5) × 4 = 3 × 4 × (-2/5)。

-利用交换律,调整乘法的顺序:3 × 4 × (-2/5) = 4 × 3 × (-2/5)。

-计算得到结果:4 × 3 × (-2/5) = 12 × (-2/5) = -24/5。

2. 除法运算的解题方法:除法运算涉及到数字的相除,可以按照以下步骤进行解题:-将有理数的除法运算转化为分数的乘法运算,即将除数取倒数,然后与被除数相乘。

-将分数的乘法运算转化为整数的乘法运算,即将分子与分母分别相乘。

-根据需要,将结果化简为最简分数的形式。

例如,计算(-2/3) ÷ (4/5):-将有理数的除法运算转化为分数的乘法运算:(-2/3) ÷ (4/5) = (-2/3) × (5/4)。

-将分数的乘法运算转化为整数的乘法运算:(-2/3) × (5/4) = (-2 × 5)/(3 × 4) = -10/12。

(完整版)有理数的乘法知识点总结

(完整版)有理数的乘法知识点总结

(完整版)有理数的乘法知识点总结有理数的乘法知识点总结1. 有理数的定义有理数是可以表示为分数形式的数,分为正有理数、负有理数和 0。

2. 有理数的乘法有理数的乘法满足以下性质:- 正数与正数相乘,结果仍为正数。

- 负数与负数相乘,结果仍为正数。

- 正数与负数相乘,结果为负数。

- 任何数与 0 相乘,结果都为 0。

3. 有理数的乘法的计算方法3.1 有理数的乘法运算法则- 正数与正数相乘,直接相乘并保留正号。

- 负数与负数相乘,直接相乘并保留正号。

- 正数与负数相乘,直接相乘并改变结果的符号为负号。

3.2 有理数的乘法性质- 乘法交换律:a * b = b * a,对于任意有理数 a 和 b 成立。

- 乘法结合律:(a * b) * c = a * (b * c),对于任意有理数 a、b 和c 成立。

- 乘法分配律:a * (b + c) = (a * b) + (a * c),对于任意有理数 a、b 和 c 成立。

4. 带有变量的有理数的乘法带有变量的有理数的乘法遵循与实数乘法相同的规则,即乘法交换律、结合律和分配律。

需要注意的是,当变量的符号与数的符号不同时,结果为负数。

5. 实际应用有理数的乘法在日常生活中的应用非常广泛,例如:- 购物时计算打折后的价格。

- 解决家庭预算问题。

- 勾股定理中的边长关系。

6. 总结有理数的乘法遵循特定的规则,可以通过直接相乘并根据符号进行判断来计算结果。

了解有理数的乘法规则可以帮助我们更好地理解数学问题,并在实际应用中得到运用。

有理数乘法运算律

有理数乘法运算律

3×[(-4)×5]= -60
ቤተ መጻሕፍቲ ባይዱ
乘法结合律:三个数相乘,先把前两个数相乘,或者先把 后两个数相乘,积相等.
(ab)c=a(bc)
二、有理数乘法运算律
3、请计算
5×[3+(-7)]= -20 你发现了什么规律? 你觉得有理数的乘法满 足什么运算律?
5×3+5×(-7)= -20
乘法交换律:一个数同两个数的和相乘,等于把这个数分 别同这两个数相乘,再把积相加.
请你观察这些因数和答 案有什么规律?
例1:计算
二、有理数乘法运算律
1、请计算 (-6)×5= -30
5×(-6)= -30 你发现了什么规律? 你觉得有理数的乘法满 足什么运算律?
乘法交换律:两个数相乘,交换因数的位置,积相等. ab=ba
二、有理数乘法运算律
2、请计算
[3×(-4)]×5= -60 你发现了什么规律? 你觉得有理数的乘法满 足什么运算律?
计算 2×3×4×(-5)= -120 2×3×(-4)×(-5)= 120 2×(-3)×(-4)×(-5)= -120 (-2)×(-3)×(-4)×(-5)= 120 0×2×(-3)×4×(-5)= 0 一、多个有理数连乘 几个不是0的数相乘,负因数的个数是偶数时,积是 正数;负因数的个数是奇数时,积是负数.积的绝对值等 于各数绝对值的乘积. 如果其中有因数0,那么积等于0.
a(b+c)=ab+ac
例2:用两种方法计算

乘法与除法的有理数混合运算技巧

乘法与除法的有理数混合运算技巧

乘法与除法的有理数混合运算技巧有理数是指整数和分数的集合,包括正数、负数和零。

在数学中,乘法和除法是基本的四则运算之一。

在进行乘法和除法的混合运算时,我们需要掌握一些技巧和规律,以便简化计算并确保结果的准确性。

本文将介绍一些乘法与除法的有理数混合运算技巧,帮助读者更好地理解和应用这些运算。

一、乘法的有理数混合运算技巧1. 符号的处理:正数乘以正数、负数乘以负数,结果为正数;正数乘以负数、负数乘以正数,结果为负数。

另外,任何数乘以零都等于零。

2. 乘法的交换律:乘法满足交换律,即a × b = b × a。

利用这个性质,可以在计算时改变数的位置,使计算更简单。

3. 乘法的结合律:乘法也满足结合律,即a × (b × c) = (a × b) × c。

可以根据不同情况灵活运用结合律,以便简化计算。

4. 乘法与加法的关系:乘法与加法满足分配律,即a × (b + c) = a ×b + a × c。

通过利用分配律,可以将乘法运算分解成两个简单的乘法运算和一个加法运算,从而简化计算。

二、除法的有理数混合运算技巧1. 同号整数的除法:当两个整数同为正数或同为负数时,它们的商为正数。

反之,若一个是正数,一个是负数,则商为负数。

2. 异号整数的除法:当两个整数异号时,它们的商为负数。

3. 分数的除法:将除法运算转化为乘法运算,即a ÷ b = a × (1/b)。

将除数的倒数作为乘数,可以简化计算。

4. 除数为零的情况:任何数除以零都没有意义,因此不论是正数、负数还是零,除以零都是没有定义的。

三、示例分析以下是一些示例,通过应用乘法与除法的有理数混合运算技巧,演示具体的计算过程。

例1:计算 -5 × (-3) ÷ 2解:先进行乘法运算,(-5) × (-3) = 15。

然后进行除法运算,15 ÷ 2 = 7.5。

有理数的乘法数学教案(优秀9篇)

有理数的乘法数学教案(优秀9篇)

有理数的乘法数学教案(优秀9篇)七年级数学有理数的乘法教案及教学设计篇一一、教材分析有理数的乘法是继有理数的加减法之后的又一种基本运算。

它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。

对后续知识的学习也是至关重要的。

二、学情分析对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。

三、教学目标(核心素养立意)1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

2.初步培养学生发现问题、分析问题、和解决问题的能力。

3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,(4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。

四、教学重、难点重点:有理数的乘法法则。

难点:有理数乘法的符号法则五、教学策略我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。

六、教学过程(设计为七个环节)(一)复习导入创设情境我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。

进而引入本节课题,以问题引领来激发学生求知欲。

(二)师生互动探究新知要求学生自主学习课本内容,完成课文中的填空。

我给与学生充足的时间和空间。

通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。

有理数的乘法ppt

有理数的乘法ppt

有理数的乘法1. 什么是有理数有理数是指可以表示为两个整数的比的数,包括正整数、负整数、零和分数。

有理数可以用有限的小数、循环小数或纯循环小数表示。

常见的有理数包括: - 正整数:1,2,3… - 负整数:-1,-2,-3… - 零:0 - 分数:1/2,3/4,-2/3…2. 有理数的乘法规则有理数的乘法遵循以下规则:规则1:正数乘以正数,积为正数例如:2 *3 = 6规则2:负数乘以负数,积为正数例如:-2 * -3 = 6规则3:正数乘以负数,积为负数例如:2 * -3 = -6规则4:零乘以任何数,积为零例如:0 * 3 = 0规则5:任何数乘以零,积为零例如:3 * 0 = 0规则6:有理数相乘,乘积的绝对值等于对应因子的绝对值的乘积例如:|-2| * |-3| = 2 * 3 = 6规则7:有理数相乘,乘积的符号由乘法因子的符号决定例如:-2 * 3 = -63. 有理数乘法的例题例题1:计算乘积2 *3 = ?解答:根据规则1,正数乘以正数,积为正数,所以:2 * 3 = 6例题2:计算乘积-4 * -5 = ?解答:根据规则2,负数乘以负数,积为正数,所以:-4 * -5 = 20例题3:计算乘积-6 * 2 = ?解答:根据规则3,正数乘以负数,积为负数,所以:-6 * 2 = -12例题4:计算乘积0 * 7 = ?解答:根据规则5,任何数乘以零,积为零,所以:0 * 7 = 0结论有理数的乘法遵循一定的规则,根据乘法因子的正负性可以确定乘积的正负性,同时乘积的绝对值等于对应因子的绝对值的乘积。

通过掌握这些规则,我们可以准确计算有理数的乘法。

《有理数的乘法》知识点解读

《有理数的乘法》知识点解读

《有理数的乘法》知识点解读知识点1 有理数的乘法法则两数相乘,同号得正,异号得负,绝对值相乘.任何数与0相乘,积仍为0.几个有理数相乘,因数都不为0时,积的符号由负因数的个数而定,当负因数的个数为奇数个时,积为负;当负因数的个数为偶数个时,积为正;有一个因数为0,积为0.【例1】计算,并说明理由.5(1)(6)(9);(2)1(0.8);125(3)(7.5)0;(4)()(0.4).6-⨯-⨯--⨯-⨯+ 解析:理由有理数的乘法法则解题.答案:(1)(6)(9)(69)54.-⨯-=+⨯=(两数相乘,同号得正,绝对值相乘)5517417(2)1(0.8)(10.8)().121212515⨯-=-⨯=-⨯=-(两数相乘,异号得负,并把绝对值相乘)(3)(7.5)00.(0-⨯=任何数与相乘,积仍为0) 55521(4)()(0.4)(0.4)().66653-⨯+=-⨯=-⨯=-(两数相乘,异号得负,绝对值相乘) 方法提示:根据法则,先确定积的符号,再把绝对值相乘.【类题突破】计算: (1)(8)(25)(0.02);13(2)(2)( 1.5)()3717(3)1.25(1)( 3.2)();782014(4)(1) 3.14159(29300)0(0.03).2015-⨯-⨯--⨯-⨯+⨯-⨯-⨯--⨯⨯-⨯⨯-; 答案:(1)(8)(25)(0.02)(2000.02)4;13(2)(2)( 1.5)()377333;327217(3)1.25(1)( 3.2)()7858167()4;47582014(4)(1) 3.14159(29300)0(0.03)0.2015-⨯-⨯-=-⨯=--⨯-⨯+=⨯⨯=⨯-⨯-⨯-=-⨯⨯⨯=--⨯⨯-⨯⨯-=知识点2 有理数乘法法则的推广1.几个不等于0的有理数相乘的乘法法则几个不等于0的数相乘,积的正负号由负因数的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.积的绝对值等于各因数的绝对值的积.2.因数中有0的有理数相乘的乘法法则几个数相乘,有一个因数为0,则积为0.【例2】计算650)734()318()113)(2()145(712)2.4()6.5)(1(⨯⨯-⨯-⨯--⨯⨯-⨯- 分析:先看算式中是否有因数0,若有0,则积为0;若没有0,则先确定积的符号,再确定积的绝对值.在绝对值相乘时,一般将小数化成分数,目的是便于约分.答案: 0650)734()318()113)(2(181457155215281457122.46.5)145(712)2.4()6.5)(1(=⨯⨯-⨯-⨯--=⨯⨯⨯-=⨯⨯⨯-=-⨯⨯-⨯-【类型突破】下列各式的计算结果为正数的是( ))1(2)5()4()3.()5()4()3()2()1.(1)2(3)4()5.()1()5(43)2.(-⨯⨯-⨯-⨯--⨯-⨯-⨯-⨯-⨯-⨯⨯-⨯--⨯-⨯⨯⨯-D C B A 答案:D知识点3 乘法运算律乘法运算律(1)乘法的交换律:两个有理数相乘,交换因数的位置,积不变.即.ab ba =(2)乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.即()().ab c a bc =(3)乘法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘再把积相加.即().a b c ab ac +=+根据乘法的运算律,在进行乘法运算时,可以任意交换因数的位置,也可以将几个因数结合在一起先相乘,所得积不变.一个数同两个数的和相乘,可以把这个数分别同两个加数相乘,再把所得的积相加.【例3】计算:1(1)(2)(7)(5)();7(2)6.868(5) 6.868(12) 6.868(17);(3)2936(27)36(21)36;25(4)10(23).52-⨯-⨯-⨯-⨯-+⨯-+⨯+⨯+-⨯+-⨯-⨯-+-+ 解析:在进行有理数计算时,应先观察数字特征,尽量使用运算律简化计算过程. 答案:1(1)(2)(7)(5)()71[(2)(5)][(7)()]10110;7(2)6.868(5) 6.868(12) 6.868(17)6.868[(5)(12)(17)]6.86800;(3)2936(27)36(21)3636[29(27)(21)]36(19)684;(4)10(-⨯-⨯-⨯-=-⨯-⨯-⨯-=⨯=⨯-+⨯-+⨯+=⨯-+-++=⨯=⨯+-⨯+-⨯=⨯+-+-=⨯-=--⨯-2523)522510(2)(10)3(10)()(10)52203042531.+-+=-⨯-+-⨯+-⨯-+-⨯=-+-=-点拨:在运用分配律时应注意其逆向应用:().ab ac a b c +=+【变式练习】计算:(84)30263302(20)302.-⨯+⨯--⨯ 答案:原式=302[(84)63(20)]302(1)302.⨯-+--=⨯-=-。

有理数乘法的运算律

有理数乘法的运算律

ath74cwb
颜,问表 的安。”乐韵似嗅着猫的老鼠,一声都不敢发,至宝音足边跪下,攥着宝音裙角,不断叩头,是真心急了。宝音就着邱妈妈手里的帕 子印了印眼睛,抬起头来,对乐韵极低道:“去。”乐韵退开一点点。满地都是瓷碴,再退就要跪到瓷碴上了,她只好站起来。宝音方对洛月 轻声道:“请进来罢。”嘉颜迈进屋内,但觉表 这儿一屋子药味、一屋子萧然,举目,见地上滚着铜镜、碎着瓷碴、还湿了一大滩水,表 头 发蓬乱,满面泪痕,不由得大大生出“太过分了”的心情,口中问洛月:“姑娘这儿是怎么了?”眼睛已经剜到乐韵身上。乐韵只觉一股冷气 从脊骨往头盖骨上冒。宝音却赶在洛月开口前,小声道:“我碰掉了杯子。”乐韵低着头,还不敢抬起来,眼睛却瞪大了:碰掉?才不是!明 明摔掉!由摔到碰,一言超生,分明在维护她了。为什么忽的勃然大怒、推她到悬崖边上,为什么忽而又轻言温语,维护于她?乐韵心里乱如 一团麻,分毫也看不清 路数。她只知道一件事:识相的,她还是老实闭嘴别说话罢,否则,恐怕 真有法子叫她死无全尸。今日 ,已绝非从前 的 。嘉颜仍盯着乐韵,看出乐韵藏着忐忑,知道今日之事,怎会是“失手摔了杯子”这么简单。看表 有意息事宁人,她也乐得大事化小,小 事化了,冲乐韵冷冷道:“还不替姑娘扫地?这般躲懒,且扣去半月的月银。”宝音目光微妙的顿了一顿。乐韵连忙行动。这辈子她拿笤帚都 没这么快过。宝音亲手开了妆盒,替表 理妆,看着韩玉笙消瘦的脸、湿漉漉低垂的长睫毛,还有虽然苍白干裂了、但弧度仍然可爱的唇线。这 两片嘴唇里喘气低微、似乎无意的逸出一句问候:“宝音姐姐侍候老太太登高去了么?”嘉颜唇边那训练有素的笑意顿时一僵,几乎碎得比地 上的瓷碴儿还要碎。宝音在镜子里看她,只看了一眼。一眼之后,嘉颜重新微笑,宝音也错开眼睛。这一眼,宝音读出来的信息已经太多。而 嘉颜甚至没有发现宝音曾经抬起眼睛。妆盒中拿起一把掠子,嘉颜替宝音整理发鬓,口中夸道:“表 发质真好,又柔又润。”真的,大病经年, 未损青丝,也算得上天垂怜。嘉颜手不停,道:“表 ,这些婢子不懂事,您尽快同我讲,切莫宠惯她们,损了您的千金体。”乐韵扫着地,大 气都不敢出。韩玉笙原梳的是垂挂髻,未嫁女孩儿的双分辫儿,折上去成两鬟,鬟底留出盘平的、小小的髻,似花萼,不失少女的俏皮,而下 头温婉的双鬟,又显得宁静大方,嘉颜拆下照原样重盘,插上玳瑁如意錾花短簪,退后一步看看,不错了,转头对乐韵道:“呆站着做什么? 没看见你姑娘裙脚都打湿了?”乐韵连忙上来,蹲下去替 擦抹。嘉颜又斥道:“湿成这样,怎么擦?你还不给你姑娘拿裙子来换?”第十四章

有理数的乘法

有理数的乘法

有理数的乘法有理数是指可以表示为两个整数的比例形式的数。

有理数的乘法是数学中的基本运算之一,本文将介绍有理数的乘法规则,并通过实例进行演示。

有理数乘法的定义:设有理数a和b,我们可以用实数的乘法规则定义有理数的乘法。

有理数a与b的乘积,记作a*b,可以表示为:a *b = a×b1. 有理数乘法的性质有理数乘法满足以下性质:(1)交换律:a * b = b * a即乘法运算满足交换律,两个有理数的乘积与它们的顺序无关。

(2)结合律:(a * b) * c = a * (b * c)即乘法运算满足结合律,多个有理数相乘时,可以改变计算顺序。

(3)分配律:a * (b + c) = a * b + a * c即乘法运算对加法具有分配律,一个有理数与括号内的和相乘,等于该有理数与括号内的每个加数相乘的和。

(4)零乘法:a * 0 = 0即任何一个有理数与0相乘,结果都是0。

(5)乘法的逆元:对于除0以外的有理数a,存在一个有理数b,使得a * b = 1,称b为a的乘法逆元。

通常将a的乘法逆元记作1/a,即1/a = b。

2. 有理数乘法的计算方法有理数乘法的计算方法可以通过实例进行说明。

例题1:计算(-2/3) * (1/4)的结果。

解:根据有理数乘法的定义,我们可以将分子与分母分别相乘,得到结果。

(-2/3) * (1/4) = (-2 * 1) / (3 * 4) = -2/12 = -1/6例题2:计算(3/5) * (-2)的结果。

解:当有理数与整数相乘时,我们可以先将整数转化为分数的形式,然后按照有理数乘法的定义计算。

(3/5) * (-2) = (3/5) * (-2/1) = (3 * -2) / (5 * 1) = -6/5通过上述例题,我们可以看出有理数乘法的计算方法与实数乘法的计算方法类似,只需将分子与分母分别相乘即可。

总结:有理数的乘法是基础的数学运算之一,乘法的定义规定了有理数相乘的方式。

七年级数学上册2.9.2有理数乘法的运算律课件新版华东师大版

七年级数学上册2.9.2有理数乘法的运算律课件新版华东师大版
□×(○+◇)和□×○+□×◇. 你能发现什么?
归纳
知2-导
有理数的运算仍满足分配律. 分配律:一个数与两个数的和相乘,等于把这个数 分别与这两个数相乘,再把积相加.
a(b + c) = ab + ac.
(来自教材)
知2-讲
易错警示:运用分配律时,若括号前面为“-” 号, 去括号后,注意括号里各项都要变号.
d(ac)b.
2.多个有理数相乘的方法:先观察因数中有没有0, 若有0,则积等于0;若因数中没有0,先观察负因 数的个数,确定积的符号,再计算各因数的绝对值 的积,在求各因数的绝对值的积时要考虑运用乘法 的交换律和结合律进行简化计算,应用运算律时要 尽可能地将能约分的、凑整的、互为倒数的结合在 一起,以达到简化计算的目的.
知识点 1 多个有理数相乘
知1-导
(1)任意选择两个有理数(至少有一个是负数), 分别填人下列□和〇内,并比较两个运算结果: □ ×〇和〇 × □ ;
(2)任意选择三个有理数(至少有一个是负数), 分别填入下列□、〇和◇内,并比较两个运算 结果:(□×〇)× ◇ 和□×(〇 × ◇). 你能发现什么?
=8+3=11.
(2)
(- 3)创5
6
骣 珑 珑 珑 桫-
4 5
鼢 鼢 鼢?
骣 桫
1 4
= - 3创5 4 ? 1= - 1 . 654 2
(3)骣 ççç桫-
3 4
÷÷÷创5
0? 7 =0. 8
(来自教材)
知1-讲
思考 三个数相乘,如果积为负,其中可能有几个因
数为负数?四个数相乘,如果积为正,其中可能有 几个因数为负数?
要点精析:

第1章 有理数-第08讲 倒数、有理数的乘法(老师版)

第1章 有理数-第08讲 倒数、有理数的乘法(老师版)

第08讲倒数、有理数的乘法一、倒数1.倒数的意义:乘积是1的两个数互为倒数.(1)“互为倒数”的两个数是互相依存的.如-2的倒数是-12,-2和-12是互相依存的;(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).二、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.注意:(1)不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.注意:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.题型一、倒数例1.与15互为倒数的数是()A.-15 B.15C.5D.-5【答案】【答案】C【分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:与15互为倒数的数是5;故选:C .例2.-ǀ-5ǀ的倒数是()A.5B.-5C.15D.-15【答案】【答案】D 【分析】根据倒数的定义:指与某数相乘的积为1的数,直接作答即可.【详解】解:∵--5 =-5,-5 ×-15 =1,∴--5 的倒数为-15.故选D .例3.-2021的倒数是( )A.2021B.12021C.-2021D.-12021【答案】【答案】D【分析】根据倒数的定义,直接得出结果.·【详解】解:-2021×-12021 =1,∴2021的倒数是-12021,故选:D 例4.-15的倒数是__________,相反数是________,绝对值是_______.【答案】【答案】-1151515例5.如果一个有理数的绝对值等于这个数的倒数,那么这个有理数是__________.【答案】【答案】1例6.已知:a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是5,则代数式2019(a +b )-3cd +2m 的值为____.【答案】【答案】7或-13【分析】利用相反数,倒数,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.【详解】解:根据题意得:a +b =0,cd =1,m =5或-5,当m =5时,原式=0-3+10=7;当m =-5时,原式=0-3-10=-13.故答案为:7或-13.例7.已知不相等的两数a ,b 互为相反数,c ,d 互为倒数,m =3,求a +b -cd -m 的值.【答案】【答案】-4或2【分析】根据相反数之和为0,倒数之积等于1,可得a +b =0,cd =1,再根据绝对值的性质可得m =±3,然后代入计算即可.【详解】解:由题意可得:a +b =0,cd =1,m =±3,当m =3时,a +b -cd -m =0-1-3=-4,当m =-3时,a +b -cd -m =0-1-(-3)=2.题型二、有理数的乘法例8.下列计算正确的有()①(-3)×(-4)=-12;②(-2)×5=-10;③(-41)×(-1)=41;④0×(-5)=-5A.1个B.2个C.3个D.4个【答案】【答案】B【分析】根据有理数的乘法法则进行计算,可得正确答案.【详解】①(-3)×(-4)=12,故此项不符合题意;②(-2)×5=-10,故此项符合题意;③(-41)×(-1)=41,故此项符合题意;④0×(-5)=0,故此项不符合题意;所以正确的有②,③故选:B.例9.若a+b>0,且ab<0,则()A.a>0,b>0B.a,b异号且其中负数的绝对值较大C.a<0,b<0D.a,b异号且其中正数的绝对值较大【答案】【答案】D【分析】根据有理数的乘法法则可得a、b为异号,再根据有理数的加法法则可得正数的绝对值较大,进而得到答案.【详解】解:∵ab<0,∴a、b为异号,∵a+b>0,∴正数的绝对值较大,故选:D.例10.下列各式中积为正的是()A.(-1)×3×4B.(-1)×(-2)×3×4C.(-1)×(-2)×((-3)×4D.(-1)×(-2)×0×(-3)×(-4)【答案】【答案】B【分析】根据有理数乘法运算法则逐项计算即可.【详解】解:A. (-1)×3×4=-12,不符合题意;B. (-1)×(-2)×3×4=24,符合题意;C. (-1)×(-2)×((-3)×4=-24,不符合题意;D. (-1)×(-2)×0×(-3)×(-4)=0,不符合题意.故选:B.例11.如图,数轴上A、B两点分别对应有理数a、b,则下列结论①ab<0;②a-b>0;③a+b>0;④|a|-|b|>0中正确的有( )A.①④B.①③C.①③④D.①②④【答案】【答案】A【分析】由数轴可得:a<-1<0<b<1, a >b ,再逐一判断即可得到答案.【详解】解:∵由数轴可知,a<-1<0<b<1, a >b ,∴ab<0,a-b<0,a+b<0,|a|-|b|>0,故②③不符合题意,①④符合题意.故选:A.例12.两数相乘,同号得___,异号得____,并把绝对值_____.任何数同0相乘,仍得____.【答案】【答案】正负相乘0例13.绝对值小于4.5的所有整数的积为_____.【答案】【答案】0【分析】先找出绝对值小于4.5的整数,然后利用有理数的乘法法则进行计算即可.【详解】解:绝对值小于4.5的整数有-4,-3,-2,-1,0,1,2,3,4.∵这些因数中有一个是0,∴积为0.故答案为:0.例14.已知|x|=5,|y|=3且xy>0,则x+y=______.【答案】【答案】8或-8【分析】根据绝对值的性质求出x、y的值,再根据同号得正判断出x、y的对应关系,然后相加即可.【详解】解:∵x =5,y =3,∴x=±5,y=±3,∵xy>0,∴x=5时,y=3,x+y=5+3=8,x=-5时,y=-3,x+y=-5-3=-8,综上所述,x+y=8或-8.例15.(1)乘法交换律:ab=____(2)乘法结合律:(ab)c=_____(3)乘法分配律:a(b+c)=______【答案】【答案】ba a(bc)ab+ac例16.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.则(-2)*(6*3)=_____.【答案】【答案】-576【分析】观察定义新运算的运算法则,先计算将6*3的结果,再将结果与-2进行“*”运算即可解题.【详解】∵a∗b=4ab,∴6∗3=4×6×3=72,∴(-2)∗72=4×(-2)×72=-576故答案为:-576.例17.计算:(1)6×(-9);(2)(-15)×13;(3)(-6)×(-1);(4)(-6)×0;(5)4×14;(6)27×72;(7)-214×-49;(8)7×(-4)×(-5);(9)(-8)×(-5)×(-2)×516;(10)(-5)×(-8)×(-10)×(-15)×0.【答案】【答案】(1)-54;(2)-5;(3)6;(4)0;(5)1;(6)1;(7)1;(8)140;(9)-25;(10)0.【分析】根据有理数乘法的运算法则先确定符号、再绝对值相乘,从而得出答案.【详解】(1)6×(-9)=-54;(2)(-15)×13=-5;(3)(-6)×(-1)=6;(4)(-6)×0=0;(5)4×14=1;(6)27×72=1;(7)-214×-49=94×49=1;(8)7×(-4)×(-5)=7×20=140;(9)(-8)×(-5)×(-2)×516=-25;(10)(-5)×(-8)×(-10)×(-15)×0=0.例18.运用运算律作较简便的计算:(1)-1.25×(-5)×3×(-8);(2)512+23-34×(-12);(3)-14×(-19)-12×19-34×(-19).【答案】【答案】(1)-150;(2)-4;(3)19 2.【分析】(1)(2)(3)借助乘法结合律和乘法分配律进行运算即可.【详解】解:1 原式=-1.25×8×5×3=-150.2 原式=512×-12+23×-12-34×-12=-5-8+9=-4.3 原式=-14×-19+12×-19-34×-19,=-14+12-34×-19=-12×-19=192.例19.规定一种新运算“※”,两数a,b通过“※”运算得(a-2)×2+b,即a※b=(a-2)×2+b,例如:3※5=(3 -2)×2+5=2+5=7.根据上面规定解答下题:(1)求6※(-4)的值;(2)6※(-4)与(-4)※6的值相等吗?请说明理由.【答案】【答案】(1)4;(2)不相等,理由见解析【分析】(1)原式利用题中的新定义计算即可求出值;(2)分别求出各自的值,比较即可.【详解】解:(1)6※(-4)=(6-2)×2+(-4)=8-4=4.(2)不相等.理由:∵6※(-4)=4,(-4)※6=(-4-2)×2+6=-6,∴6※(-4)与(-4)※6的值不相等.1.有理数a、b在数轴上的位置如图所示,则下列说法正确的是()A.a+b>0B.ab>0C.b-a>0D.b -a >0【答案】【答案】D【分析】根据数轴上点的位置可得b<0<a,且b >a ,然后利用有理数的加减法及乘法计算法则进行判断求解.【详解】解:由题意可得:b<0<a,且b >a∴ a+b<0,故选项A不符合题意;ab<0,故选项B不符合题意;b-a<0,故选项C不符合题意;b -a >0,正确故选:D.2.如果a+b>0,且ab>0,那么( )A.a、b异号且负数的绝对值较小B.a、b异号且正数的绝对值较小C.a<0,b<0D.a>0,b>0【答案】【答案】D【分析】由ab>0知a与b同号,结合a+b>0知a>0,b>0.【详解】解:∵ab>0,∴a与b同号,又a+b>0,∴a>0,b>0.故选:D.3.乘积是1的两个有理数互为_______正数的倒数是_______;负数的倒数是________;_____没有倒数.两数相乘,同号得______,异号得______,并把绝对值相乘.任何数同0相乘,仍得______.【答案】倒数正数负数0正负04.(1)|-2|×(-2)=____,(2)-12×5.2=_____,(3)-12-12=____,(4)-3-|-5.3|=_____.【答案】【答案】-4 2.60-8.3【分析】(1)先求出|-2|=2,然后再用有理数乘法运算法则即可求解;(2)先求出-12=12,然后再用有理数乘法运算法则即可求解;(3)用有理数减法法则求解即可;(4)先求出|-5.3|=5.3,然后用有理数减法法则求解即可.【详解】解:(1)原式=2×(-2)=-4,故答案为:-4;(2)原式=12×5.2=2.6,故答案为:2.6;(3)原式=12-12=0,故答案为:0;(4)原式=-3-5.3=-3+(-5.3)=-8.3,故答案为:-8.3.5.几个不等于零的数相乘,积的符号由负因数的个数决定:(1)当负因数的个数是______时,积是正数;(2)当负因数的个数是______时,积是负数.【答案】【答案】偶数奇数6.若定义一种新的运算“*”,规定有理数a*b=3ab,如2*(-4)=3×2×(-4)=-24.则16*(-2*5)=_____.【答案】【答案】-15【分析】根据a*b=3ab,可以求得所求式子的值.【详解】解:∵a*b=3ab,∴16*(-2*5)=16*[3×(-2)×5]=16*(-30)=3×16×(-30)=-15,故答案为:-15.7.若a,b互为相反数,c,d互为倒数,|m|=3,则2017(a+b)-2cd+m=________.【答案】【答案】1或-5【分析】根据相反数、倒数的定义和绝对值的意义得到a+b=0,cd=1,m=3或m=-3,则原式=m-2,然后把m的值分别代入计算即可.【详解】解:根据题意得a+b=0,cd=1,m=3或m=-3,所以原式=2017×0-2×1+m=m-2,当m=3时,原式=3-2=1;当m=-3时,原式=-3-2=-5.故答案为:1或-5.8.计算:(1)14×-89;(2)-56×-310;(3)-2415×25;(4)(-0.3)×-137;(5)-2×3×(-4);(6)-6×(-5)×(-7);(7)0.1×(-0.001)×(-1);(8)(-100)×(-1)×(-3)×(-0.5);(9)(-17)×(-49)×0×(-13)×37;(10)-4120×1.25×(-8);(11)(-10)×(-8.24)×(-0.1);(12)-56×2.4×35;(13)711516×(-8).【答案】【答案】(1)-29;(2)14;(3)-1703;(4)37;(5)24;(6)-210;(7)0.0001;(8)150;(9)0;(10)8110;(11)-8.24;(12)-1.2;(13)-575.5.【详解】试题分析:(1)约分.(2)约分.(3)带分数化假分数,约分.(4)小数化分数,带分数化假分数约分.(5)(6)(7)(8)直接计算.(9)因数有0,直接为0,.(10)带分数化假分数,小数化分数,约分.(11)直接计算.(12)小数化分数,约分.(13)把带分数化为两个数的和利用乘法分配律计算.(1)14×-89= -29;(2)-56×-310= 14;(3)-2415×25=-3415×25=-1703;(4)(-0.3)×-137=310×107=37;(5)-2×3×(-4)=24;(6)-6×(-5)×(-7)=-210;(7)0.1×(-0.001)×(-1)=0.0001;(8)(-100)×(-1)×(-3)×(-0.5)=150;(9)(-17)×(-49)×0×(-13)×37=0;(10)-4120×1.25×(-8)=8120×54×8=8110;(11)(-10)×(-8.24)×(-0.1)=-8.24;(12)-56×2.4×35=-56×125×35=-65=-1.2;(13)711516×(-8)=-71+1516×8=-71×8+1516×8=-568+152=-575.5.9.计算:(1)--43 ×-1.5 ;(2)-|-2.5|×--225;(3)45×-256 ×-710 ;(4)54×-1.2 ×-19.【答案】【答案】(1)-2;(2)-15;(3)73;(4)16.【详解】(1)--43 ×-1.5 =--43 ×-32=-43×32 =-2;(2)-|-2.5|×--225 =-52×225=-15;(3)45×-256 ×-710 =45×256×710=73;(4)54×-1.2 ×-19 =54×65×19=16.10.若定义一种新的运算“*”,规定有理数a *b =4ab ,如2*3=4×2×3=24.(1)求3*(-4)的值;(2)求(-2)*(6*3)的值.【答案】【答案】(1)-48;(2)-576【分析】(1)根据a *b =4ab ,把3*(-4)转化为常规运算计算即可;(2)根据a *b =4ab ,先算6*3,再算(-2)*(6*3)即可.【详解】解:(1)∵a *b =4ab ,∴3*(-4)=4×3×(-4)=-48;(2)∵a *b =4ab ,∴(-2)*(6*3)=(-2)*(4×6×3)=(-2)*72=4×(-2)×72=-576.。

有理数的乘除混合运算

有理数的乘除混合运算

•有理数乘除法基础•乘除法运算规则•乘除混合运算实例•乘除混合运算的应用•乘除混合运算的练习与巩固目录01有理数乘法定义乘法运算的数学符号乘法运算的顺序有理数乘法定义1有理数除法定义23除法运算是一种特殊的减法运算,即当两个有理数相除时,等于将它们对应的数相除,并取商的符号。

有理数除法定义除法运算通常用符号“÷”表示,有时也用符号“/”表示。

除法运算的数学符号当被除数为0时,商无定义;当除数为0且被除数不为0时,商也无定义。

除法运算的特殊情况乘法与加法的结合律乘法的交换律除法的可交换性乘除法的可结合性乘除法的基本性质01乘法运算规则除法运算规则$a \div b = \frac{a}{b}$,其中$b \neq 0$除法的定义商的定义除法的性质除法的运算律$\frac{a}{b}$表示$a$可以被$b$整除的次数当$a \div b = c$时,则$a = b \times c$$(a \div b) \div c = a \div (b\times c)$,$a \div (b \div c) = a \div b \times c$乘除法的简化约分通分消去分母分数的通分和约分01乘除混合运算规则030201乘除混合运算实例解析03利用分配律乘除混合运算的技巧01利用交换律和结合律02分拆法01商业计算物理科学在实际问题中的应用代数方程三角函数在数学问题中的应用计算机科学在计算机科学中,有理数的乘除混合运算被广泛用于数据加密、密码破解、数据压缩和图像处理等领域。

例如,在数据压缩中,可以使用有理数乘除混合运算来减少数据的大小,以便更有效地存储和传输数据。

统计学在统计学中,有理数的乘除混合运算被用于计算平均值、中位数、标准差等统计指标。

例如,在计算平均值时,可以使用有理数乘除混合运算来对数据进行加权平均。

在科学计算中的应用01乘除混合运算的练习方法乘除混合运算的练习题目基础题目例如,(2+3)×4÷(1+5),10÷(3-2)×4,(4+5)×3÷(2+1)等。

第2章 7 第2课时 有理数的乘法运算律

第2章 7 第2课时 有理数的乘法运算律

5.计算: (1)(-172)×(-2)×(-4)×(-517)×(-25)×5; 解:原式=-(172×376)×(2×5)×(4×25) =-3×10×100 =-3000 (2)(1375-47+54)×(-35). 解:原式=1375×(-35)+(-47)×(-35)+54×(-35) =-17+20-28 =-25
1.填写计算过程中应用的运算律.
[(8×4)×125-5]×25
=[(4×8)×125-5]×25 =[4×(8×125)-5]×25
乘法交换律 乘法结合律
=4000×25-5×25
乘法分配律
2.计算:(-3.14)×5.597+(-31.4)×(-0.5597)= 0 .
3.计算:(12-56+152-274)×24 的结果是( D )
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

6.(-0.125)×20×(-8)×(-0.8)=[(-0.125)×(-8)]×[20×(-0.8)],运算
中没有运用的乘法运算律为( C )
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/32021/9/3Friday, September 03, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/32021/9/32021/9/39/3/2021 10:00:40 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/32021/9/32021/9/3Sep-213-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/32021/9/32021/9/3Friday, September 03, 2021

有理数乘法的运算律

有理数乘法的运算律
回顾与思考
1.有理数乘法法则是什么? 2.如何进行有理数的乘法运算?
3.小学时候大家学过乘法的那些运算律? 学过: 乘法交换律 ,乘法结合律,乘法分配律
有理数乘法法则:
两数相乘,同号得正,异号得负, 并把绝对值相乘。 任何数和零相乘,都得 0 .
根据有理数的乘法法则,我们得出计算两个 不为0的数相乘步骤为:
1. 7 × (- 5)= - 35
(-5)× 7 = - 35
2.(-8)× (-4)= 32
3.(-2)× 4 × (-3) = 24
(-4)×(-8) = 32
(-2)×[ 4 × (-3) ] = 24
4. (-4)× (-6) × (-2) = - 48 (-4)×[ (-6) × (-2)] = - 48 可见,有理数的乘法仍满足交换律和结合律。
1.积的符号和各个因数的符号有什么关系? 2.积的绝对值和各个因数的绝对值有什么关系?
我们得出:
几个不为0的数相乘,积的符号由 负因数的个数决定:
当负因数的个数有奇数个时, 积为负.
当负因数的个数有偶数个时, 积为正. 几个数相乘,如果存在因数为0的,那么积为 0 .
例3 计算: (1) 8 + ( - 0.5 ) × ( -8 ) × 3/4 (2) ( - 3 ) × 5/6 × ( -4/5 ) × (-1/4) (3) ( -3/4) × 5 × 0 × 7/8
1. 先确定积的符号。
2.计算积的绝对值。
2. 有理数乘法的运算律
(1)乘法交换律和乘法结合律 在小学里,我们都知道:数的乘法满足交换律 和结合律;例如: 3× 5 = 5 × 3 ( 3 × 5 ) × 2 = 3 × ( 5× 2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 1 计算: 32 @ ( - 8. 5) @ ( - 25) .
分析 把 32 化为 4 @ 8, 再把 4 与 25 结合 相乘.
解 原式= ( 8 @ 8. 5) @ ( 4 @ 25) = 68 @
100= 6800. 点拨 运用乘法交换律的目的 是为了乘
法结合律的应用, 而运用乘法结合律的目的则 是为了计算的简便, 乘法运算中能够简便计算 的两数常见的是互为倒数或积为整百、整千的
14, 逆用乘法分配律可分别提取.

原式=
0. 7 @ ( 19
5 9
+
4 9
)
-
14( 2
3 4
+ 3. 25) = 0. 7 @ 20- 14 @ 6= 14- 84= - 70. 点拨 逆用乘法 分配律实际上是把和差
运算转化为积的运算, 其中寻找各数相同的因 数是问题解决的关键.
四、巧用乘法分配律
两数. 二、合理地运用乘法分配律
例2
计算:
(-
28)
@
(
1 2
-
2 7
-
3 14
+
278) . 分析 若先算括号内需要通分较繁, 注意
到括号内数的分母都是 28 的约数, 因此, 运用 乘法分配律可以简化计算.

原式=
(-
28)
@
1 2
+
(-
28)
@ (-
2 7
)
+
(-
28)
@ (-
134) +
(-
江苏省姜堰市第四中学( 225500) 颜小兵
有理数乘法运算是继加法和减法运算后
的又一种运算, 也是有理数除法运算和乘方运 算的基础, 学好有理数乘法运算是学好有理数 运算的关键, 在进行有理数乘法运算时, 要注 意根据题目的特点, 灵活选取合理的方法, 才 能避开繁杂的运算, 做到既快速又准确.
一、合理地运用乘法交换律和结合律
2 8)
@ 278=
-
14 +
8+ 6- 7= - 7. 点拨 应用乘法分配律可以打破/ 先算括
号0的计算习惯, 大大简化乘法与加法的运算. 三、合理地逆用乘法分配律
例3
计算: 0. 7 @ 19
5 9
+
2
3 4
@ (-
14) +
7 10
@
4 9
-
3.
25 @ 14.
分析 注意到各部分分别有 因数 0. 7 和
+
75
@
16 25
+
25 32
@
16 25
=
120 0 +
25 2
+
48+
1 2
=
12 61. 点拨 把一个数拆为几个数的和, 然后运
用乘法分配律进行计算是本题解法的巧妙之
处. 当一 个算式按 常规的 解法进 行计算 较繁 时, 要善于思考、变形, 然后应用相关的运算律
来进行简化计算, 以提高运算能力. ( 责审 赵大悌)
网址: z xss. chinajournal. hin ajourn al. n et. cn
例4
计算:
75
25 32
@
16
1 2
65.
分析 按常规解法, 直接化为假分数约分
显然计算量较大, 把整数与分数分离后再运用 乘法分配律可以简化运算.

原式=
( 75+
25 32
)
@
( 16+
1265) =
( 75+
2352)
@ 16+
( 75+
25 32
)
@
16 25
=
75 @ 16+
25 32
@
16
智慧窗5新年好趣题6 参考答案
( 1) 10+ 32 + 73 + 54 + 45 = 2011; ( 2) 110 + 28 + 36+ 54 + 202 = 2011; ( 3) 23+ 172 + 73 + 44 + 35 + 36 + 27 = 2011; ( 4) 103 + 83 + 73 + 33 + 43 + 43 + 13= 2011.
相关文档
最新文档