matlab数学实验

合集下载

matlab数学实验

matlab数学实验

《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。

(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。

【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。

(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。

(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。

(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。

【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。

0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。

reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。

A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。

高等数学:MATLAB实验

高等数学:MATLAB实验
以上两种格式中的x、y都可以是表达式.plot是绘制二维 曲线的基本函数,但在使用 此函数之前,需先定义曲线上每一 点的x及y的坐标.
MATLAB实验
2.fplot绘图命令 fplot绘图命令专门用于绘制一元函数曲线,格式为:
fplot('fun',[a,b]) 用于绘制区间[a,b]上的函数y=fun的图像.
MATLAB实验 【实验内容】
MATLAB实验
由此可知,函数在点x=3处的二阶导数为6,所以f(3)=3为 极小值;函数在点x= 1处的二阶导数为-6,所以f(1)=7为极大值.
MATLAB实验
例12-10 假设某种商品的需求量q 是单价p(单位:元)的函 数q=12000-80p,商 品的总成本C 是需求量q 的函数 C=25000+50q.每单位商品需要纳税2元,试求使销售 利润达 到最大的商品单价和最大利润额.
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验 实验九 用 MATLAB求解二重积分
【实验目的】 熟悉LAB中的int命令,会用int命令求解简单的二重积分.
MATLAB实验
【实验M步A骤T】 由于二重积分可以化成二次积分来进行计算,因此只要
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
实验七 应用 MATLAB绘制三维曲线图
【实验目的】 (1)熟悉 MATLAB软件的绘图功能; (2)熟悉常见空间曲线的作图方法.
【实验要求】 (1)掌握 MATLAB中绘图命令plot3和 mesh的使用; (2)会用plot3和 mesh函数绘制出某区间的三维曲线,线型

MATLAB数学实验

MATLAB数学实验

实验三 圆周率的计算学号: 姓名:XX一、 实验目的1. 本实验涉及概率论、定积分、三角函数等有关知识,要求掌握计算π的三种方法及其原理。

2. 学习和掌握数学软件MATLAB 的使用方法。

二、 实验内容圆周率是一个极其驰名的数。

从有文字记载的历史开始,这个数就引起了外行人和学者们的兴趣。

作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。

仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。

事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代又一代数学家为此献出了自己的智慧和劳动。

回顾历史,人们对π的认识过程,反映了数学和计算技术发展情形的一个侧面。

π的研究,在一定程度上反映这个地区或时代的数学水平。

德国数学家康托说:“历史上一个国家所算的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。

”直到19世纪初,求圆周率的值还是数学中的头号难题。

1. 圆周率的计算方法古人计算圆周率,一般是用割圆法。

即用圆的内接或外切多边形来逼近圆的周长。

Archomedes 用正96边形得到35位精度;刘徽用正3072边形得到5位精度;Ludolph V an Ceulen 用正2^62边形得到了35位精度。

这种基于几何的算法计算量大,速度慢,吃力不讨好。

随着数学的发展,数学家们在进行数学研究时有意无意得发现了许多计算圆周率的公式。

下面挑选一些经典的常用公式加以介绍。

除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。

1) Machin 公式2391a r c t a n451a r c t a n 16-=π ()121...753arctan 121753--++-+-=--n x x x x x x n n 这个公式由英国天文学教授John Machin 于1706年发现。

他利用这个公式计算到100位的圆周率。

Machin 公式每计算一项可以得到1.4位的十进制精度。

(完整word版)Matlab数学实验报告

(完整word版)Matlab数学实验报告

Matlab 数学实验报告一、实验目的通过以下四组实验,熟悉MATLAB的编程技巧,学会运用MATLAB的一些主要功能、命令,通过建立数学模型解决理论或实际问题。

了解诸如分岔、混沌等概念、学会建立Malthu模型和Logistic 模型、懂得最小二乘法、线性规划等基本思想。

二、实验内容2.1实验题目一2.1.1实验问题Feigenbaum曾对超越函数y=λsin(πx)(λ为非负实数)进行了分岔与混沌的研究,试进行迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图2.1.2程序设计clear;clf;axis([0,4,0,4]);hold onfor r=0:0.3:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.5)for i=101:150plot(r,x(i),'k.');endtext(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end加密迭代后clear;clf;axis([0,4,0,4]);hold onfor r=0:0.005:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.1)for i=101:150plot(r,x(i),'k.');endend运行后得到Feigenbaum图2.2实验题目二2.2.1实验问题某农夫有一个半径10米的圆形牛栏,长满了草。

他要将一头牛拴在牛栏边界的桩栏上,但只让牛吃到一半草,问拴牛鼻子的绳子应为多长?2.2.2问题分析如图所示,E为圆ABD的圆心,AB为拴牛的绳子,圆ABD为草场,区域ABCD为牛能到达的区域。

问题要求区域ABCD等于圆ABC的一半,可以设BC等于x,只要求出∠a和∠b就能求出所求面积。

MATLAB数学实验第二版课后练习题含答案

MATLAB数学实验第二版课后练习题含答案

MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。

要求输出结果精确至小数点后两位。

答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。

要求输出结果精确至小数点后两位。

答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。

MATLAB数学实验100例题解

MATLAB数学实验100例题解

一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧。

初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势。

解:程序代码:>〉 x=linspace (0,2*pi,600); t=sin (x)。

/(cos (x )+eps );plot(x ,t);title (’tan (x )');axis ([0,2*pi ,-50,50]); 图象:程序代码: 〉〉 x=linspace (0,2*pi,100); ct=cos (x)。

/(sin(x)+eps ); plot(x,ct );title(’cot(x)');axis ([0,2*pi ,—50,50]); 图象:cot(x)4在区间]1,1[-画出函数xy 1sin =的图形。

解:程序代码:>> x=linspace (-1,1,10000);y=sin(1。

/x ); plot (x,y ); axis ([-1,1,—2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>〉 t=linspace(0,2*pi,100); plot(cos(t ).*cos (5*t ),sin(t )。

*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:〉〉 t=0:0.01:2*pi ; r=exp (t/10);polar(log(t+eps ),log (r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形。

matlab数学实验课程设计

matlab数学实验课程设计

matlab数学实验课程设计一、教学目标本课程的教学目标是使学生掌握MATLAB的基本使用方法,能够利用MATLAB进行数学实验,从而加深对数学知识的理解和应用能力。

知识目标包括:掌握MATLAB的基本语法和操作;能够运用MATLAB进行线性代数、微积分、概率论等数学运算;了解MATLAB在数学建模和数据分析方面的应用。

技能目标包括:能够独立设置MATLAB的工作环境;能够编写简单的MATLAB脚本进行数学实验;能够利用MATLAB进行数学问题的求解和分析。

情感态度价值观目标包括:培养学生的创新意识和实践能力;增强学生对数学学科的兴趣和好奇心;培养学生团队合作和交流分享的良好学习习惯。

二、教学内容根据课程目标,教学内容主要包括MATLAB的基本使用、数学实验两个部分。

MATLAB的基本使用包括:MATLAB的安装和启动、工作环境设置、基本语法和操作。

数学实验包括:线性代数实验、微积分实验、概率论实验等。

具体的教学大纲如下:1.MATLAB的基本使用:第1-3周,每周2课时,共6课时。

主要讲解MATLAB的安装和启动、工作环境设置、基本语法和操作。

2.线性代数实验:第4-6周,每周2课时,共6课时。

主要内容包括矩阵运算、线性方程组求解、特征值和特征向量计算等。

3.微积分实验:第7-9周,每周2课时,共6课时。

主要内容包括函数图像绘制、极限和导数的计算、积分运算等。

4.概率论实验:第10-12周,每周2课时,共6课时。

主要内容包括随机数生成、概率分布函数计算、统计量计算等。

三、教学方法本课程采用讲授法、实验法、讨论法相结合的教学方法。

讲授法用于讲解MATLAB的基本使用和数学理论知识;实验法用于让学生亲自动手进行数学实验,加深对知识的理解和应用能力;讨论法用于引导学生进行思考和交流,培养学生的创新意识和团队合作能力。

四、教学资源教学资源包括教材、多媒体资料、实验设备等。

教材选用《MATLAB数学实验》一书,多媒体资料包括PPT课件和实验指导视频,实验设备包括计算机和MATLAB软件。

matlab数学实验报告

matlab数学实验报告

MATLAB数学实验报告指导老师:班级:小组成员:时间:201_/_/_Matlab第二次实验报告小组成员:1题目:实验四;MATLAB选择结构与应用实验目的:掌握if选择结构与程序流程控制;重点掌握break;return;pause语句的应用..问题:问题1:验证“哥德巴赫猜想”;即:任何一个正偶数n>=6均可表示为两个质数的和..要求编制一个函数程序;输入一个正偶数;返回两个质数的和..问题分析:由用户输入一个大于6的偶数;由input语句实现..由if判断语句判断是否输入的数据符合条件..再引用质数判断函数来找出两个质数;再向屏幕输出两个质数即可..编程:function z1;z2=geden;n=input'please input n'if n<6disp'data error';returnendif modn;2==0for i=2:n/2k=0;for j=2:sqrtiif modi;j==0k=k+1;endendfor j=2:sqrtn-iif modn-i;j==0k=k+1;endendif k==0fprintf'two numbers are'fprintf'%.0f;%.0f';i;n-ibreakendendend结果分析:如上图;用户输入了大于6的偶数返回两个质数5和31;通过不断试验;即可验证哥德巴赫猜想..纪录:if判断语句与for循环语句联合嵌套使用可使程序结构更加明晰;更快的解决问题..2题目:实验四;MATLAB选择结构与应用实验目的:用matlab联系生活实际;解决一些生活中常见的实际问题..问题:问题四:在一边长为1的四个顶点上各站有一个人;他们同时开始以等速顺时针沿跑道追逐下一人;在追击过程中;每个人时刻对准目标;试模拟追击路线;并讨论.. (1)四个人能否追到一起(2)若能追到一起;每个人跑过多少路程(3)追到一起所需要的时间设速率为1问题分析:由正方形的几何对称性和四个人运动的对称性可知;只需研究2个人的运动即可解决此问题..编程:hold onaxis0 1 0 1;a=0;0;b=0;1;k=0;dt=0.001;v=1;while k<10000d=norma-b;k=k+1;plota1;a2;'r.';'markersize';15;plotb1;b2;'b.';'markersize';15;fprintf'k=%.0f b%.3f;%.3f a%.3f;%.3f d=%.3f\n';k;b1;b2;a1;a2;da=a+b1-a1/d*dt;b2-a2/d*dt;b=b+b2-a2/d*dt;-b1-a1/d*dt;if d<=0.001breakendendfprintf'每个人所走的路程为:%.3f';k*v*dtfprintf'追到一起所需要的时间为%.3f';k*dt结果分析:上图为2人的模拟运动路线;有对称性可解决所提问题..-上图为运算过程和运算结果..四个人可以追到一起;走过的路程为1.003;时间也为1.003.纪录:此题利用正方形和运动的对称性可以简便运算..3题目:实验八;河流流量估计与数据插值目的:由一些测量数据经过计算处理;解决一些生活实际问题..问题:实验八上机练习题第三题:瑞士地图如图所示;为了算出他的国土面积;做以下测量;由西向东为x轴;由南向北为y轴;从西边界点到东边界点划分为若干区域;测出每个分点的南北边界点y1和y2;得到以下数据mm..已知比例尺1:2222;计算瑞士国土面积;精确值为41288平方公里..测量数据如下:x=7.0 10.5 13.0 17.5 34 40.5 44.5 48 56 61 68.5 76.5 80.5 91 96 101 104 106 111.5 118 123.5 136.5 142 146 150 157 158 ;y1=44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32 65 55 54 52 50 66 66 68;y2=44 59 70 72 93 100 110 110 110 117 118 116 118 118 121 124 121 121 121 122 116 83 81 82 86 85 68;问题分析:先由题目给定的数据作出瑞士地图的草图;再根据梯形法;使用trapz语句;来估算瑞士国土的面积..编程:x=7.0 10.5 13.0 17.5 34 40.5 44.5 48 56 61 68.5 76.5 80.5 91 96 101 104 106 111.5 118 123.5 136.5 142 146 150 157 158;y1=44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32 65 55 54 52 50 66 66 68;y2=44 59 70 72 93 100 110 110 110 117 118 116 118 118 121 124 121 121 121 122 116 83 81 82 86 85 68;plotx;y1;'r.';'markersize';15;plotx;y2;'r.';'markersize';15;axis0 160 0 135grid;hold ont=7:158;u1=splinex;y1;t;u2=splinex;y2;t;plott;u1plott;u2s1=trapzt;u1;s2=trapzt;u2;s=s2-s1*2222*22222/10000000;fprintf'S=%.0f';s结果分析:上图为由所给数据绘制出的瑞士地图..上图为运算结果;计算出瑞士的国土面积为42472平方公里;与准确值41288较为接近..纪录:使用梯形分割的方法;trapz语句可以方便计算不规则图形面积;但存在一定误差..4题目:实验七:圆周率的计算与数值积分目的:将数值积分最基本的原理应用于matlab之中;解决一些与积分有关的问题..问题:实验七上机练习题第一题:排洪量某河床的横断面如图7.3所示;为了计算最大排洪量;需要计算其断面积;试根据所给数据m用梯形法计算其断面积..问题分析:河床断面可近似分割成若干曲边梯形;近似处理把它们当做梯形来计算面积可使问题得到简化..编程:clc;clear;x=0 4 10 12 15 22 28 34 40;y=0 1 3 6 8 9 5 3 0;y1=10-y;plotx;y1;'k.';'markersize';15;axis0 40 0 10;grid;hold ont=0:40;u=splinex;y1;t;plott;u;s=40*10-trapzt;u;fprintf's=%.2f\n';s结果分析:上图为河床的断面图..上图为计算结果面积约为180.70平方米..纪录:使用梯形法计算不规则图形面积十分简便易行..5题目:实验七:圆周率的计算与数值积分目的:使用matlab计算解决一些有关积分的问题..问题:实验七上机练习题第三题:从地面发射一枚火箭;在最初100秒内记录其加速度如下;试求火箭在100秒时的速度..Ts=0 10 20 30 40 50 60 70 80 90 100;Am/s*s=30.00 31.63 33.44 35.47 37.75 40.33 43.29 46.69 50.67 54.01 57.23;问题分析:加速度为速度的微分;已知微分求积分;类似于面积问题;可使用梯形法来计算..编程:clc;clear;x=0 10 20 30 40 50 60 70 80 90 100;y=30.00 31.63 33.44 35.47 37.75 40.33 43.29 46.69 50.6754.01 57.23;plotx;y;'k.';'markersize';15;axis0 100 20 60;grid;hold ons=0:10:100;z=splinex;y;s;plots;y;v=trapzx;y;fprintf'v=%.2f\n';v结果分析:上图为加速度变化图..上图为计算结果;求得火箭在100秒时速度约为4168.95m/s..纪录:梯形法可以推广解决许多已知微分求积分的其他问题..6题目:实验七:圆周率的计算与数值积分目的:计算曲线弧长闭曲线周长可使用微元法;ds=sqrtdx^2+dy^2;在转化微积分问题;累加即可得到结果..问题:实验七上机练习题第三题:计算椭圆想x^2/4+y^2=1的周长;使结果具有五位有效数字..问题分析:编程:s=0;dx=0.001;for x=0:0.001:1.999dy=1.-x+0.001.^2/4-1.-x.^2/4;ds=sqrtdx.^2+dy.^2;s=s+ds;ends=4*s;fprintf'the length is'fprintf'%.4f';s结果分析:上图为计算结果;给定椭圆的周长约为9.1823五位有效数字纪录:计算不规则曲线弧长;可使用微元法;划分为若干小的看做直角三角形;利用勾股定理解决..7题目:实验九人口预测与数据拟合目的:掌握一些曲线拟合的方法;了解曲线拟合常用函数..问题:用电压U=10v的电池给电容器充电;t时刻的电压Vt=U-U-V0exp-t/τ;其中V0是电容器的初始电压;τ是充电常数;由所给数据确定V0和τ..t=0.5 1 2 3 4 5 7 9;V=3.64 3.52 2.74 1.78 1.34 1.01 0.57 0.37;问题分析:题中已给出函数关系式;为指数函数曲线拟合;将所给函数式整理可得标准的exp形函数曲线;从而便于解决..编程:t=0.5 1 2 3 4 5 7 9;V=3.64 3.52 2.74 1.78 1.34 1.01 0.57 0.37;plott;V;'k.';'markersize';20;axis0 10 0 4;grid;hold onpause0.5n=8;a=sumt1:n;b=sumt1:n.*t1:n;c=sumlogV1:n;d=sumt1:n.*logV1:n;A=n a;a b;B=c;d;p=invA*Bx=0:10;y=expp1+p2*x;plotx;y;'r-';'linewidth';2结果分析:上图为电压与时间关系图..上图为计算结果;即U-V0=1.4766;所以V0=8.5234;-1/τ=-0.2835;所以τ=3.5273纪录:曲线拟合的一个重难点是选择合适的曲线函数;才能提高拟合度..8题目:实验七圆周率的计算与数值积分目的:拓展圆周率的各种计算方法;掌握其他数值的近似计算方法..问题:实验七练习2:计算ln2的近似值精确到10的-5次方(1)利用级数展开的方法来计算(2)利用梯形法计算(3)利用抛物线法问题分析:级数展开;梯形法;抛物线法是常见的近似运算方法..编程:1级数展开的方法clc;clear;n=0;r=1;p=0;k=-1;while r>=0.1e-5n=n+1;k=k*-1;p1=p+k/n;r=absp1-p;fprintf'n=%.0f;p=%.10f\n';n;p1;p=p1;end2梯形法clc;clear;f=inline'1./x';x=1:0.1:2;y=fx;p=trapzx;y;fprintf'p=%.6f\n';p3抛物线法clc;clear;f=inline'1./x';a=1;b=2;n=1;z=quadf;a;b;fprintf'z=%.10f\n';z结果分析:(1)级数展开的方法(2)梯形法3抛物线法纪录:级数展开法;梯形法;抛物线法;计算近似值时应合理利用..梯形法和抛物线法不易提高精确度;级数展开法可以提高精确度..9题目:实验八河流流量估计与数据插值目的:掌握求插值多项式的方法;并利用此计算近似值..问题:已知y=fx的函数表如下x=0.40 0.55 0.65 0.80 0.90 1.05;y=0.41075 0.57815 0.69675 0.88811 1.02652 1.25382;求四次拉格朗日插值多项式;并由此求f0.596问题分析:利用所给函数表可计算拉格朗日插值多项式..编程:function p=lagrangex;yL=lengthx;a=onesL;for j=2:La:;j=a:;j-1.*x';endx=inva*y';for i=1:Lpi=xL-i+1;endx=0.40 0.55 0.65 0.80 0.90 1.05;y=0.41075 0.57815 0.69675 0.88811 1.02652 1.25382; plotx;y;'k.';'markersize';15axis0 2 0 2grid;hold on;p=lagrangex;y;t=0:0.1:1.5;u=polyvalp;t;plott;u;'r-'a=polyvalp;0.596结果分析:上图为所求结果;估算值和插值多项式..纪录:插值多项式是一项十分实用的方法..10题目:求正整数n的阶乘:p=1*2*3*…*n=n;并求出n=20时的结果目的:练习使用循环变量解决数学问题问题:对程序:Clear;clc;n=20;p=1;for i=1:np=p*i;fprintf’i=%.0f;p=%.0f\n’;i;pend进行修改使它:利用input命令对n惊醒赋值问题分析:题中给出程序中“n=20”修改;使用input命令;讲题中的输出命令放出循环之外..编程:clear;clc;n=input'n=';p=1;for i=1:np=p*i;endfprintf'i=%.0f;p=%.0f\n';i;p结果:n=20i=20;p=2432902008176640000>>结果分析:使用input命令可以实现人机对话;使用户自由赋值;输出语句在程序中的位置对输出的结果有很大的影响;在循环内部可以在计算过城中不断输出结果;在循环之外则可以控制只输出最后结果..11题目:对于数列{√2};n=1;2;…;求当其前n项和不超过1000时的n的值及合的大小..目的:运用条件循环解决文帝个项数的循环程序求解;问题:对程序:clear;clc;n=0;s=0;while s<=1000n=n+1;s=s+sqrtn;fprintf’n=%.0f;s=%.4f\n’;n;send问题分析:题中所给程序中的限制变量为上次循环之后的s;导致s超过上限后仍有一次的循环;若把循环变量改为这次的s;则可以避免这种情况的发生..编程:clear;clc;n=0;s=0;while s+sqrtn<=1000n=n+1;s=s+sqrtnfprintf'n=%.0f;s=%.4f\n';n;send结果:……s =970.8891n=128;s=970.8891s =982.2469n=129;s=982.2469s =993.6487n=130;s=993.6487>>结果分析:从结果中可以看出;最后一步为我们需要的答案;从这道题我们可以得出循环变量对一道编程的重要性..。

matlab实验报告(实验4)

matlab实验报告(实验4)

学生实验报告开课学院及实验室: 机电学院2012年12月21日学院机电学院年级、专业、班姓名学号实验课程名称MATLAB程序设计成绩实验项目名称实验4: 数据和函数的可视化指导老师一、实验目的1、掌握MATLAB绘图的基本步骤和相关指令调用的先后顺序。

2、掌握MATLAB绘图指令的调用方法。

二、实验内容数学函数从形式上可以分为离散函数和连续函数。

MATLAB对这两种函数数据的可视化都提供了相应的指令。

仔细阅读教材【例5.1-1】的实现代码, 运行并保存结果;并改用stem函数, 画出【例5.1-1】的序列图。

仔细阅读教材【例5.1-2】的实现代码, 运行并保存结果;并分别使用描点和连折线方式, 画出连续函数y=xcosx的近似图形(采样点数自定, 要求画出的图尽量接近原连续函数的图)。

仔细阅读【例5.2-2】的实现代码, 理解plot指令画多条曲线的运用方法, 运行并保存结果;并使用plot函数和legend函数, 在同一个图形窗口上画出y=sint和y=sin(2t)在[0,2pi]区间上的图形, 并标出图例。

仔细阅读【例5.2-4】的实现代码, 理解图形标识选项的运用方法, 运行并保存结果;并修改代码, 把“sin(t)”字体改为正体, 大小改为20, “极大值”改为宋体。

阅读【例5.2-6】, 理解使用hold on指令画多幅图的方法, 运行并保存结果。

阅读【例5.2-8】, 理解使用subplot函数画多个子图的方法, 运行并保存结果。

(1)综合实验: 阅读以下关于通过绘制二阶系统阶跃响应综合演示图形标识的示例, 理解示例中所有图形标识指令的作用, 掌握各个图形标识指令的运用方法, 并在原指令上改动以实现以下功能:(2)把横坐标范围改为0至5pi, 纵坐标范围改为0至2;(3)把图中的横轴的刻度改为从0开始到4pi, 中间各点间隔为pi/2;纵轴刻度改为从0开始到1.5, 中间各点间隔为0.3;(4)把图中的α改为σ。

计算方法matlab实验报告

计算方法matlab实验报告

计算方法matlab实验报告计算方法MATLAB实验报告引言:计算方法是一门研究如何用计算机来解决数学问题的学科。

在计算方法的学习过程中,MATLAB作为一种强大的数值计算软件,被广泛应用于科学计算、工程计算、数据分析等领域。

本实验报告将介绍在计算方法课程中使用MATLAB 进行的实验内容和实验结果。

一、二分法求方程根在数值计算中,求解非线性方程是一个常见的问题。

二分法是一种简单而有效的求解非线性方程根的方法。

在MATLAB中,可以通过编写函数和使用循环结构来实现二分法求解方程根。

实验步骤:1. 编写函数f(x),表示待求解的非线性方程。

2. 设定初始区间[a, b],满足f(a) * f(b) < 0。

3. 利用二分法迭代求解方程根,直到满足精度要求或迭代次数达到预设值。

实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个非线性方程的根。

例如,对于方程f(x) = x^3 - 2x - 5,我们通过二分法迭代了5次,得到了方程的一个根x ≈ 2.0946。

二、高斯消元法解线性方程组线性方程组的求解是计算方法中的重要内容之一。

高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵变换将线性方程组化为上三角矩阵,从而简化求解过程。

在MATLAB中,可以利用矩阵运算和循环结构来实现高斯消元法。

实验步骤:1. 构建线性方程组的系数矩阵A和常数向量b。

2. 利用高斯消元法将系数矩阵A化为上三角矩阵U,并相应地对常数向量b进行变换。

3. 利用回代法求解上三角矩阵U,得到线性方程组的解向量x。

实验结果:通过在MATLAB中编写相应的函数和脚本,我们成功求解了多个线性方程组。

例如,对于线性方程组:2x + 3y - z = 13x - 2y + 2z = -3-x + y + 3z = 7经过高斯消元法的计算,我们得到了方程组的解x = 1,y = -2,z = 3。

三、数值积分方法数值积分是计算方法中的重要内容之一,它用于计算函数在给定区间上的定积分。

高等数学实验matlab

高等数学实验matlab

式函数a0+a1x+a2x2作为经验公式n ),此时偏差平方和函数为
W=
(a
0
+a1xi
+a
2
x
2 i
-yi
)
2
i=1
其中n为数据点的数目。要使偏差平方和函数W最小,需要
n
n
n
na0 a1 xi a2 xi2 yi
i 1
i 1
i 1
a0
n
xi a1
n
xi2 a2
n
xi3
即拟合函数为 y=14.7391+0.1973139x-0.000339492x2
从图1-10可以看出拟合效果比较好,但是是否还可以更好呢? 一般而言,拟合次数的提高可以使得拟合效果变好,但是并 不是次数越高越好。现在提高拟合次数,将基函数由1,x,x2 修改为{1,x,x2,x3}(三次拟合),{1,x,x2,x3,x4}(四次拟合 )……,得到拟合图1-5至图1-9。
67
101
135
202
259
336
404
25.72
32.29
34.03
39.45
43.15
43.46
40.83
471 30.75
【实验方案】
设y代表土豆产量,x代表氮肥的施肥量。显然,y和x之间应该 有某种关系,假设y与x之间的关系为函数关系,则问题就转 化拟为合已问知题数。据点(xi,yi)位置关系,寻找函数y=y(x)。这就是数据
设计性实验
实验一 数据拟合问题 实验二 复利问题
第1章函数与极限—设计性实验
实验一 数据拟合问题
【实验目的】 1.加深对函数基本概念的理解 2.讨论了函数的实际应用问题 3.掌握Matlab软件中有关函数、画图等命令 【实验要求】 掌握函数基本知识,Matlab软件

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。

本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。

二、实验内容(一)误差分析在数值计算中,误差是不可避免的。

通过对给定函数进行计算,分析截断误差和舍入误差的影响。

例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。

(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。

2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。

(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。

2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。

(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。

三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。

```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。

(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。

matlab实验一实验报告

matlab实验一实验报告

matlab实验一实验报告实验一:Matlab实验报告引言:Matlab是一种强大的数学软件工具,广泛应用于科学计算、数据分析和工程设计等领域。

本实验旨在通过使用Matlab解决实际问题,探索其功能和应用。

一、实验目的本次实验的主要目的是熟悉Matlab的基本操作和常用函数,了解其在科学计算中的应用。

二、实验内容1. 数值计算在Matlab中,我们可以进行各种数值计算,包括基本的加减乘除运算,以及更复杂的矩阵运算和方程求解。

通过编写相应的代码,我们可以实现这些功能。

例如,我们可以使用Matlab计算两个矩阵的乘积,并输出结果。

代码如下:```matlabA = [1 2; 3 4];B = [5 6; 7 8];C = A * B;disp(C);```2. 数据可视化Matlab还提供了强大的数据可视化功能,可以将数据以图表的形式展示出来,更直观地观察数据的规律和趋势。

例如,我们可以使用Matlab绘制一个简单的折线图,来展示某个物体在不同时间下的位置变化。

代码如下:```matlabt = 0:0.1:10;x = sin(t);plot(t, x);xlabel('Time');ylabel('Position');title('Position vs. Time');```3. 图像处理Matlab还可以进行图像处理,包括图像的读取、处理和保存等操作。

我们可以通过Matlab对图像进行增强、滤波、分割等处理,以及进行图像的压缩和重建。

例如,我们可以使用Matlab读取一张图片,并对其进行灰度化处理。

代码如下:```matlabimg = imread('image.jpg');gray_img = rgb2gray(img);imshow(gray_img);```三、实验结果与分析在本次实验中,我们成功完成了数值计算、数据可视化和图像处理等任务。

数学实验—二次型的MATLAB实验

数学实验—二次型的MATLAB实验

数学实验——二次型的MATLAB实验
例 1 用正交变换法将二次型 f (x1 ,x2 ,x3 ) 17x12 14x22 14x32 4x1x2 4x1x3 8x2 x3 化为标准形.
数学实验——二次型的MATLAB实验
解 在 MATLAB 命令窗口输入:>>A=[17,-2,-2;-2,14,-4;-2,-4,14]; >>[Q,D]=schur(A) 运行程序后输出:Q= 0.3333 -0.2981 0.8944
解 在 MATLAB 命令窗口输入:>>format rat; >>A=[4,0,0;0,6,4;0,4,6]; 运行程序后输出:A= 4 0 0
064 046
数学实验——二次型的MATLAB实验
在 MATLAB 命令窗口输入:>>d=eig(A) 运行程序后输出:d=
2 4 10 因为 A 的特征值全为正,所以二次型 f (x1 ,x2 ,x3 ) 4x12 6x22 6x32 8x2 x3 是正定的.
0.6667 -0.5963 -0.4472 0.6667 0.7454 0.0000 D= 9 0 0 0 18 0 0 0 18 所作的正交变换为 x Py ,二次型的标准形为 f (x1 ,x2 ,x3 ) 9 y12 18y22 18y32 .
数学实验——二次型的MATLAB实验
例 2 判定二次型 f (x1 ,x2 ,x3 ) 4x12 6x22 6x32 8x2 x3 的正定性.
命令 d=eig(A) [P,D]=eig(A)
[Q,D]=schur(A) format rat
功能 输入 n 阶矩阵 A,运行后以向量的形式输出矩阵 A 的特征值赋给 d 输入 n 阶矩阵 A,运行后输出 A 的特征向量矩阵 P 和由特征值组成的 对角阵 D,使得 P1AP D 输入 n 阶矩阵 A,运行后输出 A 的正交矩阵 Q 和由特征值组成的对 角阵 D,使得 Q1AQ QT AQ D 数据有理化,一般放在最前面

数学实验指导书matlab

数学实验指导书matlab

数学实验指导书matlab【数学实验指导书】MATLAB一、实验背景和目的数学实验是数学教学中重要的一环,它能够帮助学生巩固和应用所学的数学知识,培养学生的实际问题解决能力。

MATLAB作为一种强大的数学计算软件,被广泛应用于数学实验中。

本实验旨在通过使用MATLAB软件,帮助学生掌握基本的MATLAB操作和数学实验方法,进一步提高数学建模和问题求解的能力。

二、实验内容1. MATLAB基本操作a) 启动MATLAB软件并了解主界面的组成部分。

b) 学习MATLAB的基本命令行操作,如变量定义、数学运算、矩阵操作等。

c) 掌握MATLAB的图形绘制功能,包括绘制函数图像、散点图等。

2. 数学建模实验a) 选择一个数学问题作为研究对象,例如:求解一元二次方程的根。

b) 使用MATLAB进行数学建模,包括问题分析、模型构建和求解过程。

c) 分析和解释模型的结果,对实际问题进行合理的解释和预测。

三、实验步骤1. MATLAB基本操作a) 启动MATLAB软件后,观察主界面的组成部分,包括命令窗口、工作空间、编辑器等。

b) 在命令窗口中练习基本的MATLAB命令,如定义变量、进行数学运算、创建矩阵等。

c) 使用plot函数绘制函数图像,并尝试修改线型、颜色等参数。

2. 数学建模实验a) 选择一个数学问题,例如求解一元二次方程ax^2 + bx + c = 0的根。

b) 在MATLAB中定义方程的系数a、b、c,并使用根据求根公式计算方程的根。

c) 绘制方程的图像,并标注根的位置。

四、实验结果与分析1. MATLAB基本操作a) 在命令窗口中成功定义了多个变量,并进行了数学运算,验证了MATLAB的基本功能。

b) 使用plot函数绘制了函数y = sin(x)的图像,并成功修改了线型和颜色。

2. 数学建模实验a) 成功求解了一元二次方程ax^2 + bx + c = 0的根,并将结果输出到命令窗口。

b) 绘制了方程的图像,并通过图像验证了求解结果的准确性。

数学Matlab实验

数学Matlab实验

一、实验项目:Matlab基本实验二、实验目的和要求a.熟悉MATLAB软件的用户环境,掌握其一般目的命令和MATLAB数组操作与运算函数;b.掌握MATLAB软件的绘图命令,能够熟练应用循环和选择结构实现各种循环选择功能;c.借助MATLAB软件的绘图功能,对函数的特性进行探讨,广泛联想,大胆猜想,发现进而证实其中的规律。

三、实验内容将方程x5+5x3-2x+1=0改写成各种等价的形式进行迭代,观察迭代是否收敛,并给出解释。

x1=-2:0.01:2;x2=-3:0.01:3;x3=-4:0.01:4;x4=-5:0.01:5;y1=x1.^5 +5*x1.^3-2*x1+1;y2=x2.^5 +5*x2.^3-2*x2+1;y3=x3.^5 +5*x3.^3-2*x3+1;y4=x4.^5 +5*x4.^3-2*x4+1;subplot(2,2,1),plot(x1,y1),title('子图 (1)') ,grid on,subplot(2,2,2),plot(x2,y2),title('子图(2)'),grid on,subplot(2,2,3),plot(x3,y3),title('子图(3)'),grid on,subplot(2,2,4),plot(x4,y4),title('子图(4)') ,grid on,-2-1012-100-5050100子图 (1)-4-2024-400-2000200400子图(2)-4-2024-2000-100010002000子图(3)-505-4000-2000020004000子图(4)由图可知 x 的初值应在(-0.78,0.76)之间。

(2)解:第一步 构造迭代函数()x f x =53512x x x ++= 1()x f x = 32121555x x x x=-+- 2()x f x = 32521x x x x=-+- 3()x f x = 第二步利用加速迭代收敛法变形后:534241012515x x x x x--+=-- 1()x f x = 62352435322x x x x x x x --=++- 2()x f x = 25328561x x x x x x -+=++- 3()x f x = 第三步迭代00.75x =-1()n n x f x +=n=0,1,2,3………用 MA TLAB 编程x=-077;y=-0.77;z=-0.77;for k=1:30x=(-4*x^5-10*x^3+1)/(2-5*x^4-15*x^2); y=(2*y^6+4*y^2-3*y)/(5*y^3+3*y^5+2*y-2); z=(8*z^2-2*z)/(z^5+5*z^3+6*z-1); x,y,z;end迭代结果为:x =-61.5948y =-0.7685x =-49.2694y =-0.7685x =-39.4074y =-0.7685x =y =-0.7685 x =-25.2000 y =-0.7685 x =-20.1442 y =-0.7685 x =-16.0957 y =-0.7685 x =-12.8521 y =-0.7685-10.2512 y =-0.7685 x =-8.1634 y =-0.7685 x =-6.4844 y =-0.7685 x =-5.1311 y =-0.7685 x =-4.0373-0.7685 x =-3.1508 y =-0.7685 x =-2.4323 y =-0.7685 x =-1.8546 y =-0.7685 x =-1.4028 y =-0.7685-1.0737 y =-0.7685 x =-0.8700 y =-0.7685 x =-0.7840 y =-0.7685 x =-0.7689 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-61.5948 y =-0.7685-49.2694 y =-0.7685 x =-39.4074 y =-0.7685 x =-31.5158 y =-0.7685 x =-25.2000 y =-0.7685 x =-20.1442-0.7685 x =-16.0957 y =-0.7685 x =-12.8521 y =-0.7685 x =-10.2512 y =-0.7685 x =-8.1634 y =-0.7685-6.4844 y =-0.7685 x =-5.1311 y =-0.7685 x =-4.0373 y =-0.7685 x =-3.1508 y =-0.7685 x =-2.4323 y =-0.7685 x =-1.8546 y =-0.7685 x =-1.4028 y =-0.7685 x =-1.0737 y =-0.7685 x =-0.8700 y =-0.7685 x =y =-0.7685 x =-0.7689 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685 y =-0.7685 x =-0.7685-0.7685 x =-0.7685 y =-0.7685 >>。

matlab数学实验课程设计

matlab数学实验课程设计

matlab数学实验课程设计一、教学目标本课程的目标是让学生掌握MATLAB的基本使用方法,能够利用MATLAB进行数学实验,提高学生的数学建模和计算能力。

具体的教学目标包括:知识目标:使学生了解MATLAB的发展历程、基本功能和应用领域;让学生掌握MATLAB的基本语法、数据类型、运算符、编程技巧等。

技能目标:培养学生利用MATLAB进行数学建模、求解数学问题的能力;使学生能够熟练使用MATLAB进行数据分析、绘图和仿真。

情感态度价值观目标:激发学生对数学实验的兴趣,培养学生的创新精神和团队合作意识;使学生认识到MATLAB在实际生活和科研中的重要性,提高学生运用数学知识解决实际问题的能力。

二、教学内容本课程的教学内容主要包括MATLAB的基本使用方法、编程技巧和数学实验。

具体安排如下:1.MATLAB概述:介绍MATLAB的发展历程、基本功能和应用领域。

2.MATLAB基本语法:讲解MATLAB的数据类型、运算符、编程技巧等。

3.MATLAB数学实验:包括线性方程组求解、函数插值与逼近、数值微积分、常微分方程求解等。

4.MATLAB在实际应用中的案例分析:分析MATLAB在物理学、工程学、经济学等领域的应用实例。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:讲解MATLAB的基本语法和功能,使学生掌握MATLAB的基本使用方法。

2.案例分析法:分析实际应用案例,使学生了解MATLAB在各个领域的应用。

3.实验法:让学生动手进行数学实验,培养学生的实际操作能力。

4.讨论法:学生进行小组讨论,激发学生的创新思维和团队合作意识。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《MATLAB教程》或《MATLAB数学实验》。

2.参考书:提供相关的数学实验指导书和论文,供学生参考。

3.多媒体资料:制作课件和教学视频,帮助学生更好地理解MATLAB的使用方法。

数学matlab实验心得体会

数学matlab实验心得体会

数学matlab实验心得体会在进行数学实验中使用MATLAB进行数据处理和分析,我对这个软件有了更深入的了解和体会。

以下是我在实验中的一些心得和体会。

首先,MATLAB非常适合数学实验。

它提供了许多强大的函数和工具箱,可以方便地进行数值计算和数据处理。

它的语法简单易懂,上手快,对于初学者非常友好。

在实验中,我可以使用内置函数进行数值积分、微分、代数计算等。

MATLAB 还提供了丰富的绘图功能,可以绘制各种图表,帮助我更好地理解和呈现实验结果。

其次,MATLAB的矩阵运算非常方便。

在实验中,我经常需要对大量的数据进行处理和分析。

MATLAB的矩阵运算功能可以极大地简化这个过程。

我可以使用矩阵运算函数进行线性方程组的求解、矩阵的转置、逆矩阵的计算等。

这些函数的使用非常简单,只需要一行代码就可以完成复杂的运算。

使用矩阵运算不仅提高了计算效率,而且可以减少计算错误的风险。

此外,MATLAB还支持符号计算。

在实验中,我有时需要进行符号计算,包括求符号方程的解、求导数和积分的符号表达式等。

MATLAB中的符号计算工具箱可以方便地实现这些功能。

我可以定义符号变量,进行符号计算,并得到符号表达式的数值结果。

符号计算功能极大地扩展了MATLAB的应用范围,使得我可以更全面地进行数学实验。

最后,MATLAB还有一个很大的优势是社区的支持。

MATLAB拥有庞大的用户群体和丰富的资源,我可以在MATLAB的官方网站、论坛、博客等地方找到解决问题的方法和技巧。

如果遇到困难,我可以向社区提问,往往能够得到快速有效的答复。

这为我在实验中遇到的各种问题提供了很大的帮助,使得我能够更好地完成实验任务。

总结起来,MATLAB是一款非常适合数学实验的软件。

它提供了丰富的数值计算和数据处理工具,支持矩阵运算和符号计算,拥有庞大的用户社区。

通过使用MATLAB,我能够更方便、快速地进行数学实验,得到准确的实验结果。

我相信MATLAB在数学研究和工程实践中的应用前景会越来越广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。

(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。

【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。

(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。

(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。

(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。

【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。

0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。

reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12ans(:,:,3) =13 15 1714 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。

A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。

a=0.5 b=1/3t=0:0.001:piy=a*exp(b*t)-t.*t.*sin(t) [y_max,t_max]=max(y)t_text=['t=',num2str(t(t_max))] y_text=['y=',num2str(y_max)]max_text=char('maximum',t_text,y_text) tit=['y=a*exp(',num2str(b),'t)-t*t*sin(t)'] hold on plot(t,y,'y.')plot(t(t_max),y_max,'r')text(t(t_max)+0.3,y_max+0.1,max_text) title(tit),xlabel('t'),ylabel('y'),hold off【实验心得与总结】通过这次试验让我了解常用简单函数的功能,学会利用函数解决一些;数值计算和符号计算的实际问题;利用Matlab 的help 命令查询一些函数的功能。

利用MA TLAB 可以让繁琐的计算问题变得更加简单化,如矩阵运算等。

\实验2:MATLAB 绘图【实验步目的】利用MTALAB 画墨西哥帽子,及参数方程的图像 【实验原理】(1)二维绘图命令:plot(x,y)函数(2)三维绘图命令中三维曲线:plot3(x,y,z), (3)利用mesh 函数画三维的网格表面的。

【实验内容】(含参考程序、实验结果及结果分析等)画出函数图形π100)cos(23≤≤⎪⎩⎪⎨⎧===t t z ty t x 。

方程:π100)cos(23≤≤⎪⎩⎪⎨⎧===t t z ty t x 【参考程序】>> t=0:0.1:4*pi;>> plot3(2*cos(t),t.^3,t) 【实验结果】画出曲面]5.7,5.7[,sin),(2222-∈++==x y x f z yx y x 的图像。

方程: 2222sin (,)[7.5,7.5],[7.5,7.5]x y z f x y x y x y+=∈-∈-+【参考程序】x = -7.5:0.5:7.5; y = x;[xx, yy] = meshgrid(x, y); R = sqrt(xx.^2 + yy.^2) + eps; z = sin(R)./R; surf(xx, yy, z)【实验结果】【实验心得与总结】Matlab 的常见错误:Inner matrix dimensions must agree1、因为在Matlab 的输入变量是矩阵,参与运算的矩阵维数必须对应,矩阵相应元素的运算必须全部加dot (点),例2中方程如果这样输入:x=2*(cos(t)+t*sin(t)),就会出现该错误.2、mesh 函数是用来画三维的网格表面的。

三维空间中的一个点是用(x,y,z)来表示的,mesh 就是把这些点之间用网格连接起来。

实验3:MATLAB 微积分问题的计算【实验目的】利用MTALAB 求解二重积分、勒展开式及级数求和。

【实验原理】1.利用int(int(f,x,a,b),y,c,d)函数求二重积分计算累次积分⎰⎰d cbadxdy y x f ),(2.利用泰勒函数taylor (f,n,x,a)来求f(x,y)的n-1阶泰勒展开式k n k k a x k a f x f )(!)()(1)(-•=∑-=; 3.利用函数symsum(f,k,n1,n2)来求级数的和函数∑=21)(n n k k f【实验内容】(含参考程序、实验结果及结果分析等)求⎰⎰+10122x xydydxx。

【参考程序】 >> syms x y >> z=x*y;>> f=int(int(z,y,2*x,x^2+1),x,0,1) 【实验结果】 f =1/12将f (x )=ln x 展开为幂为(x-2)的5阶泰勒展开式。

【参考程序】 >> syms x n;>> f=(-1)^n*x^(n+1)/(n+1); >> symsum(f,n,1,inf) 【实验结果】ans =log(1+x)-x级数求和)1,1(,1)1(11-∈+-+∞=∑x n x n n n。

【参考程序】>> syms x n;>> f=(-1)^n*x^(n+1)/(n+1); >> symsum(f,n,1,inf) 【实验结果】ans = log(1+x)-x 【实验心得与总结】1、在实验过程中,要是一句程序结束后加了分号,则说明,不要求执行程序时输出执行结果;2、在matlab 中是区别大小写的,如果N 写成n 会出现Undefined function or variable 'n'.Undefined function or variable 'n'.的错误提示.实验4: MATLAB 优化计算【实验目的】掌握应用matlab 求解无约束最优化问题的方法 【实验原理与方法】 1:标准形式:元函数为其中n R R f X f nR x n→∈:)(min2.无约束优化问题的基本算法一.最速下降法(共轭梯度法)算法步骤: ⑴ 给定初始点n E X ∈0,允许误差0>ε,令k=0;⑵ 计算()k X f ∇;⑶ 检验是否满足收敛性的判别准则:()ε≤∇k X f ,若满足,则停止迭代,得点k X X ≈*,否则进行⑷; ⑷ 令()k k X f S -∇=,从k X 出发,沿k S 进行一维搜索, 即求k λ使得: ()()k k k k k S X f S X f λλλ+=+≥0min ;⑸ 令k k k k S X X λ+=+1,k=k+1返回⑵.最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,当接近极值点时,宜选用别种收敛快的算法..牛顿法算法步骤:(1) 选定初始点n E X ∈0,给定允许误差0>ε,令k=0; (2) 求()k X f ∇,()()12-∇kX f ,检验:若()ε<∇k X f ,则停止迭代,k X X ≈*.否则, 转向(3);(3) 令 ()()k k k X f X f S ∇∇-=-12][(牛顿方向);(4) k k k S X X +=+1,1+=k k ,转回(2).如果f 是对称正定矩阵A 的二次函数,则用牛顿法经过一次迭代 就可达到最优点,如不是二次函数,则牛顿法不能一步达到极值点, 但由于这种函数在极值点附近和二次函数很近似,因此牛顿法的收 敛速度还是很快的.牛顿法的收敛速度虽然较快,但要求Hessian 矩阵要可逆,要计算二阶导数和逆矩阵,就加大了计算机计算量和存储量. 【实验内容】1. 求 f = 2x e xsin -在0<x<8中的最小值与最大值 主程序为wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8) f1='-2*exp(-x).*sin(x)';[xmax,ymax]=fminbnd (f1, 0,8) 运行结果:xmin = 3.9270 ymin = -0.0279 xmax = 0.7854 ymax = 0.64482. 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如 何剪法使水槽的容积最大? 先编写M 文件fun0.m 如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5); xmax=xfmax=-fval 运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.实验5: MATLAB 图论问题计算【实验目的】了解用Matlab 软件求解图论模型及层次分析模型的方法。

相关文档
最新文档