用拉伸法测金属丝的杨氏模量

合集下载

拉伸法测量金属丝的杨氏模量实验原理

拉伸法测量金属丝的杨氏模量实验原理

拉伸法测量金属丝的杨氏模量实验原理拉伸法测量金属丝的杨氏模量是一种常见的金属力学性质实验方法。

杨氏模量是特定物质在弹性变形的情况下表征其刚度的物理量。

该实验方法可以很好地了解金属材料在受到力引起的弹性变形时的性能。

以下是拉伸法测量金属丝的杨氏模量实验原理的详细介绍。

1. 实验材料和设备实验材料:金属丝样品、细密表、软尺、托盘、千分尺、滑轮和负载。

实验设备:万能材料试验机和电子天平。

2. 实验原理在拉伸实验中,断面积相同的样品材料被拉伸或挤压,以得出相对应的应力-应变关系。

应力是单位面积内的应力,通常用帕(Pa)表示,而应变是物体长度的相对变化量,通常用空间无量纲表示。

金属材料的杨氏模量可以通过以下公式计算:E = σ / ε,其中E是杨氏模量,σ是应力,ε是应变。

在金属拉伸试验中,应变可以容易地计算出来,因为拉伸物体时,其长度是由初始长度L进行变化的,并且拉伸的变化量d可以被直接测量。

此外,由于金属丝的横截面积可以被认为是恒定的,所以应力也可以由测量中施加的受力N / A(单位面积的负载)计算得出。

应变可以通过以下公式计算:ε = d / L,其中d是拉伸时金属丝长度的变化,而L 是金属丝初始的长度。

应力可以通过以下公式计算:σ = N / A,其中N是实验中施加的受力,而A是金属丝的截面积。

通过这些计算公式,可以得出金属丝样品的杨氏模量E。

此外,拉伸实验还可以通过施加不同大小的负载测量金属丝材料的最大拉伸强度,也可以得出金属样品材料的断裂伸长率和断裂强度,来计算材料的破断性能。

3. 实验步骤1) 将金属丝样品装入测试机,并将其夹紧在一个方向上以避免弯曲。

2) 通过细密表和软尺等测量元件测量金属丝的长度和直径,并计算其横截面积。

3) 在测试机的负载控制下施加一定的负载(例如50 N),使金属丝被拉伸或挤压。

4) 记录金属丝变形的长度,并计算出应变。

5) 通过读取测试机显示器上的内部传感器确定金属丝的负载荷。

拉伸法测金属丝的杨氏模量

拉伸法测金属丝的杨氏模量

五、实验数据处理(整理表格、计算过程、结论):700.0222=∆+∆+=∆仪仪d S d (mm) )m m (7.0222=∆+∆+=∆仪仪N S N )N/m (1096.11022.152.80812.014.3101.1135.4600.516162118232---⨯=⨯⨯⨯⨯⨯⨯⨯⨯==bN d FLD E π%1.24222222=⎪⎭⎫⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆=∆b b N N D D L L F F d d E E )N/m (1004.0211-⨯=∆⨯=∆EEE E)N/m (10)04.096.1(211-⨯±=E2.3 实验步骤1)将待测金属丝下端砝码钩上加1.000kg砝码使它伸直。

调节仪器底部三脚螺丝,使G平台水平。

2)将光杠杆的两前足置于平台的槽内,后足置于C上,调整镜面与平台垂直。

3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D约为1.5米左右。

4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L。

5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。

再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。

6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。

若有视差,应继续细心调节目镜,直到无视差为止。

检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。

记下水平叉丝(或叉丝交点)所对准的标尺的初读数N0,N0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。

用拉伸法测金属丝的杨氏模量参考报告

用拉伸法测金属丝的杨氏模量参考报告

用拉伸法测金属丝的杨氏模量参考报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。

2、掌握光杠杆放大法测量微小长度变化的原理和方法。

3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。

4、学习数据处理和误差分析的方法。

二、实验原理1、杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。

对于一根粗细均匀的金属丝,在其长度方向上施加拉力 F,金属丝会发生伸长,设其伸长量为ΔL,金属丝的原长为 L,横截面积为 S,则根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,其比例系数即为杨氏模量 E,表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\2、光杠杆放大原理光杠杆是一个带有三个尖足的平面镜支架,前两尖足放在平台的横槽内,后尖足置于待测金属丝的测量端。

当金属丝受力伸长时,光杠杆的后尖足随之下降,镜面将发生偏转。

设镜面偏转角度为θ,光杠杆常数(前脚到后脚的垂直距离)为 b,从望远镜中看到的标尺刻度变化为Δn,则有:\\tan\theta \approx \theta =\frac{\Delta n}{D} \\\Delta L =\frac{b}{2D} \Delta n \其中 D 为光杠杆镜面到标尺的距离。

三、实验仪器1、杨氏模量测定仪包括支架、待测金属丝、砝码托盘等。

2、光杠杆及望远镜尺组由光杠杆、望远镜和标尺组成。

3、游标卡尺用于测量金属丝的直径。

4、螺旋测微器用于更精确地测量金属丝的直径。

5、砝码若干个,用于对金属丝施加拉力。

四、实验步骤1、仪器调整(1)将杨氏模量测定仪放置在水平桌面上,调整底座螺丝使立柱铅直。

(2)调整光杠杆,使其前脚位于平台的沟槽内,后脚置于金属丝的测量端,镜面与平台垂直。

(3)调节望远镜,使其与光杠杆镜面等高,且望远镜光轴与镜面中心等高,目镜调焦看清十字叉丝,物镜调焦看清标尺刻度。

2、测量金属丝长度 L用米尺测量金属丝的原长 L,测量多次取平均值。

拉伸法测金属丝杨氏模量实验报告

拉伸法测金属丝杨氏模量实验报告

拉伸法测金属丝杨氏模量实验报告用拉伸法测金属丝的杨氏模量参考报告用拉伸法测金属丝的杨氏模量参考报告一、实验目的1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;5.学会实验报告的正确书写。

二、实验仪器YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm ,0.1cm)、游标卡尺(0-150mm,0.02mm)、螺旋测微器(0-25mm,0.01mm) 三、验原理在外力作用下,固体所发生的形状变化称为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长?L,则在金属丝的弹性限度内,有:FY?SLL我们把Y称为杨氏弹性模量。

如上图:Ltgx?x(A1A0) LA1?A02D2DFF12d8FLDY 2Lxdx(A1A0)(A1?A0)LL四、实验内容一仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.500-2.000m左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺0刻度?2cm以内,并使得视差不超过半格。

二测量1、下无挂物时标尺的读数A0;2、依次挂上1kg的砝码,七次,计下A1,A2,A3,A4,A5,A6,A7;3、依次取下1kg的砝码,七次,计下A1,A2,A3,A4,A5,A6,A7;4、用米尺测量出金属丝的长度L(两卡口之间的金属丝)、镜面到尺子的距离D;5、用游标卡尺测量出光杠杆x、用螺旋测微器测量出金属丝直径d。

拉伸法测金属丝杨氏模量实验数据及数据处理范例

拉伸法测金属丝杨氏模量实验数据及数据处理范例

拉伸法测金属丝杨氏模量实验数据及数据处理范例实验目的:
通过拉伸法测定金属丝的应变-应力关系,计算出其杨氏模量。

实验装置:
1.拉伸装置
2.千分尺
3.计时器
4.电子秤
5.砝码
实验步骤:
1.将金属丝从盒子中取出,用色布擦拭干净。

2.测量金属丝的直径,取5组数据。

3.挂上金属丝,调整砝码,使其自由悬挂。

5.将千分尺固定在金属丝上,并与拉伸装置连接。

6.千分尺的刻度盘上调整到零点,并记录下来。

7.每增加1kg的砝码,记录下金属丝的长度,直到金属丝拉断。

8.重复以上步骤,取5组数据。

数据处理:
1.计算平均直径d和平均长度l。

2.根据公式计算出金属丝的应变ε和应力σ。

3.画出应变-应力曲线,并计算出杨氏模量E。

范例:
1.直径:
2.长度:
平均直径:d=(0.254+0.251+0.253+0.252+0.250)÷5=0.252mm
平均长度:l=(119.2+118.9+119.4+119.1+119.0)÷5=119.12mm
应变ε=(L-L0)÷L0=(119.2-119.1)÷119.1=0.000840336
应力σ=mg÷A=1×9.8÷(π/4×0.252^2)=103.12MPa
结论:
通过本实验可以得出金属丝的杨氏模量为122658.1MPa,来评估金属丝的性能和用途,具有很高的实用价值。

用拉伸法测量金属丝杨氏模量

用拉伸法测量金属丝杨氏模量
析原因后重新测量。
4.用千分尺测d时,应先检验零点读数,并统计零点 误差。要求对不同位置处测6次。
思索题
1. 本试验中分别用了米尺、游标卡尺、螺旋测微 计以及光杠杆望远镜尺组系统四种测长仪器,试用 不拟定度理论阐明选择这些测量仪器旳原则。
2. 定量分析各被测量中哪一种量旳不拟定度对成 果影响最大。
砝码旳拉力: F mg
钢丝旳截面积: S 1 d 2
4
带入杨氏模量旳定义公式,可得:
Y
8mgLD
d 2 xA
仪器设备
试验内容
1.杨氏模量测定仪旳调整 2.光杠杆及望远镜尺组旳调整
(1)外观对准——调整光杠杆与望远镜、标尺中部在同一高 度上。 (2)镜外找像——缺口、准星、平面镜中标尺像.三者在一 条水平 线上。 (3)镜内找像 ——先调整目镜使叉丝清楚,再调整调焦钮 看清标尺像,直到忽视差为准。 (4)细调对零——或对准标尺像零刻线附近旳任一刻度线,
用拉伸法测量金属丝杨氏模量
1. 教学目的 2. 试验原理 3. 仪器设备 4. 试验内容 5. 数据处理 6. 注意事项 7. 思索题
教学目的
1 经过试验掌握杨氏模量旳物理概念及测量措施 (静力学拉伸法)
2 掌握用光杠杆法测量微小长度旳原理和措施
3 学会用逐差法和作图法处理试验数据
4 了解、学习从诸多测量中分析试验成果旳主要 误差起源
图,求出斜率k,再计算杨氏模量:
Y
8LD
d 2 xK
Hale Waihona Puke 意事项1.加减砝码时动作要平稳,勿使砝码托摆动。不然将 会造成光杠杆后足尖发生移动。并在每次增减砝码后, 等金属丝完全不晃动时才干读数.
2.在测量过程中,不能碰动各仪器。增长砝码时应 将砝码缺口交叉放置。(为何?)

用拉伸法测金属丝的杨氏模量实验报告

用拉伸法测金属丝的杨氏模量实验报告

用拉伸法测金属丝的杨氏模量实验报告用拉伸法测金属丝的杨氏模量实验报告引言:杨氏模量是材料力学性质的重要指标之一,它描述了材料在拉伸过程中的刚度和变形能力。

本实验通过拉伸金属丝的方法来测量杨氏模量,旨在了解金属丝的力学性质,并探讨拉伸过程中的变形行为。

实验装置和步骤:实验装置主要包括拉伸机、金属丝样品、刻度尺、电子天平和计算机。

具体的实验步骤如下:1. 将金属丝样品固定在拉伸机的夹具上,并调整夹具使其与拉伸机的拉伸轴心对齐。

2. 通过调整拉伸机的拉伸速度和加载范围,使实验能够在合适的条件下进行。

3. 使用刻度尺测量金属丝的初始长度,并记录下来。

4. 启动拉伸机,开始对金属丝进行拉伸。

5. 在拉伸过程中,使用电子天平测量金属丝的质量,并记录下来。

6. 当金属丝断裂时,停止拉伸机的运行,并记录下金属丝的最终长度。

实验数据处理:根据实验步骤所得到的数据,可以计算出金属丝的应力和应变。

应力定义为单位面积上的力,可以通过施加在金属丝上的拉力除以金属丝的横截面积得到。

应变定义为单位长度上的变形量,可以通过金属丝的伸长量除以初始长度得到。

根据胡克定律,应力与应变之间的关系可以用以下公式表示:应力 = 弹性模量× 应变其中,弹性模量即为杨氏模量。

通过绘制应力-应变曲线,可以得到金属丝的杨氏模量。

在实验中,我们可以根据拉伸过程中的应力和应变数据,绘制出应力-应变曲线,并通过线性拟合得到斜率,即金属丝的杨氏模量。

实验结果和讨论:根据实验数据处理得到的应力-应变曲线,我们可以得到金属丝的杨氏模量。

实验结果显示,金属丝的杨氏模量为XXX GPa(Giga Pascal)。

这个结果与文献中的数值相符合,证明了实验方法的可靠性。

在拉伸过程中,金属丝会发生塑性变形,即超过了材料的弹性限度。

这是因为金属丝在受到拉力的作用下,晶体结构发生了位错滑移,导致金属丝的形状发生变化。

当拉力超过金属丝的极限强度时,金属丝会发生断裂。

拉伸法测金属丝杨氏弹性模量

拉伸法测金属丝杨氏弹性模量
(1)调节杨氏模量测定仪的底脚调整螺钉,使立柱铅 直。
(2)调节平台的上下位置,使随金属丝伸长的夹具B 上端与沟槽在同一水平面上(为什么?)。
(3)加1Kg砝码在砝码托盘上,将金属丝拉直,检查 夹具B是否能在平台的孔中上下自由地滑动,金属丝 是否被上下夹子夹紧.
2.光杠杆及望远镜尺组的调节
(1)外观对准——调节光杠杆与望远镜、标尺中部 在同一高度上。 (2)镜外找像——缺口、准星、平面镜中标尺 像.三者在一条水平 线上。 (3)镜内找像 ——先调节目镜使叉丝清晰,再调节 调焦距看清标尺像,直到无视差为准。 (4)细调对零——对准标尺像零刻线附近的任一刻
4 n4 9 n9
n7 n2
5 n5 10 n10
n8 n3
n9 n4
n10 n5
5
2
A t0 .9 55i 1
N iN 5 1
,
B仪,
因 n1N
5
所 以 n5 1N
N
2 2
AB
nnn
返回
实验内容
1.杨氏模量测定仪的调整
i1
31
B 仪
nnn
n 2A2B
杨氏模量 E计 8FL算D
d2bn
不确定度计算:
EEFF2LL2D D24dd2bb2nn2
E
E E
E
用拉伸法测量金属丝杨氏模量
1. 实验简介 2. 实验目的 3. 实验原理 4. 逐差法处理数据 5. 实验内容 6. 注意事项 7. 数据记录与处理 8. 课后思考题
实验简介
材料受外力作用时必然发生形变,杨氏模量(也称弹性模量)是 反映固体材料弹性形变的重要物理量,在一般工程设计中是一个 常用参数, 是选定机械构件材料的重要依据之一。常用金属材

大学物理实验--拉伸法测金属丝杨氏模量

大学物理实验--拉伸法测金属丝杨氏模量

实验一拉伸法测金属丝杨氏模量一实验目的1.用伸长法测定金属丝的杨氏模量2.掌握光杠测微原理及使用方法3.掌握不同长度测量器具的选择和使用,学习误差分析和误差均匀原理思想。

4.学习使用逐差法和作图法处理数据及最终处理结果的表达。

二实验原理1. 设金属丝的原长为L,横截面积为A,外加力为P,伸长了长度为△L,则单位长度的伸长量为△L/L,叫应变。

单位横截面所受的力为P/A,叫应力。

根据胡克定理,应变和应力有如下关系:P/A=E×△L/L,其中E为杨氏弹性模量(它仅与材料性质)2.在已知外加力P,横截面积为A,金属丝的原长为L,及伸长了长度为△L的情况下,就可以根据一下公式求得氏弹性模量E:E=P×L/(A×△L)3.实验装置的使用原理解析:根据杠杆原理:aa`/bb=Oa/Ob可以测量每次加载后的微小的△L的变量,又由于S1S2之间的夹角为2α所以在使用光扛杠镜后测量出来的△L的变量为:△L=b(S2— S1)/2D=b*△S/2D4.在已知b为短臂长,2D为长臂长,△L为短臂末梢的微小位移,△S=(S2— S1)为光臂末端的位移,及A=πρ 2 /4(ρ为钢丝的直径),则最后的E可为一下公式表达:E=8LDP/(πρ2b△S)三实验内容1仪器的认识和调整。

调节杨氏模量仪器支架成铅垂,调节光杠杆镜和望远镜。

2.实验现象的观察和数据测量。

(1)在测量之前,必须先观察实验基本的现象,思考可能的误差来源。

(2)测量钢丝在不同荷重下的伸长变化。

先放1个1kg砝码,记下读数,然后逐次增加1kg砝码,记下每次的读数,共10次。

再将所加大砝码逐次拿下,记下每次都读数。

(3)根据误差均匀思想(应选择适当的测量仪器,使得各直接测量的误差分量最终结果断误差的影响大致相同),合理选择并正确使用不同测长仪器来测量光杠杆镜至标尺的距离D,钢丝的长度L 和直径ρ以及光杠杆镜后脚尖至O点多垂直距离b,最后求E最大误差限△E(4)测量时注意这些量的实际存在的测量偏差,从而决定测量次数。

用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。

实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。

实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。

实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。

实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

用拉伸法测金属丝的杨氏模量(显微镜直读法)-试验报告(含数据)

大学物理实验讲义实验4.2.1 拉伸法测金属丝的杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量,是工程技术上常用的参数,是工程技术人员选择材料的重要依据之一。

条形物体(如钢丝)沿纵向的弹性模量叫杨氏模量。

测量材料杨氏模量方法很多,其中最基本的方法有伸长法和弯曲法。

伸长法一般采用拉伸法,其采用的具体测量方法有光杠杆放大法和显微镜直读法;弯曲法包括静态弯曲法和动态弯曲法。

本实验采用拉伸法当中的显微镜直读法。

【实验目的】1.熟悉米尺和千分尺的使用,掌握读数显微镜的使用方法;2.学习用逐差法处理数据;3.了解CCD成像系统。

【实验仪器】YWC-III杨氏模量测定仪、钢卷尺、千分尺、水准仪和0.1kg、0.2kg的砝码若干。

杨氏模量测定仪的结构如图4-2-1所示。

(a)学生实验配置(b)教学演示配置图4-2-1杨氏模量测定仪1.金属丝支架S为金属丝支架,高约1.30m,可置于实验桌上,支架顶端设有金属丝夹持装置,金属丝长度可调,约77cm,金属丝下端的夹持装置连接一小方块,方块中部的平面上有细十字线供读数用,小方块下端附有砝码盘。

支架下方还有一钳形平台,设有限制小方块转动的装置(未画出),支架底脚螺丝可调。

2.读数显微镜读数显微镜M用来观测金属丝下端小圆柱中部平面上细横线位置及其变化,目镜前方装有分划板,分划板上有刻度,其刻度范围0-8mm,分度值0.01mm,每隔1mm刻一数字。

H1为读数显微镜支架。

D成像、显示系统(作为示教仪)CCD黑白摄像机:灵敏度:最低照度≤0.2Lux;CCD接在显微镜目镜与电视显示器上。

H2为CCD黑白摄像机支架。

【实验原理】物体在外力作用下,总会发生形变。

当形变不超过某一限度时,外力消失后形变随之消失,这种形变称为弹性形变。

发生弹性形变时,物体内部产生恢复原状的内应力。

本实验中形变为拉伸形变,即金属丝仅发生轴向拉伸形变。

设金属丝长为L,横截面积为S,沿长度方向受一外力F后金属丝伸长ΔL。

实验一、用拉伸法测金属丝的杨氏模量

实验一、用拉伸法测金属丝的杨氏模量

2.4 用拉伸法测金属丝的杨氏弹性模量固体材料的长度发生微小变化时,用一般测量长度的工具不易测准,光杠杆镜尺法是一种测量微小长度变化的简便方法。

本实验采用光杠杆放大原理测量金属丝的微小伸长量,在数据处理中运用两种基本方法—逐差法和作图法。

【实验目的】⑴ 掌握光杠杆镜尺法测量微小长度变化的原理和调节方法。

⑵ 用拉伸法测量金属丝的杨氏弹性模量。

⑶ 学习处理数据的一种方法——逐差法。

【实验原理】1. 拉伸法测金属丝的杨氏弹性模量 设一各向同性的金属丝长为L ,截面积为S ,在受到沿长度方向的拉力F 的作用时伸长 ΔL ,根据虎克定律,在弹性限度内,金属丝的胁强F/S (即单位面积所受的力)与伸长应变ΔL/L (单位长度的伸长量)成正比LLE SF ∆= (1) 式中比例系数E 为杨氏弹性模量,即LS FLE ∆=(2) 在国际单位制中,E 的单位为牛每平方米,记为N/m 2。

实验表明,杨氏弹性模量E 与外力F 、金属丝的长度L 及横截面积S 大小无关,只与金属丝的材料性质有关,因此它是表征固体材料性质的物理量。

(2)式中F 、L 、S 容易测得,ΔL 是不易测量的长度微小变化量。

例如一长度L=90.00cm 、直径d=0.500mm 的钢丝,下端悬挂一质量为0.500kg 砝码,已知钢丝的杨氏弹性模量E=2.00×1011N/m 2, 根据(2)式理论计算可得钢丝长度方向微小伸长量ΔL =1.12×10-4m 。

如此微小伸长量,如何进行非接触式测量,如何提高测量准确度?本实验采用光杠杆法测量。

2. 光杠杆测微小长度将一平面镜M 固定在有三个尖脚的小支架上,构成一个光杠杆,如图1所示。

用光杠杆法测微小长度原理如图2所示。

假设开始时平面镜M 的法线OB 在水平位置,B 点对应的标尺H 上的刻度为n 0,从n 0发出的光通过平面镜M 反射后在望远镜中形成n 0的像,当金属丝受到外力而伸长后,光杠杆的后尖脚随金属丝下降ΔL ,带动平面镜M 转一角度α到M ˊ,平面镜的法线OB 也转同一角度α到OB ˊ,根据光的反射定律,镜面旋转α角,从B 发出光的反射线将旋转2α角,即到达B ′′,由光线的可逆性,从B ′′发出的光经平面镜M 反射后进入望远镜,因此从望远镜将观察到刻度n 1。

用拉伸法测金属丝的杨氏弹性模量.

用拉伸法测金属丝的杨氏弹性模量.
4.将光杠杆取下放在纸上,压出三个尖脚的痕迹, 用游标卡尺测量出主杆尖脚至前两尖脚连线的距离 三次。取其平均值。
5.用螺旋测微器在金属丝的上、中、下 三处测量其直径,每处都要在互相垂直的方 向上各测一次,共得六个数据,取其平均值。
将以上数据分别填入表9-1、表9-2和表93中。
6.用逐差法算出,再将有关数据化为国
二、测金属丝的杨氏弹性模量
1.轻轻将砝码加到砝码托上,每次增加1kg ,加 至7kg为止。逐次记录每加一个砝码时望远镜中的 标尺读数。加砝码时注意勿使砝码托摆动,并将砝 码缺口交叉放置,以防掉下。
2.再将所加的7kg砝码依次轻轻取下,并逐次记 录每取下1kg砝码时望远镜中的标尺读数。
3.用钢卷尺测量光杠杆镜面至标尺的距离和金属 丝的长度各三次,分别求出它们的平均值。
实验原理
一、拉伸法测定金属丝的杨氏弹性模量
设一粗细均匀的金属丝长为L,截面积为S,上端固定, 下端悬挂砝码,金属丝在外力F的作用下发生形变,伸 长 ΔL 。根据胡克定律,在弹性限度内,金属丝的胁强和产
生的胁变成正比。

F E L SL
(9-1)

E FL SL
(9-2)
式中比例系数E称为杨氏弹性模量。在国际单位制中,
实验内容
一、杨氏弹性模量仪的调节
1.将水准仪放在平台上,调节杨氏弹性模量仪 双柱支架上的底脚螺丝,使立柱铅直。
2.将光杠杆放在平台上,两前尖脚放在平台的 凹槽中,主杆尖脚放在圆柱夹具的上端面上,但不 可与金属丝相碰。调节平台的上下位置,使光杠杆 三尖脚位于同一水平面上。
3.在砝码托上加1kg砝码,把金属丝拉直。并检 查圆柱夹具是否能在平台孔中自由移动。
际单位代入式(9-7)中,求出金属丝的杨氏

用拉伸法测金属丝的杨氏模量报告

用拉伸法测金属丝的杨氏模量报告

用拉伸法测金属丝的杨氏模量报告杨氏模量是用来描述固体材料在受力时的弹性特性的重要参数,可以描述材料在受力时的抗拉能力和变形能力。

拉伸法是测量材料杨氏模量的常用方法之一,本报告将详细介绍使用拉伸法测量金属丝的杨氏模量的实验步骤、仪器设备、数据处理和结果分析等内容。

一、实验目的:本实验的目的是通过拉伸法测量金属丝的杨氏模量,从而了解金属丝的力学性质。

二、实验原理:拉伸法是测量杨氏模量的常用方法之一,基本原理是通过测量金属丝在受拉力作用下的变形量与受力的关系,得到杨氏模量。

三、实验仪器设备:1.金属丝样品(材料:金属丝);2.拉力机;3.游标卡尺等测量工具;4.外力计。

四、实验步骤:1.准备工作:a.将金属丝剪成合适的长度,并用离心机清洗干净;b.按照实验要求,在拉力机上安装好金属丝样品,并调整好拉力机的参数。

2.实验测量:a.测量金属丝样品的初始长度和直径,并记录测量结果;b.在拉力机上施加一个逐渐增大的拉力,记录拉力和相应的伸长量。

3.数据处理:a.根据实验测量结果,计算金属丝的应变(单位长度的伸长量),并绘制应变-应力图;b.根据应变-应力图中线性部分的斜率,计算金属丝的杨氏模量。

五、结果分析:根据实验测量的数据和计算结果,可以得到金属丝的杨氏模量。

根据实验测量的应变-应力图中线性部分的斜率,可以计算出杨氏模量的数值。

六、实验注意事项:1.实验过程中需要注意安全,避免发生意外情况;2.测量金属丝的长度和直径时,要使用合适的测量工具进行准确测量;3.在实验过程中需要仔细记录实验数据,并及时进行数据处理;4.在数据处理过程中需要注意计算的准确性和可靠性。

七、实验总结:通过本次实验,成功使用拉伸法测量了金属丝的杨氏模量。

实验过程中,需要仔细操作测量仪器和记录实验数据,以提高实验的准确性和可靠性。

本次实验的结果可用于研究金属丝的力学性质和应用等方面,对进一步了解材料的性能和特性具有重要意义。

拉伸法测定金属丝的杨氏模量

拉伸法测定金属丝的杨氏模量

拉伸法测定金属丝的杨氏模量一、引言拉伸法是测量金属丝的杨氏模量的一种常用方法。

杨氏模量是描述材料在受力时变形程度的物理量,它是指单位面积内受力方向上的应力与相应的应变之比。

在实际工程中,了解杨氏模量对于设计和制造各种机械零件和结构件具有重要意义。

二、实验原理拉伸法测定金属丝的杨氏模量原理是通过对金属丝在外力作用下产生的弹性变形进行测试,计算出其应力和应变之间的比值即为该金属丝所具有的杨氏模量。

三、实验步骤1. 准备工作:选择合适尺寸和长度的金属丝,并将其固定在测试机上。

2. 施加外力:通过测试机施加外力使得金属丝发生弹性变形。

3. 测定数据:在施加外力过程中,记录下相应的载荷值和伸长值等数据。

4. 计算结果:根据所记录下来的数据计算出金属丝所具有的杨氏模量。

四、实验注意事项1. 选择合适尺寸和长度的金属丝,并将其固定在测试机上,保证金属丝处于水平状态。

2. 在施加外力时,应逐渐增加外力的大小,避免瞬间施加过大的载荷导致金属丝断裂。

3. 在测定数据时,应注意记录下相应的载荷值和伸长值等数据,并进行准确计算。

4. 在实验过程中应注意安全,避免发生意外事故。

五、实验结果分析通过实验可以得到金属丝的杨氏模量。

根据实验结果可以了解到该金属丝在受力时变形程度的大小,为设计和制造各种机械零件和结构件提供了重要参考依据。

六、结论拉伸法测定金属丝的杨氏模量是一种常用方法,通过实验可以得到该金属丝所具有的杨氏模量。

了解杨氏模量对于设计和制造各种机械零件和结构件具有重要意义。

在实验过程中应注意安全,并进行准确计算。

拉伸法测金属丝的杨氏模量

拉伸法测金属丝的杨氏模量

HARBIN ENGINEERING UNIVERSITY物理实验报告实验题目:拉伸法测金属丝的杨氏模量姓名:张志林物理实验教学中心实验报告一、实验题目:拉伸法测金属丝的杨氏模量二、实验目的: 1. 掌握静态拉伸法测量金属丝的杨氏模量2. 学会光杠杆法测量微小长度变化量的技巧3. 巩固逐差法处理实验数据4. 接受有效数字计算和不确定度计算的训练三、实验仪器:数显液压加力杨氏模量测定仪,新型光杠杆,螺旋测微计和钢卷尺四、实验原理(原理图、公式推导和文字说明):E =F L /∆LS(1)E ─ 杨氏模量,固体材料抵抗形变能力的重要物理量,固有属性,取决于材料,F/S ─ 应力,∆L/L ─ 应变,F、S、L易测,∆L不易测,采用光杠杆法设金属丝的直径为d,有E=4FL/πd2ΔL (2)当金属丝受力后,产生微小伸长,光杠杆后足尖便随托板一起作微小移动,并使光杠杆绕前足尖转动一微小角度,从而带动光杠杆反射镜转动相应的微小角,这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大线位移。

这就是光杠杆产生光放大的基本原理。

下面我们来导出本实验的测量原理公式。

光杠杆放大原理示意图标尺和观察者在两侧,开始时光杠杆反射镜与标尺在同一平面,在望远镜中读到的标尺读数为n0,当光杠杆反射镜的后足尖下降ΔL,将会产生一个微小偏转角θ,此时在望远镜中读到的标尺读为n1, n1-n0即为放大后的钢丝伸长量N,常称作视伸长。

由图可知ΔL=b tanθ≈bθN= n1-n0=D tan4θ≈4Dθ所以它的放大倍数为A0=NΔL=n1-n0/ΔL=4Db可得E=16FLD/πd2bN (3)式中D为调节反射平面镜到标尺的距离,b称为光杠杆常数,即为光杠杆后足尖到两前足尖连线的垂直距离。

五、实验数据处理(整理表格、计算过程、结论):700.0222=∆+∆+=∆仪仪d S d (mm) )mm (7.0222=∆+∆+=∆仪仪N S N )N/m (1096.11022.152.80812.014.3101.1135.4600.516162118232---⨯=⨯⨯⨯⨯⨯⨯⨯⨯==bN d FLD E π%1.24222222=⎪⎭⎫⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆=∆b b N N D D L L F F d d E E )N/m (1004.0211-⨯=∆⨯=∆EEE E)N/m (10)04.096.1(211-⨯±=E六、总结及可能性应用(误差分析、收获、体会及本实验的应用):1.增加D 可进一步提高放大倍数;2.水平没调对结果会有影响;3.也可利用作图法进行处理;4.钢丝是否要定期更换。

用拉伸法测定金属丝的杨氏模量

用拉伸法测定金属丝的杨氏模量

用拉伸法测定金属丝的杨氏模量拉伸法是测定金属丝杨氏模量的常用方法之一。

其原理是用外力拉伸金属丝,测定在一定的拉伸力下,金属丝的伸长量与其截面积的比值,即应力,与该力下金属丝的伸长量与原始长度的比值,即应变,之间的关系。

通过实验数据计算得到杨氏模量。

实验器材:拉伸试验机、金属丝、游标卡尺、电子秤等。

实验步骤:1.准备金属丝:选择合适的金属丝,并根据实际需要测量的杨氏模量,把金属丝切割成合适的长度,用游标卡尺测量金属丝的直径,计算金属丝的截面积。

2.制作拉伸样品:将金属丝固定在拉伸试验机的夹具上,固定后尽可能使金属丝在平衡状态下。

3.进行拉伸实验:启动拉伸试验机,控制升降速度,使得金属丝不断地受到外力拉伸,记录下拉伸过程中所施加的载荷以及相对应的拉伸量。

特别地,每当金属丝的载荷发生变化时,需要记录下来以便后续数据处理。

4.数据处理:根据拉伸过程中所施加的载荷与相对应的拉伸量,计算得到金属丝受力下的应力值,即σ=F/A,其中F为施加在金属丝上的外力,A为样品的截面积。

同时,计算出金属丝受力下的应变值,即ε=(L-L0)/L0,其中L为拉伸后的长度,L0为原始长度。

5.绘制应力-应变曲线:根据数据处理得到的应力与应变值,可以绘制出应力-应变曲线。

根据这条曲线的斜率,即可计算出杨氏模量,其公式为E=σ/ε,其中σ为曲线斜率,ε为曲线的坡度。

注意事项:1.在实验进行过程中,要尽可能地保证金属丝的处于稳定的状态下进行拉伸实验。

2.实验数据记录要准确,遇到试验机的偏差时需要及时记录并进行修正。

3.要注意保护好实验器材,以免在实验中出现故障影响实验结果。

4.当金属丝长度增加时,载荷的大小应注意控制,以保证该载荷是线性的。

拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告拉伸法测金属丝的杨氏模量实验报告引言:杨氏模量是描述材料刚度的重要物理量,它可以用来衡量材料在受力时的变形能力。

本实验通过拉伸法来测量金属丝的杨氏模量,通过实验数据的分析,得出金属丝的杨氏模量值。

实验目的:1. 了解拉伸法测量杨氏模量的基本原理;2. 掌握实验仪器的使用方法;3. 测量金属丝的杨氏模量。

实验仪器与材料:1. 金属丝样品2. 电子拉伸试验机3. 温度计4. 卡尺5. 电子天平实验步骤:1. 准备工作:a. 将金属丝样品固定在电子拉伸试验机上,并调整好试验机的参数;b. 使用卡尺测量金属丝的初始长度,并记录下来;c. 使用电子天平测量金属丝的质量,并记录下来;d. 使用温度计测量实验环境的温度。

2. 实验过程:a. 开始拉伸试验,逐渐增加拉力,记录下不同拉力下金属丝的长度变化;b. 每隔一段时间记录一次拉力和金属丝的长度;c. 拉伸过程中保持实验环境的温度稳定;d. 当金属丝发生断裂时,停止拉伸试验。

3. 数据处理:a. 将实验数据整理成表格,包括拉力、金属丝的长度变化、温度等信息;b. 根据拉力和金属丝的长度变化,绘制拉力-伸长曲线;c. 分析拉力-伸长曲线,确定杨氏模量的计算方法;d. 根据实验数据计算金属丝的杨氏模量。

结果与讨论:根据实验数据的分析,我们得到金属丝的杨氏模量为X GPa。

通过对拉力-伸长曲线的分析,我们发现在金属丝的拉伸过程中,出现了弹性阶段和塑性阶段。

在弹性阶段,金属丝的应变与拉力成正比,而在塑性阶段,金属丝的应变增加速度减慢。

这与金属材料的力学性质相符合。

实验误差的分析:在实验过程中,可能存在一些误差,如测量长度和质量的误差、温度变化引起的误差等。

为了减小误差,我们在实验过程中进行了多次测量,并取平均值进行数据处理。

同时,我们也尽量保持实验环境的稳定,以减小温度变化对实验结果的影响。

结论:通过拉伸法测量金属丝的杨氏模量,我们得到了金属丝的杨氏模量值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2222)()()(4)()(b u n
u d u R u L u Y u b n d R L +∆+++=∆用拉伸法测金属丝的杨氏模量
[预习思考题]
1、使用螺旋测微器的注意事项是什么?棘轮如何使用?螺旋测微器用毕还回盒内时要作何处理?
答:使用螺旋测微器测物时,手要握螺旋测微器的绝热板部分,手上不能有汗渍;被测物接触测砧之前,应旋转棘轮,切不可拧微分套筒,否则会损伤测砧,测值也不准确。

砧台夹住被测物时,听到棘轮发出“咯咯”声响,立刻停止旋转。

螺旋测微器还回盒内时,要将微分筒退旋几转,使砧台间留有一定空隙,避免热胀使螺杆变形。

2、公式 Y=8FLR πd 2b △n
中哪几个量是待测量?关键是测准哪几个量?这些量都是长度量,却使用了不同的量具和方法,这是根据什么考虑的?此公式的适用条件是什么?
答:公式中有L 、R 、d 、b 、Δn 等五个待测量。

测准Δn 和d 是实验成功的关键。

由Y 的不确定度传播公式:
可知,Y 的不确定度是各直接测得量的不确定度的总和,因而,一般考虑各量的不确定度按等影响原则分配,即每个直接测得量的不确定度对合成不确定度的贡献大致相同;也就是说,按照不确定度的合理分配来确定每个长度量用什么测量工具。

在测量中,过高地追求某一两个量的精确度,对最后合成不确定度的影响并不大,因而无意义。

比如L 和R 都大于50cm ,用米尺
,分别计算出解答提示:根据:22222)()()(4)()(b u n
u d u R u L u Y u b n d R L +∆+++=∆二和知,。

由实际测量的计算可、、、、出根号中各量:n d b
u n u d u R u L u b n d R L ∆∆∆2测量完全能满足要求,不必考虑选用精确度更高的仪器。

公式应满足的实验条件有三:① 加负荷不能超过钢丝的弹性限度;② 光杠杆偏角θ应很小,即外力F 不能过大;③ 望远镜光轴水平,反射镜与标尺垂直于光轴。

[实验后思考题]
1、根据Y 的不确定度公式,分析哪个量的测量对Y 的测量结果影响最大。

量的测量对Y的测量结果影响最大,因此测此二量尤应精细。

2、可否用作图法求钢丝的杨氏模量,如何作图?
答:本实验不用逐差法,而用作图法处理数据,也可以算出杨氏模量。

由公式
Y=8FLR πd 2b △n
可得: F= πd 2b 8LR Y △n =KY △n 。

式中K=πd 2b 8LR 可视为常数。

以荷重F 为纵坐标,与之相应的n i 为横坐标作图。

由上式可见该图为一直
线。

从图上求出直线的斜率,即可计算出杨氏模量。

3、怎样提高光杠杆测量微小变化的灵敏度?这种灵敏度是否越高越好?
答:由Δn= 2R b ΔL 可知, 2R b 为光杠杆的放大倍率。

适当改变R 和b ,
可以增加放大倍数,提高光杠杆的灵敏度,但这种灵敏度并非越高越好;因
为ΔL=b
2RΔn成立的条件是平面镜的转角θ很小(θ≤2.5°),否则tg2θ≠2θ。

要使θ≤2.5°,必须使b≥ 4cm,这样tg2θ≈2θ引起的误差在允许范围内;而b尽量大可以减小这种误差。

如果通过减小b来增加放大倍数将引起较大误差。

相关文档
最新文档