大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

合集下载

用拉伸法测钢丝杨氏模量――实验报告

用拉伸法测钢丝杨氏模量――实验报告

用拉伸法测钢丝杨氏模量――实验报告本实验使用拉伸法测定钢丝的杨氏模量。

实验过程包括测量原始尺寸和断裂强度,计算应力和应变,绘制应力-应变曲线,利用斜率计算杨氏模量。

一、实验原理1.杨氏模量:杨氏模量也称弹性模量,是研究力学学科中的一项重要物理量,它描述了物体在受力时,单位应力下的应变程度。

可以表示为弹性模量E,其计算公式为E=σ/ε,其中σ为应力,ε为单位应变。

2.拉伸法:拉伸法是测定材料弹性性质的常用方法之一。

先将试样加在拉伸机上,通过施加相应的拉力,使试样发生拉伸变形,然后测量试样在不同应变下的应力,绘制应力-应变曲线,以求得该材料的杨氏模量。

二、实验步骤1.准备实验设备,将钢丝放在拉伸机上。

2.用卡尺测量钢丝的初始长度、直径和断裂长度,记录数据。

3.用拉伸机分别在不同的拉力下进行拉伸,记录拉力和试样的应变。

4.计算每个密度下的应力,应力=拉力/试样横截面积。

5.计算每个密度下的应变,应变=延长长度/原始长度。

6.根据应力-应变曲线,计算杨氏模量。

三、实验数据试样长度:5m原始直径:2.5mm断裂长度:8m钢丝密度:7.85g/cm³拉伸试验数据如下:|拉力F(N)|延长长度L(mm)|试样直径D(mm)||:-:|:-:|:-:||0|0|2.5||50|2|2.5||100|4|2.6||150|6|2.7||200|8|2.8||250|10|2.9||300|12|3.0||350|14|3.1||400|16|3.2||450|18|3.3||500|20|3.4||550|22|3.5||600|24|3.6||650|26|3.7||700|28|3.8||750|30|3.9||800|32|4.0|四、实验计算1.计算实验数据中的横截面积试样横截面积=π*(D/2)²=π*(2.5/2)²=4.91mm² 2.计算每个密度下的应力应力=F/S=700/4.91=142.6N/mm²应变=L/L0=28/5000=0.00564.绘制应力-应变曲线通过计算得出的应力和应变数据,可以绘制出钢丝在拉伸试验中的应力-应变曲线如下:[示例图:应力-应变曲线]5.计算杨氏模量根据应力-应变曲线可以看出,线性部分的斜率即为杨氏模量,计算可得杨氏模量的值为:E=Δσ/Δε=(320-170)/(0.004-0.003)=69000N/mm²五、实验结论通过本次实验,我们使用拉伸法测定了钢丝的杨氏模量,并且得出了结论:杨氏模量为69.0×10⁹N/mm²。

拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告

拉伸法测金属丝的杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。

2、掌握光杠杆放大原理和测量微小长度变化的方法。

3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。

4、学习数据处理和误差分析的方法。

二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。

假设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),在受到外力\(F\)作用下伸长了\(\Delta L\)。

根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,其比例系数即为杨氏模量\(E\),数学表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\在本实验中,外力\(F\)由砝码的重力提供,横截面积\(S\)可通过测量金属丝的直径\(d\)计算得到(\(S =\frac{\pid^2}{4}\)),金属丝的原长\(L\)用米尺测量,而微小伸长量\(\Delta L\)则采用光杠杆法测量。

光杠杆装置由光杠杆、望远镜和标尺组成。

光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的沟槽内,后尖足置于金属丝的测量端。

当金属丝伸长(或缩短)\(\Delta L\)时,光杠杆的后尖足随之升降\(\Delta L\),从而带动平面镜转动一个角度\(\theta\)。

从望远镜中可以看到标尺像的移动,设标尺像移动的距离为\(n\),光杠杆常数(即两前尖足到后尖足连线的垂直距离)为\(b\),望远镜到光杠杆平面镜的距离为\(D\),则有:\\tan\theta \approx \theta =\frac{n}{D}\\\tan 2\theta \approx 2\theta =\frac{\Delta L}{b}\由上述两式可得:\\Delta L =\frac{nb}{2D}\将\(\Delta L\)代入杨氏模量的表达式,可得:\E =\frac{8FLD}{\pi d^2 n b}\三、实验仪器1、杨氏模量测定仪:包括底座、立柱、金属丝、光杠杆、砝码等。

钢丝的杨氏模量实验报告

钢丝的杨氏模量实验报告

一、实验目的1. 学习使用拉伸法测定钢丝的杨氏模量;2. 掌握光杠杆法测量微小伸长量的原理;3. 学会用逐差法处理实验数据;4. 学会计算不确定度,并正确表达实验结果。

二、实验原理杨氏模量(E)是材料在弹性限度内应力(σ)与应变(ε)的比值,即 E =σ/ε。

它是衡量材料刚度和抵抗形变能力的物理量。

本实验采用拉伸法测定钢丝的杨氏模量,利用光杠杆放大原理测量微小伸长量,通过计算得出杨氏模量。

三、实验仪器1. YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)2. 钢卷尺(0-200cm,0.1cm)3. 千分尺(0-150mm,0.02mm)4. 游标卡尺(0-25mm,0.01mm)5. 米尺四、实验步骤1. 调整杨氏模量测量仪,确保平台水平。

2. 将光杠杆放置于平台上,旋松固定螺丝,移动杠杆使其前两锥形足尖放入平台的沟槽内,后锥形足尖放在管制器的槽中,再旋紧螺丝。

3. 调节平面镜的仰角,使镜面垂直,即光杠杆镜面法线与望远镜轴线大致重合。

4. 利用望远镜上的准星瞄准光杠杆平面镜中的标尺刻度,调节望远镜的焦距,使标尺清晰可见。

5. 在钢丝下端悬挂砝码,使钢丝产生微小伸长。

6. 观察望远镜中的标尺刻度变化,记录光杠杆后足到两前足尖连线的垂直距离b 和望远镜中观察到的标尺刻度值的变化量n。

7. 重复步骤5和6,进行多次测量,记录数据。

8. 使用逐差法处理实验数据,计算杨氏模量的平均值。

五、数据处理1. 根据公式 E = 2δlb/Slb,计算杨氏模量E,其中δ为砝码质量,l为钢丝长度,b为光杠杆后足到两前足尖连线的垂直距离,S为钢丝截面积。

2. 计算不确定度,根据公式ΔE = Δδ/2δ + Δl/l + Δb/b + ΔS/S,其中Δδ、Δl、Δb、ΔS分别为δ、l、b、S的不确定度。

3. 根据计算结果,分析实验误差来源,讨论实验结果与理论值的差异。

六、实验结果与分析1. 通过实验,我们测定了钢丝的杨氏模量,计算结果为 E =2.02×10^5 MPa。

拉伸法测量金属丝的杨氏模量实验报告

拉伸法测量金属丝的杨氏模量实验报告

拉伸法测量金属丝的杨氏模量实验报告《拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我要来给你们讲讲我做的拉伸法测量金属丝杨氏模量的实验,那可真是一次超级有趣的体验啊!
实验开始前,我就像要去探险一样兴奋!我准备好了各种器材,那根金属丝就静静地躺在那里,好像在等着我去揭开它的秘密。

我心里想着:“这根小小的金属丝里到底藏着怎样的奥秘呢?”
然后我和小伙伴们一起动手啦!我们小心翼翼地把金属丝安装到实验装置上,就像在给一个小宝贝安家一样。

我还打趣地说:“嘿,可得轻点儿对它呀!”大家都笑了。

当我们开始施加拉力的时候,那种感觉就像是在和金属丝拔河一样。

它一开始还有点不情愿呢,不过慢慢地就开始伸长啦!看着它一点点变化,我心里那个激动啊,哎呀,真的很难形容!就好像看着一颗种子慢慢发芽长大。

在测量数据的过程中,我们可真是一丝不苟啊!每一个数值都像是宝贝一样,生怕记错了。

我和小伙伴还互相提醒:“嘿,你可看准了啊,别出差错!”这感觉就像是在完成一项超级重要的任务。

经过一番努力,终于得出了结果!哇,那种满足感简直爆棚!就好像我们征服了一座小山一样。

这次实验让我深刻地体会到了科学的魅力,它就像一个神秘的宝藏,等着我们去挖掘。

总之,这次实验真的是太棒了!你们也快去试试吧,绝对会让你们大开眼界的!。

(完整版)拉伸法测钢丝杨氏模量

(完整版)拉伸法测钢丝杨氏模量

拉伸法测钢丝杨氏模量实验目的1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量;2. 掌握有效数字的读取、运算以及不确定度计算的一般方法.3. 掌握用逐差法处理数据的方法;4. 了解选取合理的实验条件,减小系统误差的重要意义.实验仪器YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干.1.标尺2.锁紧手轮3.俯仰手轮4.调焦手轮5.目镜6.内调焦望远镜7.准星8.钢丝上夹头9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝.实验原理设一粗细均匀的钢丝,长度为L 、横截面积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即F L ES L ∆= 或 //F SE L L=∆ 式中E 称为杨氏模量,单位为N·m -2,在数值上等于产生单位应变的应力.由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题.本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动.设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度).由图可知2tan Ld θ∆=,1011tan 2s s s d d θ-∆== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有θtan ≈θ2d L∆=,θ2tan θ2≈1101d s d s s ∆=-=由此可得 212d L s d ∆=∆ 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式:1228mgLd E D d s=π∆其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E .实验内容1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度;2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次;3. 用游标卡尺测量光杠杆常数d 2一次;4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度;5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果.实验步骤1. 杨氏模量测定仪的调整(1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直;(2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直.(3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在支架上. 调整到平面镜法线和望远镜轴线等高共轴.(4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节平面镜倾角,直到在平面镜中看到镜筒或标尺的像.(6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝.杠杆架反射镜固定平台砝码光杠杆结构图θθ光杠杆望远镜标尺s 0s 1d 1d 2ΔLθθΔs2. 用千分尺在不同方向、位置测量钢丝的直径D ,共测6次,测量前应先记录千分尺的零点读数;3. 用钢卷尺测量镜面到标尺的距离d 1;4. 在砝码钩上放上测量时要加的全部(共加7次)砝码(不包括预加的本底砝码)的一半(3-4块),细心调节平面镜倾角,使望远镜中看到的标尺像在零刻线附近,以保证在轴线附近的范围内测量.4. 去掉刚才所加的砝码,开始测量,记录初始值0s ',逐个增加砝码,记录每一步的读数i s ',再逐个减去砝码,记录每一步同一砝码数对应的读数i s '';5. 测量光杠杆常数d 2.可将光杠杆的三个脚放在数据记录纸上按下三个印,作连接前两脚的连线和后脚到该连线的垂线,用游标卡尺测量这一距离.6. 整理实验数据,交指导老师签字,整理仪器,完成实验.注意事项1. 实验系统调好后,一旦开始正式测量,在实验过程中不能再对系统任一部分进行任何调整,否则,所有数据将重新再测;2. 加减砝码时要轻拿轻放,槽口要相互错开,避免砝码钩晃动,在系统稳定后读数;3. 同一荷重(相同砝码数)下的两个读数要记在一起.增重与减重对应同一荷重下读数的平均值才是对应荷重下的最佳值,它消除了摩擦(圆柱体与圆孔之间的摩擦)与滞后(加减砝码时钢丝伸长与缩短滞后)等引起的系统误差.4. 实验完成后,应将砝码取下,防止钢丝疲劳.数据记录表一 L 、d 1、d 2测量数据表 单位: mm表二 钢丝直径D 的测量数据表千分尺零点读数 =仪ε mm 单位: mm表三 Δs 的测量数据表 单位:mm数据处理1.计算每增加一块砝码(1kg)的钢丝伸长量Δs 的最佳值及不确定度 (1) Δs 的最佳值(用逐差法))(41041s s s -=∆;)(41152s s s -=∆;)(41263s s s -=∆;)(41374s s s -=∆;)(414321s s s s s ∆+∆+∆+∆=∆(2) 计算 的实验标准差: ()Ss ∆= (3) 计算 平均值的实验标准差: ()S s ∆=(4) 标尺的示值极限误差: Δm=0.5mm(5) 合成不确定度:()u s ∆==2.D 的最佳值及不确定度的计算(1) D 的最佳值: ∑==6161i i D D(2) 计算D 的实验标准差: ()S D =(3) 计算 D 平均值的实验标准差: ()S D = (4) 千分尺的的示值极限误差:Δm =0.004mm(5) 计算D 的合成不确定度: ()u D ==3. E 的最佳值的计算和不确定度的计算 (1) E 的最佳值的计算: sd D mgLd E ∆=2218π(2) E 的合成不确定度的计算取u (d 2)=0.02mm ,u (d 1)=5mm , u (L )=5mm ,及2和3中的不确定度得到E S S u D D u L L u d d u d d u E u ⋅⎪⎭⎫⎝⎛∆∆+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=222222211)()(2)()()()((3) E 的相对不确定度的计算,将实验值与 E 的公认值 E 0=2.05×1011 N ·m -2比较,计算其相对不确定度:()100%EE E E =⨯。

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。

在数据处理中,掌握逐差法和作图法两种数据处理的方法实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。

实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL )其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。

根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。

实验原理图如右图:当θ很小时,l L /tan ∆=≈θθ,其中l 是光杠杆的臂长。

由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:Db =≈θθ22tan故:)2(D b lL =∆,即是)2(D bl L =∆那么SlbDLFE 2=,最终也就可以用这个表达式来确定杨氏模量E 。

实验内容: 1.调节仪器(1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

(2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。

(3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。

光杠杆的镜面(1)和刀口(3)应平行。

使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。

(4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。

2.测量(1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。

钢丝杨氏模量的测定实验报告

钢丝杨氏模量的测定实验报告

竭诚为您提供优质文档/双击可除钢丝杨氏模量的测定实验报告篇一:用拉伸法测钢丝杨氏模量——实验报告用拉伸法测钢丝杨氏模量——实验报告杨氏弹性模量测定仪;光杠杆;望远镜及直尺;千分尺;游标卡尺;米尺;待测钢丝;砝码等。

【实验原理】1.杨氏弹性模量Y是材料在弹性限度内应力与应变的比值,即杨氏弹性模量反映了材料的刚度,是度量物体在弹性范围内受力时形变大小的因素之一,是表征材料机械特性的物理量之一。

2.光杠杆原理伸长量Δl比较小,不易测准,本实验利用了光杠杆的放大原理对Δl进行测量。

利用光杠杆装置后,杨氏弹性模量Y可表示为:式中,F是钢丝所受的力,l是钢丝的长度,L是镜面到标尺间的距离,d是钢丝的直径,b是光杠杆后足到两前足尖连线的垂直距离,Δn是望远镜中观察到的标尺刻度值的变化量。

3.隔项逐差法隔项逐差法为了保持多次测量优越性而采用的数据处理方法。

使每个测量数据在平均值内都起到作用。

本实验将测量数据分为两组,每组4个,将两组对应的数据相减获得4个Δn,再将它们平均,由此求得的Δn是F增加4千克力时望远镜读数的平均差值。

【实验步骤】1.调整好杨氏模量测量仪,将光杠杆后足尖放在夹紧钢丝的夹具的小圆平台上,以确保钢丝因受力伸长时,光杠杆平面镜倾斜。

2.调整望远镜。

调节目镜,使叉丝位于目镜的焦平面上,此时能看到清晰的叉丝像;调整望远镜上下、左右、前后及物镜焦距,直到在望远镜中能看到清晰的直尺像。

3.在钢丝下加两个砝码,以使钢丝拉直。

记下此时望远镜中观察到的直尺刻度值,此即为n0值。

逐个加砝码,每加1个,记下相应的直尺刻度值,直到n7,此时钢丝下已悬挂9个砝码,再加1个砝码,但不记数据,然后去掉这个砝码,记下望远镜中直尺刻度值,此为n7’,逐个减砝码,每减1个,记下相应的直尺刻度值,直到n0’。

4.用米尺测量平面镜到直尺的距离L;将光杠杆三足印在纸上,用游标卡尺测出b;用米尺测量钢丝长度l;用千分尺在钢丝的上、中、下三部位测量钢丝的直径d,每部位纵、横各测一次。

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告实验报告:用拉伸法测钢丝杨氏模量引言:拉伸试验是一种重要的材料力学测试方法,用于测量物体的杨氏模量。

钢丝作为一种常用的结构材料,其强度和刚度是工业应用的关键指标。

本实验旨在采用拉伸法来测量钢丝的杨氏模量,并通过实验结果来验证钢丝的力学性能。

实验原理:拉伸试验是通过对材料施加拉力,观察其应变与应力之间的关系来测量杨氏模量。

根据胡克定律,应变与应力之间的关系可以用以下公式表示:$$E = \frac{\sigma}{\varepsilon}$$其中,E为杨氏模量,$\sigma$为应力,$\varepsilon$为应变。

实验步骤:1. 准备工作:清洁并标识钢丝样品,准备拉力计、卡尺、示波器等实验设备。

2. 固定材料:将钢丝夹紧在拉力计上,确保钢丝受力均匀且垂直于拉力计。

3. 测量初始长度:使用卡尺测量钢丝的初始长度$L_0$,并记录。

4. 施加拉力:逐渐增加拉力施加在钢丝上,保持拉力保持稳定后记录下拉力计示数。

5. 测量应变:通过示波器等设备,测量钢丝的伸长量$\Delta L$。

6. 计算应变率:根据公式$\varepsilon = \frac{\Delta L}{L_0}$,计算出钢丝的应变率。

7. 计算应力:根据公式$\sigma = \frac{F}{A}$,计算出钢丝的应力,其中$F$为施加在钢丝上的拉力,$A$为钢丝的横截面积。

8. 绘制应力-应变曲线:将应变作为横坐标,应力作为纵坐标,绘制出钢丝的应力-应变曲线。

9. 计算杨氏模量:根据公式$E = \frac{\sigma}{\varepsilon}$,通过应力-应变曲线确定杨氏模量。

实验结果:根据上述实验步骤,我们进行了一系列拉伸试验,并得到了如下结果:(在这里列举实验数据)基于实验数据,我们绘制了钢丝的应力-应变曲线,并通过曲线确定了钢丝的杨氏模量。

讨论与结论:通过本实验,我们成功应用拉伸法测量了钢丝的杨氏模量。

用拉伸法测钢丝杨氏模量实验报告

用拉伸法测钢丝杨氏模量实验报告

杨氏弹性模量反映了材料的刚度,是度量物体在弹性范围内受力时形变大 小的因素之一,是表征材料机械特性的物理量之一。
2.光杠杆原理
伸长量 Δl 比较小,不易测准,本实验利用了光杠杆的放大原理对 Δl 进行测 量。 利用光杠杆装置后,杨氏弹性模量 Y 可表示为:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

大学物理实验-拉伸法测金属丝的杨氏模量

大学物理实验-拉伸法测金属丝的杨氏模量

大学物理实验-拉伸法测金属丝的杨氏模量导言:拉伸法测金属丝的杨氏模量是一项非常重要的实验,也是物理学学生必须掌握的基本实验之一。

这个实验旨在测量一根金属丝的杨氏模量,并通过实验结果校验材料的性质和质量,探究杨氏模量与材料力学性质和微观结构特征的关系。

本篇实验报告将介绍拉伸法测金属丝的杨氏模量的实验步骤、原理、实验结果的处理方法,同时还将探讨实验中可能遇到的问题和解决办法。

实验器材:1. 金属丝一根2. 电子天平3. 倒数计时器4. 万能试验机5. 卡尺6. 水平线标7. 显微镜8. 毛玻璃实验原理:拉伸法测金属丝的杨氏模量是一种用拉伸法测量金属丝抗拉强度和弹性常数的实验方法。

这一实验方法基于普通的夹紧式拉伸实验,通过拉伸金属丝并绘制拉伸曲线和应变-应力曲线来测量金属丝的杨氏模量。

拉伸曲线是通过测量不同拉伸距离下金属丝直径的变化并绘制出来的。

应变-应力曲线是通过计算不同拉伸距离下金属丝应力和应变的比值并绘制出来的。

应力和应变的比值就是杨氏模量。

实验步骤:1. 清洗金属丝2. 准确测量金属丝的直径3. 定量量取一定长度的金属丝,并将其拉长4. 通过电子天平和倒数计时器测量拉伸金属丝的质量和拉伸速度5. 通过水平线标固定金属丝的一端,并在另一端连接力表6. 启动万能试验机和力表,开始拉伸金属丝7. 在拉伸过程中,用毛玻璃顶起金属丝,并用显微镜观察金属丝的直径变化8. 记录不同拉伸距离下金属丝的直径变化,绘制拉伸曲线9. 记录不同拉伸距离下金属丝的应力和应变的比值,绘制应变-应力曲线10. 根据应变-应力曲线计算金属丝的杨氏模量11. 清洗实验器材和实验室,并整理实验数据和结果实验结果的处理方法:实验结束后,我们需要处理实验数据和结果。

处理实验结果的方法是将绘制的拉伸曲线和应变-应力曲线转化为可计算的数据,并根据这些数据计算出实验结果。

实验结果通常以两个参数表示:杨氏模量和金属丝的抗拉强度。

计算杨氏模量时,我们需要根据应变-应力曲线计算比例极限(截断点或称为杨氏弹性极限),然后根据金属丝的几何形状、尺寸和长度计算杨氏模量。

大学物理实验--拉伸法测金属丝杨氏模量

大学物理实验--拉伸法测金属丝杨氏模量

实验一拉伸法测金属丝杨氏模量一实验目的1.用伸长法测定金属丝的杨氏模量2.掌握光杠测微原理及使用方法3.掌握不同长度测量器具的选择和使用,学习误差分析和误差均匀原理思想。

4.学习使用逐差法和作图法处理数据及最终处理结果的表达。

二实验原理1. 设金属丝的原长为L,横截面积为A,外加力为P,伸长了长度为△L,则单位长度的伸长量为△L/L,叫应变。

单位横截面所受的力为P/A,叫应力。

根据胡克定理,应变和应力有如下关系:P/A=E×△L/L,其中E为杨氏弹性模量(它仅与材料性质)2.在已知外加力P,横截面积为A,金属丝的原长为L,及伸长了长度为△L的情况下,就可以根据一下公式求得氏弹性模量E:E=P×L/(A×△L)3.实验装置的使用原理解析:根据杠杆原理:aa`/bb=Oa/Ob可以测量每次加载后的微小的△L的变量,又由于S1S2之间的夹角为2α所以在使用光扛杠镜后测量出来的△L的变量为:△L=b(S2— S1)/2D=b*△S/2D4.在已知b为短臂长,2D为长臂长,△L为短臂末梢的微小位移,△S=(S2— S1)为光臂末端的位移,及A=πρ2 /4(ρ为钢丝的直径),则最后的E可为一下公式表达:E=8LDP/(πρ2b△S)三实验内容1仪器的认识和调整。

调节杨氏模量仪器支架成铅垂,调节光杠杆镜和望远镜。

2.实验现象的观察和数据测量。

(1)在测量之前,必须先观察实验基本的现象,思考可能的误差来源。

(2)测量钢丝在不同荷重下的伸长变化。

先放1个1kg砝码,记下读数,然后逐次增加1kg砝码,记下每次的读数,共10次。

再将所加大砝码逐次拿下,记下每次都读数。

(3)根据误差均匀思想(应选择适当的测量仪器,使得各直接测量的误差分量最终结果断误差的影响大致相同),合理选择并正确使用不同测长仪器来测量光杠杆镜至标尺的距离D,钢丝的长度L 和直径ρ以及光杠杆镜后脚尖至O点多垂直距离b,最后求E最大误差限△E(4)测量时注意这些量的实际存在的测量偏差,从而决定测量次数。

【精品作文】大学物理杨氏模量实验报告

【精品作文】大学物理杨氏模量实验报告
(1)
E被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。杨氏模量的大小标志了材料的刚性。
通过式(1),在样品截面积S上的作用应力为F,测量引起的相对伸长量ΔL/L,即可计算出材料的杨氏模量E。因一般伸长量ΔL很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL。光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。当杠杆支脚随被测物上升或下降微小距离ΔL时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。当θ很小时,
再用图象法处理:
系 学号姓名 日期
F/N
图一:r-F图
利用ORIGIN读出斜率为M=0.25013,那么根据公式计算得
E?2DL/(SlM)?
2?1262.0?941.0
14
?3.14?(0.285)?7.2?0.25013
2N/cm2 Nhomakorabea72?2.067?10N/cm
1.利用光杠杆把测微小长度ΔL变成侧b,光杠杆的放大率为2D/L,根据此式能否以增加D减小L来提高放大率,这样做有无好处?有无限度?应怎样考虑这个问题?
答:这样做的好处是可以增加放大倍数,但是这个仪器的要求
是D>>R(D远远大于R),所以不能无限度增大
篇二:杨氏弹性模量的测量 实验报告
后再将砝码逐次减去,记下对应的读数r’i,取两组对应数据的平均值ri。
(3) 用米尺测量金属丝的长度L和平面镜与标尺之间的距离D,以及光杠杆的臂长l。 3. 数据处理 (1) 逐差法
用螺旋测微计测金属丝直径d,上、中、下各测2次,共6次,然后取平均值。将ri每隔四项相减,得到相当于每次加2000g的四次测量数据,如设b0?r4?r0,b1?r5?r1,b2?r

拉伸法测钢丝杨氏模量(BIPT)

拉伸法测钢丝杨氏模量(BIPT)

拉伸法测钢丝杨氏模量【实验目的】1. 学会用拉伸法测量金属丝的杨氏模量。

2. 学会用逐差法处理实验数据。

3. 学习CCD 成像系统的使用方法,了解其特性。

【实验仪器】金属丝支架、读数显微镜、CCD 成像显示系统、螺旋测微计、直尺、砝码等。

【实验原理】:金属物体受力伸长(或缩短),在弹性范围内应力与应变成比例,比例系数叫弹性杨氏模量(简称杨氏模量)。

它是表征物体弹性形变的重要物理量,在材料学中是一重要参数,表示物体抗形变的能力。

数学表达式:LL EA F ∆=装置图:DC 12V监视器CCD MS测试样品H 2H 1实验材料:金属钢丝,d 为钢丝直径,A=42d π为钢丝横面积则:E=LFLLA FL ∆=∆2d 4π本实验用二维CCD 器件作为固体摄像机,将光学图像转变为视频电信号,使用读数显微镜得到的图像由CCD 显示在电视屏幕上,使实验大为方便和精确。

装置图(上页)中:M :为读数显微镜,测试样品垂直悬挂并有读数基准线。

用逐差法处理数据:()()()()()551049382716Y Y Y Y Y Y Y Y Y YL -+-+-+-+-=∆∆M=250gLd LM E ∆∆=2g 4π E=EUE ±22d22d2⎪⎪⎭⎫⎝⎛∆+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛∆L UU L U EU LL E 【数据记录与处理】一、粗钢丝E的测定(学生不做)表1 钢丝直径测量 零点偏差=0mm测L=991mm L U =0.5/3mm表2 受力后钢丝伸长量测量将数据代入:⎪⎪⎭⎫⎝⎛=∆∆=210210*2.214m N Ld MgLE π22d22d2⎪⎪⎭⎫⎝⎛∆+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛∆L UU L U E U LL E (暂忽略仪器偏差) =222112.0001.00.4040005.0*299129.0⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛ =8.5*10-8+6.126*10-6+7.97*10-5EU= 0.0093E = 0.0093*10-10= 0.157*10-10≈0.2*10-102mNE=E U E ±= (16.9±0.2)* 10-102mN二、细钢丝E的测定表1 钢丝直径测量 零点偏差=0mm测L=993mm L U =0.5/3mm表2 受力后钢丝伸长量测量将数据代入⎪⎪⎭⎫⎝⎛=∆∆=210210*2.214m N Ld MgLE π 刚丝的杨氏模量公认值为20.0*10 1010N/m 2mm Ad 008.0U = mm B d 006.03/01.0U ==22BAd d UUU+==0.006mm22d22d2⎪⎪⎭⎫⎝⎛∆+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛∆L U U L U E U L L E =8.5*10-8+3.35*10-3+7*10-5=3.6*10-3310*6.3-=EU*21.2*1010=1*1010N/m2E=E U E ±=(21±1)*1010N/m 2【思考题】:根据不确定度估算,EUE表达式中哪些项影响最大?如何降低其影响?答:粗钢丝:LUL∆∆影响最大,主要量钢丝在测量时未充分拉直与装置振动所致。

拉伸法测钢丝的杨氏弹性模量

拉伸法测钢丝的杨氏弹性模量

拉伸法测钢丝的杨氏弹性模量篇一:大学物理实验用拉伸法测金属丝的杨氏弹性模量一、实验目的1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定的计算方法,结果的正确表达;5.学会实验报告的正确书写。

二、实验仪器杨氏弹性模量测量仪(型号见仪器上)(包括望远镜、测量架、光杠杆、标尺、砝码)、钢卷尺(0-200cm , 、游标卡尺(0-150mm,)、螺旋测微器(0-150mm,) 三、实验原理在外力作用下,固体所发生的形状变化成为形变。

它可分为弹性形变和塑性形变两种。

本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。

最简单的形变是金属丝受到外力后的伸长和缩短。

金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长?L,则在金属丝的弹性限度内,有:FE?L我们把E称为杨氏弹性模量。

如上图:?L??tgx?x??Ln(?n?n2?n0) ?2D?n??2??D?FF12?d8FLDE2?Lx?dx??n?nLL四、实验内容仪器调整1. 杨氏弹性模量测定仪底座调节水平;2. 平面镜镜面放置与测定仪平面垂直;3. 将望远镜放置在平面镜正前方左右位置上;4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像;6. n0一般要求调节到零刻度。

测量7. 计下无挂物时刻度尺的读数n0;8. 依次挂上1kg的砝码,七次,计下n1,n2,n3,n4,n5,n6,n7;9. 依次取下1kg的砝码,七次,计下n1,n2,n3,n4,n5,n6,n7;10. 用米尺测量出金属丝的长度L(两卡口之间的金属丝)、镜面到尺子的距离D; 11. 用游标卡尺测量出光杠杆x、用螺旋测微器测量出金属丝直径d。

大学物理杨氏模量实验报告

大学物理杨氏模量实验报告

篇一:大物仿真实验报告---金属杨氏模量的测定大物仿真实验报告金属杨氏模量的测定化工12一、实验目的1、掌握用光杠杆测量长度微小变化量的原理和方法2、学会使用逐差法处理数据二、实验原理人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。

于是提出了应力F/S(即力与力所作用的面积之比)和应变ΔL/L(即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。

在胡克定律成立的范围内,应力和应变之比是一个常数,即(1)E被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。

某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。

杨氏模量的大小标志了材料的刚性。

通过式(1),在样品截面积S上的作用应力为F,测量引起的相对伸长量ΔL/L,即可计算出材料的杨氏模量E。

因一般伸长量ΔL很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL。

光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。

当杠杆支脚随被测物上升或下降微小距离ΔL时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。

当θ很小时,(2)式中l为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。

根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可知(3)式中D为镜面到标尺的距离,b为从望远镜中观察到的标尺移动的距离。

从(2)和(3)两式得到(4)由此得(5)合并(1)和(4)两式得2Y=6)式中2D/l叫做光杠杆的放大倍数。

只要测量出L、D、l和d(一系列的F 与b之后,就可以由式(6)确定金属丝的杨氏模量E。

)及三、实验仪器杨氏模量仪、光杠杆和标尺望远镜、砝码、钢直尺、钢卷尺、螺旋测微计、游标卡尺、白炽灯四、实验过程与步骤1.调节仪器(1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

(大学物理实验)拉伸法测杨氏模量

(大学物理实验)拉伸法测杨氏模量
2021/1/13
二、原理和方法
一根钢丝所受的应力F 和应变 L
成正比,可以写成
S
L
F (1E)L SL
比例系数E 称为钢丝的杨氏弹性模量,量 纲是N.m-2。
2021/1/13
在实验中,F 等于砝码所受的重力 ;钢丝长度很容易用直尺测量;只要测 得钢丝的直径d,就能很容易地计算得到
钢丝的截面积S。
钢丝砝码盘光杠杆物镜调节旋纽目镜物镜根据几何关系称为光杠杆的放大倍率将关系式23及fmg代入1式就可以得到杨氏模量的计算公式杨氏模量测定仪光杠杆望远镜和直标尺米尺游标卡尺千分尺等
(大学物理实验)拉伸法测杨氏模量
一、实验目的
1、学习利用光杠杆测定长度量微小 变化的方法。
2、学习用逐差法处理实验数据。
N 2D L (3) b
其中: 2 D b
称为光杠杆的放 大倍率
2021/1/13
两个支点
“力” 点
将关系式(2)、(3)及F=mg 代入(1) 式,就可以得到杨氏模量的计算公式
8mgDL
E d2bN
仪器和器材
杨氏模量测定仪、光杠杆、望远镜和直标尺、 米尺、游标卡尺、千分尺等。
2021/1/13














2021/1/13
其它仪器和器材
2021/1/13
三、实验内容
1、调节测量系统 a、调节底角螺丝,使气泡居中;
2021/1/13
气泡
底角螺丝
ห้องสมุดไป่ตู้
b、砝码托盘上先挂上500g砝码,使钢丝拉直; c、放好光杠杆,镜面尽可能垂直; d、望远镜镜筒和光杠杆镜面等高; e、目视:望远镜的缺口、准星对准镜面; f、调节望远镜,看清望远镜中叉丝及标尺。

钢丝杨氏模量的测定实验报告

钢丝杨氏模量的测定实验报告

钢丝杨氏模量的测定实验报告
钢丝杨氏模量是指钢丝所能承受的拉力,在拉伸前和拉伸后的变形量之比,其中,钢丝拉伸后的变形量反映钢丝的弹性性能,而钢丝拉伸前的变形量反映其强度性能。

本实验采用杨氏拉伸仪和钢丝进行实验,该仪器可以用于检测钢丝的杨氏模量和强度,利用拉伸仪拉伸钢丝,具体步骤如下:
1、将钢丝放置在拉伸仪中,调整拉伸仪中间支撑夹具,将钢丝拉伸至指定公差,记录钢丝受力部分的拉伸前变形量×100mm。

2. 再次拉伸钢丝,释放全部的拉伸力,记录钢丝受力部分的拉伸后变形量×100mm。

3. 将以上记录的数据示出,计算钢丝的杨氏模量。

进行实验测试后,我们发现拉伸前变形量为0.12mm,拉伸后变形量为0.23mm,计算出钢丝杨氏模量为189MPa。

结果表明,该钢丝具有良好的弹性性能和强度性能,其截面变形能有效地保持其结构完整,足以承受正常荷载和拉伸。

总之,通过实验,我们发现钢丝的杨氏模量为189MPa,说明其具有较高的抗拉强度,值得我们进一步将其应用于各种工程材料中。

拉伸法测量杨氏模量实验报告

拉伸法测量杨氏模量实验报告

拉伸法测量杨氏模量实验报告实验报告:拉伸法测量杨氏模量一、实验目的1.掌握拉伸法测量杨氏模量的原理和方法。

2.学会使用相关设备和测量仪器。

3.通过对实验数据的分析,提高实验数据处理和误差分析的能力。

二、实验原理杨氏模量是描述材料在弹性范围内受力时,应力与应变之间关系的物理量。

拉伸法测量杨氏模量是通过测量材料在拉伸力作用下的伸长量,结合应力-应变关系计算杨氏模量。

三、实验步骤1.准备实验器材:钢丝、张力计、尺子、砝码、支架、测量仪器等。

2.将钢丝固定在支架上,确保钢丝水平。

3.将张力计连接到钢丝上,并调整张力计至零点。

4.逐个增加砝码,并记录相应的伸长量。

5.重复实验,获取多组数据。

6.将实验数据输入测量仪器,计算杨氏模量。

7.分析实验数据,得出结论。

四、实验结果与数据分析实验数据如下表所示:根据实验数据,我们可以绘制出应力-应变曲线图。

横坐标为砝码质量(g),表示应力;纵坐标为钢丝伸长量(cm),表示应变。

通过该曲线图,我们可以直观地观察到应力和应变之间的关系。

通过测量仪器,我们可以计算出杨氏模量。

根据拉伸法测量杨氏模量的公式:E = F/A = (mg)/A = (m g)/(πDL),其中E 为杨氏模量,F为拉伸力,A为截面积,m为砝码质量,g 为重力加速度,D为钢丝直径,L为钢丝长度。

将实验数据代入公式进行计算,得到杨氏模量的值。

最后,将多组实验数据进行平均处理,得到最终的杨氏模量值。

五、结论与讨论通过本次实验,我们掌握了拉伸法测量杨氏模量的原理和方法,学会了使用相关设备和测量仪器。

通过对实验数据的分析,我们得出以下结论:钢丝的杨氏模量为XX×10³N/m²。

实验结果与理论值相符,表明我们的实验操作和数据处理是正确的。

同时,我们也发现实验中存在一些误差,如砝码质量测量误差、钢丝直径和长度测量误差等。

这些误差可能会对实验结果产生一定的影响。

为了减小误差,我们可以在实验中采用更高精度的测量仪器和更准确的测量方法。

用拉伸法测钢丝杨氏模量实验报告

用拉伸法测钢丝杨氏模量实验报告

用拉伸法测钢丝杨氏模量实验报告【实验目的】【实验仪器】杨氏弹性模量测定仪;光槓杆;望远镜及直尺;千分尺;游标卡尺;米尺;待测钢丝;砝码等。

【实验原理】1.杨氏弹性模量y是材料在弹性限度内应力与应变的比值,即杨氏弹性模量反映了材料的刚度,是度量物体在弹性範围内受力时形变大小的因素之一,是表徵材料机械特性的物理量之一。

2.光槓杆原理伸长量δl比较小,不易测準,本实验利用了光槓杆的放大原理对δl进行测量。

利用光槓杆装置后,杨氏弹性模量y可表示为:式中,f是钢丝所受的力,l是钢丝的长度,l是镜面到标尺间的距离,d 是钢丝的直径,b是光槓杆后足到两前足尖连线的垂直距离,δn是望远镜中观察到的标尺刻度值的变化量。

3. 隔项逐差法隔项逐差法为了保持多次测量优越性而採用的资料处理方法。

使每个测量资料在平均值内都起到作用。

本实验将测量资料分为两组,每组4个,将两组对应的资料相减获得4个δn,再将它们平均,由此求得的δn是f增加4千克力时望远镜读数的平均差值。

【实验步骤】1.调整好杨氏模量测量仪,将光槓杆后足尖放在夹紧钢丝的夹具的小圆平台上,以确保钢丝因受力伸长时,光槓杆平面镜倾斜。

2.调整望远镜。

调节目镜,使叉丝位于目镜的焦平面上,此时能看到清晰的叉丝像;调整望远镜上下、左右、前后及物镜焦距,直到在望远镜中能看到清晰的直尺像。

3.在钢丝下加两个砝码,以使钢丝拉直。

记下此时望远镜中观察到的直尺刻度值,此即为n0 值。

逐个加砝码,每加1个,记下相应的直尺刻度值,直到n7,此时钢丝下已悬挂9个砝码,再加1个砝码,但不记资料,然后去掉这个砝码,记下望远镜中直尺刻度值,此为n7’,逐个减砝码,每减1个,记下相应的直尺刻度值,直到n0’。

4. 用米尺测量平面镜到直尺的距离l;将光槓杆三足印在纸上,用游标卡尺测出b;用米尺测量钢丝长度l;用千分尺在钢丝的上、中、下三部位测量钢丝的直径d,每部位纵、横各测一次。

5. 测量完毕,整理各量具和器具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85
实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。

在数据处理中,掌握逐差法
和作图法两种数据处理的方法
实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。

实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL )
其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。

根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量
困难,故采用光杠杆将其放大,从而得到ΔL 。

实验原理图如右图:
当θ很小时,l L /tan ∆=≈θθ,其中l 是光杠杆的臂
长。

由光的反射定律可以知道,镜面转过θ,反射光线
转过2θ,而且有: D
b =≈θθ22tan 故:
)2(D b
l L =
∆,即是)
2(D bl L =∆ 那么Slb
DLF
E 2=
,最终也就可以用这个表达式来确定杨氏模量E 。

实验内容: 1. 调节仪器
(1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

(2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。

(3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。

光杠杆的镜面(1)和刀口
(3)应平行。

使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。

(4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高
度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。

2. 测量
(1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。

(2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然
后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。

(3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。

3. 数据处理 (1) 逐差法
用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。

将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并
求出平均值和误差。

将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。

(2) 作图法
把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)
其中)/(2SlE DL M =,在一定的实验条件下,M 是一个常量,若以i r 为纵坐标,F i 为横坐标作图应得一直线,其斜率为M 。

由图上得到M 的数据后可由式(7)计算杨氏模量
)/(2SlM DL E = (7)
4. 注意事项
(1) 调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何
变动,特别在加减砝码时要格外小心,轻放轻取。

(2) 按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。

调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

实验数据:
实验中给定的基本数据如下:
一个砝码的质量m=(500±5)g ,Δm=5g ,ΔD=2mm ,ΔL=2mm ,Δl=0.2mm 实验中测量得到的数据如下:
钢丝直径d (六次测量结果): 上部:0.286mm ,0.285mm
中部:0.284mm ,0.285mm 下部:0.286mm ,0.282mm
数据处理:
金属丝直径的平均值0.2860.2850.2840.2850.2860.282
d mm 0.2856
mm +++++=≈
金属丝直径的标准差
mm mm d 0015.01
6)285.0282.0()285.0286.0()285.0285.0()285.0284.0()285.0285.0()285.0286.0(2
22222=--+-+-+-+-+-=σ
那么它的展伸不确定度为
△B 如何求得?
990.0,005.0)3005.058.2()6
0015.003.4()()(2
222990
.0990.0==⨯+⨯=∆+=P mm mm C k n
t U B P
d
d σ 先考虑逐差法处理刻度:
b 0=r 4-r 0=4.99cm ,b 1=r 5-r 1=5.00cm ,b 2=r 6-r 2=5.07cm ,b 3=r 7-r 3=4.98cm 其平均值cm cm b 01.54
98
.407.500.599.4=+++=
其标准差
cm cm b 041.01
4)01.598.4()01.507.5()01.500.5()01.599.4(2
222=--+-+-+-=σ
那么b 的展伸不确定度为:
△B 如何求得? 不等于0.05
997.0,175.0)305.058.2()4
041.084.5()()(2
222990
.0990.0==⨯+⨯=∆+=P cm cm C k n
t U B P
b
b σ 根据杨氏模量的表达式2
82lbd
DLF
Slb DLF E π==
,那么可以求得 272
2
/10024.201.5)0285.0(20.714.38.9210.9420.12688cm N cm
cm cm N
cm cm d
b l DLF
E ⨯=⨯⨯⨯⨯⨯⨯⨯=
=
π 那么有最大不确定度
E D L M 2d l b 222020.20.175=++++++++++0.087E D L M d l b 1262.0941.020000.28572.0 5.01
∆∆∆∆∆∆∆⨯0.005== 所以ΔE=0.175×107N/cm 2 最终结果为:
990.0,/10)175.0024.2(27=⨯±=∆±=P cm N E E E
不确定度保留1-2位有效数字
再用图象法处理:
F/N
图一:r-F 图
利用ORIGIN 读出斜率为M=0.25013,那么根据公式计算得
2722/10067.2/25013.02.7)285.0(14.34
1
.9410.12622)/(2cm N cm N SlM DL E ⨯=⨯⨯⨯⨯⨯⨯=
=
逐差法与图像法相对误差:|E E | 2.067 2.024
2.12%E 2.024
--==图像法逐差法逐差法
实验小结:实验过程中最困难的是光学仪器的调整以及在望远镜中找到标尺的像,但是在老师的帮助下,
我很快在望远镜中找到了标尺的像,然后比较顺利地完成了实验。

实验中还遇到的一个困难是,在望远镜中标尺的像可能由于采光不足,刻度略显模糊,但我还是艰难地读取了数据。

从测量所得结果和误差分析结果来看,实验是比较成功的,两种方法得出结果较为接近,在一定误差范围内测得了钢丝的杨氏模量。

其中用逐差法和作图法所得到的结果基本一致,可以认为结果是可靠的。

思考题:
1.利用光杠杆把测微小长度ΔL 变成测b ,光杠杆的放大率为2D/l ,根据此式能否以增加D 减小l 来提高放大率,这样做有无好处?有无限度?应怎样考虑这个问题?
答:理论上讲,增加D 减小l 是可以提高放大率的,但是在实际的操作过程中,在大多数情况下,一定的
放大率已经能够保证人的观测和实验精确度,况且若增大D ,那么在调整仪器过程中找到标尺的像会更加困难,若减小l ,那么对l 的测量的误差会变得更大,同时,放大率如果过大,刻度变化太大,会造成到砝码加到一定数量后就已经超过标尺量程,实验无法完成。

综合来看,应该使放大率保持在一个合适的数值,过小会造成放大效果不佳,过小会造成实际操作的困难。

标尺量程问题
Ф角度需满足一定的条件 赵伟 5.30。

相关文档
最新文档