MATLAB数学实验

合集下载

高等数学:MATLAB实验

高等数学:MATLAB实验
以上两种格式中的x、y都可以是表达式.plot是绘制二维 曲线的基本函数,但在使用 此函数之前,需先定义曲线上每一 点的x及y的坐标.
MATLAB实验
2.fplot绘图命令 fplot绘图命令专门用于绘制一元函数曲线,格式为:
fplot('fun',[a,b]) 用于绘制区间[a,b]上的函数y=fun的图像.
MATLAB实验 【实验内容】
MATLAB实验
由此可知,函数在点x=3处的二阶导数为6,所以f(3)=3为 极小值;函数在点x= 1处的二阶导数为-6,所以f(1)=7为极大值.
MATLAB实验
例12-10 假设某种商品的需求量q 是单价p(单位:元)的函 数q=12000-80p,商 品的总成本C 是需求量q 的函数 C=25000+50q.每单位商品需要纳税2元,试求使销售 利润达 到最大的商品单价和最大利润额.
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验 实验九 用 MATLAB求解二重积分
【实验目的】 熟悉LAB中的int命令,会用int命令求解简单的二重积分.
MATLAB实验
【实验M步A骤T】 由于二重积分可以化成二次积分来进行计算,因此只要
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
实验七 应用 MATLAB绘制三维曲线图
【实验目的】 (1)熟悉 MATLAB软件的绘图功能; (2)熟悉常见空间曲线的作图方法.
【实验要求】 (1)掌握 MATLAB中绘图命令plot3和 mesh的使用; (2)会用plot3和 mesh函数绘制出某区间的三维曲线,线型

MATLAB数学实验

MATLAB数学实验

实验三 圆周率的计算学号: 姓名:XX一、 实验目的1. 本实验涉及概率论、定积分、三角函数等有关知识,要求掌握计算π的三种方法及其原理。

2. 学习和掌握数学软件MATLAB 的使用方法。

二、 实验内容圆周率是一个极其驰名的数。

从有文字记载的历史开始,这个数就引起了外行人和学者们的兴趣。

作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。

仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。

事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代又一代数学家为此献出了自己的智慧和劳动。

回顾历史,人们对π的认识过程,反映了数学和计算技术发展情形的一个侧面。

π的研究,在一定程度上反映这个地区或时代的数学水平。

德国数学家康托说:“历史上一个国家所算的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。

”直到19世纪初,求圆周率的值还是数学中的头号难题。

1. 圆周率的计算方法古人计算圆周率,一般是用割圆法。

即用圆的内接或外切多边形来逼近圆的周长。

Archomedes 用正96边形得到35位精度;刘徽用正3072边形得到5位精度;Ludolph V an Ceulen 用正2^62边形得到了35位精度。

这种基于几何的算法计算量大,速度慢,吃力不讨好。

随着数学的发展,数学家们在进行数学研究时有意无意得发现了许多计算圆周率的公式。

下面挑选一些经典的常用公式加以介绍。

除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。

1) Machin 公式2391a r c t a n451a r c t a n 16-=π ()121...753arctan 121753--++-+-=--n x x x x x x n n 这个公式由英国天文学教授John Machin 于1706年发现。

他利用这个公式计算到100位的圆周率。

Machin 公式每计算一项可以得到1.4位的十进制精度。

MATLAB数学实验答案(全)

MATLAB数学实验答案(全)

MATLAB数学实验答案(全)第⼀次练习教学要求:熟练掌握Matlab 软件的基本命令和操作,会作⼆维、三维⼏何图形,能够⽤Matlab 软件解决微积分、线性代数与解析⼏何中的计算问题。

补充命令vpa(x,n) 显⽰x 的n 位有效数字,教材102页fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形在下⾯的题⽬中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin limx mx mx x →-与3sin lim x mx mxx →∞-syms xlimit((902*x-sin(902*x))/x^3) ans =366935404/3limit((902*x-sin(902*x))/x^3,inf)//inf 的意思 ans = 0 1.2 cos1000xmxy e =,求''y syms xdiff(exp(x)*cos(902*x/1000),2)//diff 及其后的2的意思 ans =(46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算221100x y edxdy +??dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1)//双重积分 ans = 2.13941.4 计算4224x dx m x +? syms xint(x^4/(902^2+4*x^2))//不定积分 ans =(91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求//⾼阶导数syms xdiff(exp(x)*cos(902*x),10) ans =-356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x)1.6 0x =的泰勒展式(最⾼次幂为4).syms xtaylor(sqrt(902/1000+x),5,x)//泰勒展式 ans =-(9765625*451^(1/2)*500^(1/2)*x^4)/82743933602 +(15625*451^(1/2)*500^(1/2)*x^3)/91733851-(125*451^(1/2)*500^(1/2)*x^2)/406802 + (451^(1/2)*500^(1/2)*x)/902 +(451^(1/2)*500^(1/2))/500 1.7 Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4,)n n n x x x n --=+=⽤循环语句编程给出该数列的前20项(要求将结果⽤向量的形式给出)。

(完整word版)Matlab数学实验报告

(完整word版)Matlab数学实验报告

Matlab 数学实验报告一、实验目的通过以下四组实验,熟悉MATLAB的编程技巧,学会运用MATLAB的一些主要功能、命令,通过建立数学模型解决理论或实际问题。

了解诸如分岔、混沌等概念、学会建立Malthu模型和Logistic 模型、懂得最小二乘法、线性规划等基本思想。

二、实验内容2.1实验题目一2.1.1实验问题Feigenbaum曾对超越函数y=λsin(πx)(λ为非负实数)进行了分岔与混沌的研究,试进行迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图2.1.2程序设计clear;clf;axis([0,4,0,4]);hold onfor r=0:0.3:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.5)for i=101:150plot(r,x(i),'k.');endtext(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end加密迭代后clear;clf;axis([0,4,0,4]);hold onfor r=0:0.005:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.1)for i=101:150plot(r,x(i),'k.');endend运行后得到Feigenbaum图2.2实验题目二2.2.1实验问题某农夫有一个半径10米的圆形牛栏,长满了草。

他要将一头牛拴在牛栏边界的桩栏上,但只让牛吃到一半草,问拴牛鼻子的绳子应为多长?2.2.2问题分析如图所示,E为圆ABD的圆心,AB为拴牛的绳子,圆ABD为草场,区域ABCD为牛能到达的区域。

问题要求区域ABCD等于圆ABC的一半,可以设BC等于x,只要求出∠a和∠b就能求出所求面积。

数学实验MATLAB版课程设计

数学实验MATLAB版课程设计

数学实验MATLAB版课程设计选题背景数学实验是数学教育中不可或缺的一部分。

随着科技的发展,各类软件工具也逐渐进入了数学实验领域。

MATLAB作为一款广泛应用于科技领域的数学计算软件,被越来越多的教师和学生所使用。

本课程设计旨在利用MATLAB软件,进行一系列有趣且具有实际意义的数学实验,以提高学生对数学的兴趣和实际应用能力。

选题内容本课程设计共包含以下三个实验项目:实验一:数学模型的建立与求解本实验旨在让学生了解数学模型的概念和建立方法,并通过MATLAB软件进行模型的求解。

具体步骤如下:1.学生自主选择一个实际问题,如某产品销售量的预测、某城市的交通流量分析等,并对问题进行分析,确定所需变量和关系。

2.学生利用所学知识建立相应的数学模型,并用MATLAB进行求解。

3.学生根据实际情况,对模型和求解结果进行分析和评价。

实验二:微积分理论的应用本实验旨在让学生了解微积分的基本理论和应用,以及MATLAB软件在微积分计算中的作用。

具体步骤如下:1.学生自主选择一个数学问题,如函数求极值、曲线积分计算等,并对问题进行分析。

2.学生利用所学知识,通过MATLAB软件进行计算和绘图,并对结果进行分析和评价。

实验三:离散数学的应用本实验旨在让学生了解离散数学的基本知识和应用,在MATLAB软件中实现离散数学的计算。

具体步骤如下:1.学生自主选择一个数学问题,如概率统计分析、图论问题等,并对问题进行分析。

2.学生利用所学知识,通过MATLAB软件进行计算和可视化,并对结果进行分析和评价。

实验要求1.学生需在规定时间内完成实验报告的撰写,并按要求提交。

2.学生需在实验前自行学习相关知识,具备独立思考和解决问题的能力。

3.学生需积极合作,认真对待实验和实验报告的撰写。

实验评估本课程设计采用综合评估方式,主要考虑以下四个方面:1.实验报告的撰写质量,包括实验目的、原理、步骤、结果和分析等。

2.实验过程中的表现,包括合作精神、独立思考能力、问题解决能力等。

数学实验MATLAB第五章

数学实验MATLAB第五章

学习方法与建议
学习方法
通过理论学习和实践操作相结合的方式,深入理解MATLAB高级编程技术的原 理和应用。
建议
在学习本章之前,读者应该已经具备一定的MATLAB基础知识和编程经验。同 时,建议读者在学习过程中多进行实践操作,通过编写代码来加深对知识点的 理解和掌握。
02 MATLAB基础知识回顾
数学实验matlab第五章
目 录
• 第五章概述 • MATLAB基础知识回顾 • 数组与矩阵操作 • 数值计算与数据分析 • 程序设计与优化 • 综合应用与案例分析
01 第五章概述
章节内容与目标
内容
介绍MATLAB中的高级编程技术 ,包括脚本和函数编程、数据结 构和算法、面向对象编程等。
目标
通过学习本章,读者应该能够熟 练掌握MATLAB的高级编程技术 ,并能够灵活运用这些技术解决 复杂的数学问题。
运算符与函数
运算符
详细讲解MATLAB中的运算符, 包括算术运算符、关系运算符、 逻辑运算符等。同时介绍运算符
的优先级和结合性。
函数
阐述函数的概念,以及如何在 MATLAB中定义和使用函数。同时 介绍函数的输入和输出参数,以及 函数的返回值。
常用函数
介绍MATLAB中常用的函数,包括 数学函数、字符串处理函数、文件 操作函数等。同时给出函数的语法 和使用示例。
矩阵的乘法
按照矩阵乘法的规则进行运算 ,结果矩阵的维数可能发生变
化。
矩阵的转置
将矩阵的行和列互换,得到转 置矩阵。
矩阵的逆
对于方阵,若其逆矩阵存在, 则可以通过特定的运算求得逆
矩阵。
数组与矩阵的应用举例
线性方程组求解
数据分析与处理

MATLAB数学实验100例题解

MATLAB数学实验100例题解

一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧。

初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势。

解:程序代码:>〉 x=linspace (0,2*pi,600); t=sin (x)。

/(cos (x )+eps );plot(x ,t);title (’tan (x )');axis ([0,2*pi ,-50,50]); 图象:程序代码: 〉〉 x=linspace (0,2*pi,100); ct=cos (x)。

/(sin(x)+eps ); plot(x,ct );title(’cot(x)');axis ([0,2*pi ,—50,50]); 图象:cot(x)4在区间]1,1[-画出函数xy 1sin =的图形。

解:程序代码:>> x=linspace (-1,1,10000);y=sin(1。

/x ); plot (x,y ); axis ([-1,1,—2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>〉 t=linspace(0,2*pi,100); plot(cos(t ).*cos (5*t ),sin(t )。

*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:〉〉 t=0:0.01:2*pi ; r=exp (t/10);polar(log(t+eps ),log (r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形。

MATLAB大学数学实验课程设计 (2)

MATLAB大学数学实验课程设计 (2)

MATLAB大学数学实验课程设计1. 引言MATLAB是一种基于数值算法的高级技术计算软件,可广泛应用于工程、科学及金融等领域。

在大学数学课程中,MATLAB也是一个常用的工具。

本文将介绍大学数学实验课程设计中MATLAB的应用以及实验的设计。

2. 实验设计2.1 球体体积计算实验目的:通过使用MATLAB计算球体的体积,掌握MATLAB的基本语法及数学计算方法。

实验步骤:1.打开MATLAB软件。

2.新建一个文件,在文件中输入以下命令:r = input('请输入球体的半径:');V = (4/3)*pi*r^3;fprintf('球体的体积为%.2f\', V);3.运行程序,输入球体的半径,计算出球体的体积。

2.2 线性方程组的解法实验目的:掌握MATLAB解决线性方程组的方式及方法。

实验步骤:1.打开MATLAB软件。

2.新建一个文件,在文件中输入以下命令:A = [4 3 2; -2 -3 5; 1 -1 2];B = [-3; 4; 1];X = inv(A)*B;fprintf('x的解为%.2f, y的解为%.2f, z的解为%.2f\', X);3.运行程序,计算出x、y、z的解。

2.3 拟合实验实验目的:通过拟合实验,掌握MATLAB的统计学方法。

实验步骤:1.打开MATLAB软件。

2.准备一个数据集,可以随意选择,不在此赘述。

3.在MATLAB中输入以下命令:x = [1 2 3 4 5];y = [1.1 3.0 4.9 7.2 8.9];p = polyfit(x,y,1);f = polyval(p,x);plot(x,y,'o',x,f)4.运行程序,可以看到对原始数据的拟合结果。

3. 结论通过以上实验设计及MATLAB的使用,我们可以看到MATLAB在数学课程中的优势,它不仅可以提供科学计算、数据分析及可视化的功能,还可以帮助学生更好地学习和理解数学相关知识。

matlab数学实验.doc

matlab数学实验.doc

matlab 数学实验《管理数学实验》实验报告班级姓名实验 1:MATLAB的数值运算【实验目的】(1)掌握 MATLAB 变量的使用(2)掌握 MATLAB 数组的创建,(3)掌握 MA TLAB 数组和矩阵的运算。

(4)熟悉 MATLAB 多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。

【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。

(2)使用 MA TLAB 提供的库函数 reshape,将一维数组转换为二维和三维数组。

(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。

(4)使用 MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M 文件。

【实验内容】( 1)在 [0,2*pi] 上产生 50 个等距采样数据的一维数组,用两种不同的指令实现。

0:(2*pi-0)/(50-1):2*pi或linspace(0,2*pi,50)( 2)将一维数组A=1:18 ,转换为2×9 数组和 2× 3× 3 数组。

reshape(A,2,9)ans =Columns 1 through 713 5 24 6 789111012131415171618reshape(A,2,3,3) ans(:,:,1) =1 3 52 4 6 ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 1714 16 18matlab 数学实验( 3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5] ,计算数组 A、 B 乘积,计算 A&B,A|B,~A,A==B,A>B 。

A.*Bans=0 0 15 121 15 0 0A&Bans =0 0 1 11 1 0 0A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0t t ( 4)绘制 y= 0.5 e3 -t*t*sin(t),t=[0,pi] 并标注峰值和峰值时间,添加标题 y= 0.5 e3 -t*t*sint ,将所有输入的指令保存为M 文件。

matlab实验一实验报告

matlab实验一实验报告

matlab实验一实验报告实验一:Matlab实验报告引言:Matlab是一种强大的数学软件工具,广泛应用于科学计算、数据分析和工程设计等领域。

本实验旨在通过使用Matlab解决实际问题,探索其功能和应用。

一、实验目的本次实验的主要目的是熟悉Matlab的基本操作和常用函数,了解其在科学计算中的应用。

二、实验内容1. 数值计算在Matlab中,我们可以进行各种数值计算,包括基本的加减乘除运算,以及更复杂的矩阵运算和方程求解。

通过编写相应的代码,我们可以实现这些功能。

例如,我们可以使用Matlab计算两个矩阵的乘积,并输出结果。

代码如下:```matlabA = [1 2; 3 4];B = [5 6; 7 8];C = A * B;disp(C);```2. 数据可视化Matlab还提供了强大的数据可视化功能,可以将数据以图表的形式展示出来,更直观地观察数据的规律和趋势。

例如,我们可以使用Matlab绘制一个简单的折线图,来展示某个物体在不同时间下的位置变化。

代码如下:```matlabt = 0:0.1:10;x = sin(t);plot(t, x);xlabel('Time');ylabel('Position');title('Position vs. Time');```3. 图像处理Matlab还可以进行图像处理,包括图像的读取、处理和保存等操作。

我们可以通过Matlab对图像进行增强、滤波、分割等处理,以及进行图像的压缩和重建。

例如,我们可以使用Matlab读取一张图片,并对其进行灰度化处理。

代码如下:```matlabimg = imread('image.jpg');gray_img = rgb2gray(img);imshow(gray_img);```三、实验结果与分析在本次实验中,我们成功完成了数值计算、数据可视化和图像处理等任务。

MATLAB软件与基础数学实验

MATLAB软件与基础数学实验

MATLAB 软件与基础数学实验Saw H.Z实验1 MATLAB 基本特性与基本运算例1-1 求[12+2×(7-4)]÷32的算术运算结果。

>> clear>> s=(12+2*(7-4))/3^2 s = 2例1-2 计算5!,并把运算结果赋给变量y y=1;for i=1:5 y=y*i; end y例1-3 计算2开平方>> s=2^(0.5) s =1.4142 >>例1-4 计算2开平方并赋值给变量x (不显示)查看x 的赋值情况 a=2;x=a^(0.5); x例1-4 设75,24=-=b a ,计算|)tan(||)||sin(|b a b a ++的值。

a=(-24)/180*pi; b=75/180*pi; a1=abs(a); b1=abs(b); c=abs(a+b);s=sin(a1+b1)/(tan(c))^(0.5)例1-5 设三角形三边长为2,3,4===c b a ,求此三角形的面积。

a=4;b=3;c=2; p=(a+b+c)/2;s=(p*(p-a)*(p-b)*(p-c))^(0.5)例1-7 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101654321A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112311021B ,计算||,,A AB B A +,1-A 。

a=[1,2,3;4,5,6;1,0,1];b=[-1,2,0;1,1,3;2,1,1]; x=a+b; y=a*b; z=norm(a); q=inv(a); x,y,z,q例1-8 显示上例中矩阵A 的第2行第3列元素,并对其进行修改. a=[1,2,3;4,5,6;1,0,1];x=a(2,3);a(2,3)=input('change into=') x,a例1-9 分别画出函数x x y cos 2=和x xz sin =在区间[-6π,6π]上的图形。

Matlab数学实验报告

Matlab数学实验报告

实验一 Matlab基本操作1.实验课程名称数学实验2.实验项目名称Matlab基本操作3.实验目的和要求了解Matlab的基本知识,熟悉其上机环境,掌握利用Matlab进行基本运算的方法。

4.实验内容和原理内容:三角形的面积的海伦公式为:area=)s-sa--)()(s(csb其中: s=(a+b+c)/2原理:将一般数学问题转化成对应的计算机模型并进行处理的能力。

了解Matlab的基本功能,会进行简单的操作。

5.主要仪器设备计算机与Windows 2000/XP系统;Matlab等软件。

6.操作方法与实验步骤步骤:(1)在M文件编辑窗口输入以下程序,并以文件名”area_helen.m”保存:a= input(‘a=‘) ; b= input(‘b=‘) ; c= input(‘c=‘) ;s= (a+b+c)/2;area=sqrt (s* (s-a) * (s-b) * (s-c))(2)在命令窗口输入文件名“area_helen”,按回车键,即可运行上面的程序,输入三边长,立即可得三角形面积(3)第二题在命令窗口输入b=6;a=3;c=a*b,d=c-2*b(4) 按回车键,即可运行上面的程序7.实验结果与分析<1> a=3; b=4; c=5;时,aera=6 当a为3,b为4,c为5时,s=6,aera=6<2> c= 18,d=6,a为3,b为6时,c=18,d=6实验二 Matlab的数值计算1.实验课程名称数学实验2.实验项目名称Matlab的数值计算3.实验目的和要求了解一些简单的矩阵、向量、数组和多项式的构造和运算方法实例,懂得编写简单的数值计算的Matlab程序。

熟悉一些Matlab的简单程序,会用Matlab的工具箱,懂得Matlab的安装和简单的使用。

4.实验内容和原理内容:从函数表:)1(),5.0(),2( ,0x 1x 021x 1x f(x) 32-⎪⎩⎪⎨⎧≤≤<>+=f f f x x求设)1(),2( ,1211)(2-⎩⎨⎧≤>+=f f x xx x x f 求设 原理:利用矩阵、向量、数组、和多项式的构造和运算方法,用常用的几种函数进行一般的数值问题求解。

数学实验—二次型的MATLAB实验

数学实验—二次型的MATLAB实验

数学实验——二次型的MATLAB实验
例 1 用正交变换法将二次型 f (x1 ,x2 ,x3 ) 17x12 14x22 14x32 4x1x2 4x1x3 8x2 x3 化为标准形.
数学实验——二次型的MATLAB实验
解 在 MATLAB 命令窗口输入:>>A=[17,-2,-2;-2,14,-4;-2,-4,14]; >>[Q,D]=schur(A) 运行程序后输出:Q= 0.3333 -0.2981 0.8944
解 在 MATLAB 命令窗口输入:>>format rat; >>A=[4,0,0;0,6,4;0,4,6]; 运行程序后输出:A= 4 0 0
064 046
数学实验——二次型的MATLAB实验
在 MATLAB 命令窗口输入:>>d=eig(A) 运行程序后输出:d=
2 4 10 因为 A 的特征值全为正,所以二次型 f (x1 ,x2 ,x3 ) 4x12 6x22 6x32 8x2 x3 是正定的.
0.6667 -0.5963 -0.4472 0.6667 0.7454 0.0000 D= 9 0 0 0 18 0 0 0 18 所作的正交变换为 x Py ,二次型的标准形为 f (x1 ,x2 ,x3 ) 9 y12 18y22 18y32 .
数学实验——二次型的MATLAB实验
例 2 判定二次型 f (x1 ,x2 ,x3 ) 4x12 6x22 6x32 8x2 x3 的正定性.
命令 d=eig(A) [P,D]=eig(A)
[Q,D]=schur(A) format rat
功能 输入 n 阶矩阵 A,运行后以向量的形式输出矩阵 A 的特征值赋给 d 输入 n 阶矩阵 A,运行后输出 A 的特征向量矩阵 P 和由特征值组成的 对角阵 D,使得 P1AP D 输入 n 阶矩阵 A,运行后输出 A 的正交矩阵 Q 和由特征值组成的对 角阵 D,使得 Q1AQ QT AQ D 数据有理化,一般放在最前面

数学实验指导书matlab

数学实验指导书matlab

数学实验指导书matlab【数学实验指导书】MATLAB一、实验背景和目的数学实验是数学教学中重要的一环,它能够帮助学生巩固和应用所学的数学知识,培养学生的实际问题解决能力。

MATLAB作为一种强大的数学计算软件,被广泛应用于数学实验中。

本实验旨在通过使用MATLAB软件,帮助学生掌握基本的MATLAB操作和数学实验方法,进一步提高数学建模和问题求解的能力。

二、实验内容1. MATLAB基本操作a) 启动MATLAB软件并了解主界面的组成部分。

b) 学习MATLAB的基本命令行操作,如变量定义、数学运算、矩阵操作等。

c) 掌握MATLAB的图形绘制功能,包括绘制函数图像、散点图等。

2. 数学建模实验a) 选择一个数学问题作为研究对象,例如:求解一元二次方程的根。

b) 使用MATLAB进行数学建模,包括问题分析、模型构建和求解过程。

c) 分析和解释模型的结果,对实际问题进行合理的解释和预测。

三、实验步骤1. MATLAB基本操作a) 启动MATLAB软件后,观察主界面的组成部分,包括命令窗口、工作空间、编辑器等。

b) 在命令窗口中练习基本的MATLAB命令,如定义变量、进行数学运算、创建矩阵等。

c) 使用plot函数绘制函数图像,并尝试修改线型、颜色等参数。

2. 数学建模实验a) 选择一个数学问题,例如求解一元二次方程ax^2 + bx + c = 0的根。

b) 在MATLAB中定义方程的系数a、b、c,并使用根据求根公式计算方程的根。

c) 绘制方程的图像,并标注根的位置。

四、实验结果与分析1. MATLAB基本操作a) 在命令窗口中成功定义了多个变量,并进行了数学运算,验证了MATLAB的基本功能。

b) 使用plot函数绘制了函数y = sin(x)的图像,并成功修改了线型和颜色。

2. 数学建模实验a) 成功求解了一元二次方程ax^2 + bx + c = 0的根,并将结果输出到命令窗口。

b) 绘制了方程的图像,并通过图像验证了求解结果的准确性。

matlab数学实验第三版

matlab数学实验第三版

matlab数学实验第三版
《MATLAB数学实验第三版》是由作者C. Moler和D. J.
Little合著的一本关于MATLAB编程和数学实验的书籍。

本书旨在帮助读者利用MATLAB进行数学建模和实验,涵盖了MATLAB的基本概念、数值计算、符号计算、绘图、数据分析等内容。

在这本书中,读者将学习如何使用MATLAB进行矩阵操作、线性代数计算、微积分、常微分方程求解、曲线拟合、统计分析等数学实验。

此外,书中还介绍了MATLAB的编程技巧、脚本文件的编写、函数的创建与调用等内容,帮助读者更好地利用MATLAB解决数学问题。

除了数学实验方面的内容,本书还涵盖了工程、物理、生物等领域的实际案例,通过这些案例,读者可以学习如何将MATLAB应用于实际问题的求解和分析中。

总的来说,《MATLAB数学实验第三版》是一本全面介绍MATLAB 数学建模和实验的书籍,适合对MATLAB感兴趣的学生、工程师和科研人员阅读。

通过学习这本书,读者可以掌握MATLAB在数学建模和
实验方面的基本原理和应用技巧,从而更好地应用MATLAB解决实际问题。

MATLAB数学实验6

MATLAB数学实验6

MATLAB数学实验6实验⼆定积分的近似计算学号:姓名:XX⼀、实验⽬的1.加深理解积分理论中分割、近似、求和、取极限的思想⽅法,了解定积分近似计算的矩阵形法、梯形法与抛物线法。

2.会⽤matlab 语⾔编写求定积分近似值的程序。

3.会⽤matlab 中的命令求定积分。

⼆、实验内容1.定积分近似计算的⼏种简单数值⽅法在许多实际问题中,常常需要计算定积分()baI f x dx =的值。

根据微积分学基本原理,若被积函数()f x 在区间[a,b]上连续,只需要找到被积函数的⼀个原函数()F x ,就可以⽤⽜顿莱布尼兹公式计算。

但在⼯程技术与科学实验中,有⼀些定积分的被积函数的原函数可能求不出来,即使可求出,计算也可能很复杂。

特别地,当被积函数是图形或表格给出时,更不能⽤⽜顿—莱布尼兹公式计算。

因此必需寻求定积分的近似计算⽅法。

⼤多数实际问题的积分需要⽤数值积分⽅法求出近似结果。

数值积分原则上可以⽤多项式函数近似代替被积函数,⽤对多项式的积分结果近似代替对被积函数的积分。

由于所选多项式形式的不同,可以有许多种数值积分⽅法,下⾯介绍最常⽤的⼏种插值型数值积分⽅法。

1)矩形法定积分的⼏何意义是计算曲边梯形的⾯积,如将区间[a,b]n 等分,每个⼩区间上都是⼀个⼩的曲边梯形,⽤⼀个个⼩矩形代替这些⼩曲边梯形,然后把⼩矩形的⾯积加起来就近似地等于整个曲边梯形的⾯积,于是便求出了定积分的近似值,这就是矩形法的基本原理。

假如()f x 在[a,b]上可积,利⽤定积分的定义()()1lim ,nbn n k an k b a I f x dx I I f nξ→∞=-===∑?(2-1)可知当n 充分⼤时,可将n I 视为积分I 的近似值,这⾥k ξ是取⾃第k 个区间[]1,k k x x -中的值。

如果将区间[a,b]n 等分,结点分别记为01...,n a x x x b =<<<=(),,k k b ah f f x h n-==称为积分步长。

matlab数学实验课程设计

matlab数学实验课程设计

matlab数学实验课程设计一、教学目标本课程的目标是让学生掌握MATLAB的基本使用方法,能够利用MATLAB进行数学实验,提高学生的数学建模和计算能力。

具体的教学目标包括:知识目标:使学生了解MATLAB的发展历程、基本功能和应用领域;让学生掌握MATLAB的基本语法、数据类型、运算符、编程技巧等。

技能目标:培养学生利用MATLAB进行数学建模、求解数学问题的能力;使学生能够熟练使用MATLAB进行数据分析、绘图和仿真。

情感态度价值观目标:激发学生对数学实验的兴趣,培养学生的创新精神和团队合作意识;使学生认识到MATLAB在实际生活和科研中的重要性,提高学生运用数学知识解决实际问题的能力。

二、教学内容本课程的教学内容主要包括MATLAB的基本使用方法、编程技巧和数学实验。

具体安排如下:1.MATLAB概述:介绍MATLAB的发展历程、基本功能和应用领域。

2.MATLAB基本语法:讲解MATLAB的数据类型、运算符、编程技巧等。

3.MATLAB数学实验:包括线性方程组求解、函数插值与逼近、数值微积分、常微分方程求解等。

4.MATLAB在实际应用中的案例分析:分析MATLAB在物理学、工程学、经济学等领域的应用实例。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:讲解MATLAB的基本语法和功能,使学生掌握MATLAB的基本使用方法。

2.案例分析法:分析实际应用案例,使学生了解MATLAB在各个领域的应用。

3.实验法:让学生动手进行数学实验,培养学生的实际操作能力。

4.讨论法:学生进行小组讨论,激发学生的创新思维和团队合作意识。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《MATLAB教程》或《MATLAB数学实验》。

2.参考书:提供相关的数学实验指导书和论文,供学生参考。

3.多媒体资料:制作课件和教学视频,帮助学生更好地理解MATLAB的使用方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. sym的调用格式
sym v sym v S
其中v表示变量,S表示变量的格式。
S的具体的选项和含义如下: ‘positive’ 限定所创建的为正的实型符号变量; ‘real’ 限定所创建的为实型符号变量; ‘unreal’ 限定所创建的为非实型符号变量。
例题
例1:设置a为符号变量,可以使用命令 sym a
只须输入如下命令: syms x f1=(tan(x)-sin(x))/x^3; f2=(tan(x)-x)/x^3; z1=limit(f1); z2=limit(f2); [z1 z2]
这里的自变量与默认自变 量一致,自变量的趋近值 也与默认自变量的趋近值 一致,因此可以采用默认 格式。
只须输入如下命令:
syms x
f=x/abs(x);
z1=limit(f,x,0,'left');
z2=limit(f,x,0,'right');
z=limit(f)
注:1)其中的‘abs’是MATLAB中自带的函数,
表示
“绝对值”。
2)当极限结果不存在时,MATLAB中用字符 NaN来表示。
在MATLAB中,提供函数int来求解符号积分。int命令 的常用调用格式如下:
int(S) 求符号表达式S对默认积分变量x的不定积分;
int(S,v) 求符号表达式S对积分变量v的不定积分;
int(S,a,b) 求符号表达式S对默认积分变量x从a到b的
diff(F,x,n)求符号表达式F对变量x的n阶 导数。
例题
例8:求函数 y xx 的导数。
只须输入如下命令: syms x f=x^x; z=diff(f)
例9:求函数
y 1 ms x g=(1-x)/(1+x); j1=diff(g); j2=diff(g,2); j3=diff(g,3); j4=diff(g,4); j5=diff(g,5); jg=[j1 j2 j3 j4 j5]; hjjg=simple(jg);
3)对于单侧极限,不存在默认格式。
符号微积分
当创建符号表达式以后,就可以使用diff函 数对它们进行微分运算(即求导)。
在MATLAB中,diff命令的常用调用格式有三 种:
diff(F,x) 求符号表达式F对变量x的一阶导 数;
diff(F,n) 求符号表达式F对默认自变量 (一般是x)的n阶导数,参数n必须是正整数;
符号极限
在MATLAB中,提供函数limit来求解符号表达 式的极限,其常用的调用格式如下:
limit(F,x,a) 求解当符号表达式F的自变量x 趋于a时,F的极限;
limit(F,a) 表示符号表达式F采用默认自变量 (一般为x),该命令求得当x趋于a时F的极限;
limit(F) 表示符号表达式F采用默认自变量x, 并且以a=0为自变量的趋近值,该命令求得当x趋 于0时F的极限;
例题
例6:验证第二个重要极限 lim(1 1)x e
x
x
只须输入如下命令: syms x f=(1+1/x)^x; z=limit(f,x,inf)
注:当自变量的趋近值为无穷大时,MATLAB中 用字符inf来替代。
例7:求函数
f (x)
x x
在 x 0 这一点左右两侧的极
限,以及 在 x 0 这一点的极限。
limit(F,x,a,‘left’) 求解符号表达式F的 左极限,即当自变量x从左侧趋于a时F的极限;
limit(F,x,a,‘right’) 求解符号表达式F的 右极限,即当自变量x从右侧趋于a时F的极限。
例4:求极限 和 lim tan x sin x
x0
x3
tan x x
lim
x0
x3
注:若所求结果的表达式比较复杂,可采用simple命令进行化简
MATLAB中没有直接求隐函数和参数方 程的导数的命令。求隐函数的导数需要单 独编程。而求参数方程的导数可以借助diff 命令,先分别求自变量和因变量对参数的 导数,再将结果进行人工整理。
符号积分
积分与微分是一种互逆的运算。积分包括不定积分、定 积分、旁义积分和重积分等。一般来讲,积分比微分更难 求解。
MATLAB的启动方法
1)点开始——程序——MATLAB; 2)用鼠标双击matlab图标
符号对象和符号表达式
在进行符号运算之前,首先需要定义符 号对象,然后利用这些符号对象去建构表 达式,最后才能进行符号运算。
定义符号对象的常见命令是sym和syms, 前者一次只能定义一个符号变量,而后者 可以一次定义多个符号变量。
也可以使用完整的格式, 命令如下:
syms x f1=(tan(x)-sin(x))/x^3; f2=(tan(x)-x)/x^3; z1=limit(f1,x,0); z2=limit(f2,x,0); [z1 z2]
例题
例5:求极限
lim(sin x)tan x
x
2

只须输入如下命令: syms x f=sin(x)^tan(x); z=limit(f,pi/2)
MATLAB与数学实验
学习目标
了解MATLAB语言;熟练掌握用 MATLAB求极限、求导数、求积 分的命令;能够进行简单的数据处 理;掌握基本图形的绘制方法。
MATLAB简介
matlab语言是由美国的Clever Moler博士于1980
年开发的,设计者的初衷是为了解决《线性代数》课程中 的矩阵运算问题,取名MATLAB即Matrix Laboratory, 意思是矩阵实验室。 经过近30年的发展,MATLAB已经不仅仅是一个“矩 阵实验室”了,它集科学计算、图象处理、声音处理于一 身,并提供了丰富的Windows图形用户界面设计方法, 功能非常强大。
注意:设置a,b都为符号变量,不能使用命 令 sym a b。
例2:设置a为正的实型符号变量,可以使 用命令
sym a positive
2. syms的调用格式
syms v1 v2 v3 v4 … S
其中v1 v2 v3 v4 …表示变量,S表示 变量的格式,其具体的选项和含义同sym 命令中的S 。
相关文档
最新文档