浅谈高中数学解题中常用的数学思想

合集下载

浅析分类讨论思想在高中数学解题中的应用

浅析分类讨论思想在高中数学解题中的应用

浅析分类讨论思想在高中数学解题中的应用【摘要】本文主要从分类讨论思想在高中数学解题中的应用展开讨论。

首先介绍了分类讨论思想的基本概念,然后详细阐述了其在高中数学解题中的具体应用方法,并通过案例分析进行了说明。

接着探讨了分类讨论思想的优势和局限性。

最后总结了分类讨论思想在高中数学解题中的重要性,并展望了未来研究方向。

通过本文的分析,可以更好地理解分类讨论思想在高中数学解题中的应用,为提高解题效率提供参考。

【关键词】高中数学、分类讨论思想、解题、应用、案例分析、优势、局限性、重要性、未来研究方向。

1. 引言1.1 研究背景在数学解题中,分类讨论思想可以帮助学生将问题分解成更小的子问题,从而更容易解决复杂问题。

通过对问题进行分类讨论,学生可以更清晰地理清问题的关键点,找到解题的思路和方法。

分类讨论思想在高中数学解题中具有重要的意义和作用。

在这样的背景下,对分类讨论思想在高中数学解题中的应用进行深入研究,对于提高学生的数学学习兴趣和能力具有积极的促进作用。

1.2 研究意义分类讨论思想在高中数学解题中的应用具有重要的研究意义。

这种思想能够帮助学生建立起科学的解题思维方式,培养其逻辑思维和分类能力,提高解题效率和准确性。

在数学教学中,分类讨论思想可以帮助学生更深入地理解数学知识,将抽象概念具体化,激发学生的学习兴趣,提高学生的学习动力。

分类讨论思想还可以帮助学生培养解决问题的能力和分析问题的能力,对于学生的综合素质提升具有积极的促进作用。

通过应用分类讨论思想解决数学问题,学生可以在实践中不断提高自己的思维能力和解决问题的能力,为将来的学习和工作打下良好的基础。

2. 正文2.1 分类讨论思想的基本概念分类讨论思想是一种解决数学问题的方法,通过将问题中各种可能的情况进行分类,然后分别讨论每种情况的解决方法,最终将各种情况的解决方法综合起来得到问题的最终解决方案。

分类讨论思想的基本概念包括以下几个方面:1. 分类:首先要将问题中的各种可能情况进行分类,将问题拆分成若干个子问题,每个子问题都是某一种情况下的特殊情况。

高中解题数学思想方法总结

高中解题数学思想方法总结

高中解题数学思想方法总结高中解题数学思想方法总结在高中数学中,解题方法是我们学习的重点之一。

解题方法不仅是完成题目的工具,更是数学思想的体现。

合理的解题方法可以帮助我们更好地理解数学问题、提高解题效率、培养逻辑思维和分析能力。

下面将对高中解题数学思想方法进行总结。

一、认真阅读题目认真阅读题目是解题的第一步。

我们要仔细阅读题目,明确题目要求,理解题意,划清知识边界,找出问题的关键信息,搞清楚问题所求和给出的条件。

只有弄清楚题意,才能制定出合理的解题思路。

二、灵活运用数学方法在高中数学中,有很多数学方法可以帮助我们解题。

例如代数方法、几何方法、函数方法、随机变量方法等。

我们需要根据题目的特点和要求,选择合适的方法进行解题。

例如,在一些几何问题中,我们可以运用相似三角形的性质解决一些比例关系问题;在一些函数问题中,我们可以利用函数的性质和图像来解决一些函数关系问题。

灵活运用数学方法是解题的关键。

三、分析问题的结构在解题过程中,我们要善于分析问题的结构。

我们可以考虑问题的对称性、周期性、递推性、变化趋势等特点,以及利用数学模型来描述问题的结构。

通过分析问题的结构,我们能够更好地理解问题,找到解题的突破口。

四、合理利用已有的定理和性质高中数学中有许多定理和性质,我们在解题过程中可以充分利用这些已有的定理和性质。

例如在三角函数问题中,我们可以利用正弦定理、余弦定理等解决三角形的面积和边长问题;在概率问题中,我们可以利用排列组合的知识解决事件发生的概率问题。

五、巧妙运用数学运算在解题过程中,还可以巧妙运用数学运算来简化问题。

我们可以利用整式的性质进行因式分解、合并同类项,运用二次函数的基本变形得到特殊函数,利用换元法、递推式等将问题变换形式。

通过巧妙的运用数学运算,我们能够简化问题,提高解题效率。

六、实践和思考除了学习和掌握数学知识和解题方法外,还需要进行实践和思考。

通过大量的练习和实际问题的解决,我们能够更好地理解数学知识,掌握解题技巧,提高解题水平。

高一数学必修课程中的数学思想方法总结

高一数学必修课程中的数学思想方法总结

高一数学必修课程中的数学思想方法总结在高一数学必修课程的学习中,我们接触到了许多重要的数学思想方法。

这些思想方法不仅是解决数学问题的有力工具,更是培养我们数学思维和能力的关键。

下面,让我们一起来总结一下这些宝贵的数学思想方法。

一、函数与方程的思想函数与方程的思想是高中数学中极为重要的思想方法之一。

函数描述了两个变量之间的对应关系,而方程则是含有未知数的等式。

在解决问题时,我们常常将问题中的数量关系构建为函数模型,通过研究函数的性质来找到问题的答案。

例如,对于一个实际问题,我们可以设出相关的变量,建立函数关系式,然后利用函数的单调性、最值等性质来求解。

方程思想则体现在将问题中的等量关系用方程表示出来,通过解方程来求得未知量。

比如,在求解几何问题时,常常可以根据图形的性质列出方程。

函数与方程的思想相互联系、相互渗透。

例如,求函数的零点,就是求解相应方程的根;而利用方程的根的存在性定理,也可以判断函数零点的存在情况。

二、分类讨论的思想分类讨论思想在数学中应用广泛。

当一个问题包含多种情况,不能用统一的方法解决时,就需要进行分类讨论。

比如,在研究函数的单调性时,可能需要根据函数的定义域、参数的取值范围等进行分类讨论。

又如,在解含参数的不等式时,需要根据参数的不同取值范围,分别讨论不等式的解集。

进行分类讨论时,要做到不重不漏。

首先要明确分类的标准,然后对每一类分别进行讨论,最后将结果综合起来。

三、数形结合的思想数形结合就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合。

例如,函数的图象可以直观地反映函数的性质,通过观察函数图象,我们可以很容易地判断函数的单调性、奇偶性、最值等。

在解决方程和不等式问题时,我们也可以将其转化为对应的函数图象,通过图象的交点、位置关系来求解。

另外,在平面几何和解析几何中,数形结合的思想更是体现得淋漓尽致。

通过建立坐标系,将几何问题转化为代数问题,或者利用几何图形的性质来解决代数问题。

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法一、数形结合思想应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的`函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏.如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.三、函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。

运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.四、转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的.不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。

更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。

一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。

A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。

A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。

A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。

A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。

二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。

“转化与化归”思想在高中数学解题教学中的应用

“转化与化归”思想在高中数学解题教学中的应用

解题研究2023年12月上半月㊀㊀㊀转化与化归 思想在高中数学解题教学中的应用◉哈尔滨师范大学教师教育学院㊀李㊀硕㊀㊀转化与化归 思想是高学数学中的一种重要的数学思想,运用非常广泛,尤其是一些特殊的问题,运用 转化与化归 思想解题可以提高效率,同时还可以降低问题解决的难度.因此,在数学课堂引入并应用转化与化归思想,能够让学生在学习数学及解题的过程中,加深对数学概念的理解,同时也能有效锻炼数学思维,提高学习效率,进一步发展数学核心素养.在高中数学的解题过程中,基于 转化与化归 思想的三大原则,主要运用的解题方法包括特殊与一般的转化㊁命题的等价转化,以及函数㊁方程㊁不等式之间的转化等一些常见的转化方法.1特殊与一般的转化将一般问题进行特殊化处理,可使问题的解决变得更为直接和简便,并且还能从特殊情况中寻找问题解决的常规思维;除此之外,对特殊性问题进行概括性研究,实现特殊问题一般化,也能从宏观与全局的角度把握特殊性问题的普遍规律,并能有效地解决特殊性问题.例1㊀ 蒙日圆 涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为(㊀㊀).A.x 2+y 2=9㊀㊀㊀㊀㊀B .x 2+y 2=7C .x 2+y 2=5D.x 2+y 2=4分析:根据题目中的已知条件,在椭圆上,两条相互垂直的切线可以随意选择,但其交点位于与椭圆同心的圆却是唯一的,也即答案是唯一的.由此,可以通过选取一般问题的特殊情形找到一般的解题思路,不妨利用过椭圆的右顶点和上顶点的两条切线进行解题.解:因为椭圆C :x 2a +1+y 2a=1(a >0)的离心率为12,所以1a +1=12,解得a =3.所以椭圆C 的方程为x 24+y 23=1,且椭圆C 的上顶点为A (0,3),右顶点为B (2,0),则椭圆在A ,B 两点的切线方程分别为y =3和x =2,这两条切线的交点坐标为M (2,3).由题意可知,交点M 必在一个与椭圆C 同心的圆上,可得与椭圆C 同心的圆的半径r =22+(3)2=7.所以椭圆C 的蒙日圆方程为x 2+y 2=7.故选:B .以问题的特征为依据,对命题进行转化,将原问题转化为与之相关的㊁容易解决的新问题,这也是解决数学问题常见的转化思路,并且可以通过这种转化逐步培养识别关键信息的能力.2命题的等价转化把题目中已有的条件或者结论进行相应的转化,化难为易,是解决较难问题常用的转化手段.其主要方法包括:数与形的转化㊁正与反的转化㊁常量与变量的转化㊁图形形体及位置的转化等.例2㊀由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,得m 的取值范围是(-ɕ,a ),则实数a 的值是.分析:利用转化思想可以将命题 存在x 0ɪR ,使e |x -1|-m ɤ0 是假命题转化为 对任意x ɪR ,e|x -1|-m >0是真命题,由此得出m <e |x -1|恒成立,进而通过m 的取值范围来求a 的值.解:由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,可知 对任意x ɪR ,e |x -1|-m >0是真命题,由此可得m 的取值范围是(-ɕ,1),而(-ɕ,a )与(-ɕ,1)为同一区间,故a =1.例3㊀若对于任意t ɪ[1,2],函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是.分析:根据函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,可以利用正难则反的转化思想先找出g (x )在(t ,3)上单调的条件,再利用补集思想求出m 的取值范围.852023年12月上半月㊀解题研究㊀㊀㊀㊀解:求得g ᶄ(x )=3x 2+(m +4)x -2.若g (x )在(t ,3)上单调递增,则g ᶄ(x )ȡ0,即3x 2+(m +4)x -2ȡ0,亦即m +4ȡ2x-3x 在x ɪ(t ,3)上恒成立.故m +4ȡ2t-3t 在t ɪ[1,2]上恒成立,则m +4ȡ-1,即m ȡ-5.若g (x )在(t ,3)上单调递减,则g ᶄ(x )ɤ0,即m +4ɤ2x-3x 在x ɪ(t ,3)上恒成立,所以m +4ɤ23-9,即m ɤ-373.综上,符合题意的m 的取值范围为-373<m <-5.根据命题的等价性对题目条件进行明晰化处理是解题常见的思路;对复杂问题采用正难则反的转化思想,更有利于问题得到快速解答.3函数㊁方程㊁不等式之间的转化函数与方程㊁不等式之间有着千丝万缕的关联,通过结合函数y =f (x )图象可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例4㊀若2x -2y<3-x -3-y ,则(㊀㊀).A.l n (y -x +1)>0B .l n (y -x +1)<0C .l n |x -y |>0D.l n |x -y |<0分析:由题意,可将2x -2y<3-x -3-y 转化为2x -3-x <2y-3-y ,进而实现不等式与函数之间的转化,从而解得答案.解:由2x -2y <3-x -3-y ,得2x -3-x <2y -3-y .故构造函数y =2x -3-x ,即y =2x -(13)x.由于函数y =2x-(13)x 在R 上单调递增,因此x <y ,即y -x +1>1.所以l n (y -x +1)>l n 1=0.故选择:A .例5㊀已知函数f (x )=e l n x ,g (x )=1ef (x )-(x +1).(e =2.718 )(1)求函数g (x )的最大值;(2)求证:1+12+13+ +1n >l n (n +1)(n ɪN +).分析:第(1)问要求函数g (x )的最大值,关键在于需要运用转化与划归思想,通过g ᶄ(x )得出函数g (x )单调性,即可求出g (x )的最大值.将第(1)问得出的g (x )最大值-2转化成l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立),再利用换元法最终证明出结论.解:(1)由g (x )=1ef (x )-(x +1),即g (x )=l n x -(x +1),得g ᶄ(x )=1x-1(x >0).令g ᶄ(x )>0,则0<x <1;令g ᶄ(x )<0,则x >1.所以,函数g (x )在区间(0,1)上单调递增,在区间(1,+ɕ)上单调递减.故g (x )的最大值为=g (1)=-2.(2)证明:由(1)知x =1是函数g (x )的极大值点,也是最大值点,故g (x )ɤg (1)=-2.所以l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立).令t =x -1,则有t ȡl n (t +1)(t >-1).取t =1n (n ɪN +),则有1n >l n (1+1n)=l n(n +1n ).故1>l n2,12>l n 32,13>l n 43,,1n>l n(n +1n ).上面n 个不等式叠加,得1+12+13+ +1n>l n (2ˑ32ˑ43ˑ ˑn +1n)=l n (n +1).故1+12+13+ +1n >l n (n +1)(n ɪN +).在分析此类题目的过程中,利用函数㊁方程㊁不等式进行转化与化归更有利于问题的解决,因此,利用转化与划归思想不仅能让整个数学知识的体系变得更加紧密,同时也能对学生从系统性角度掌握数学知识之间的联系提供非常大的帮助.转化与化归思想所蕴含的内容丰富且深奥,为高中数学问题的解决提供了多种思路,对高中数学的学习也有极大的指导与启发作用,值得我们不断地探索与研究.因此,在解决高中数学问题的过程中,要灵活运用 转化与化归 的解题思想.有些数学问题看似复杂,但通过分析可知出题者采用的是 障眼法 ,其中有的是多余或无用的条件.同时,在高中数学课堂教学中,教师可以在解题教学过程中渗透转化与化归思想,加强学生在特殊与一般转化㊁命题的等价转化以及函数㊁方程㊁不等式之间的转化等方面的技能,逐步锻炼学生简化题目内容的能力和意识,最大程度提高解题效率.Z95。

高中数学重要数学思想

高中数学重要数学思想

一、高中数学重要数学思想一、函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。

1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。

二、数形结合思想数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。

1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。

2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。

这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。

因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。

3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。

4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。

”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。

高中数学常用数学思想

高中数学常用数学思想

高中数学常用的数学思想在解答数学问题时,有时会遇到含参量情况,需要对参数各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置,也是近几年来高考重点考查的热点问题之一。

本文拟就这类问题的解题思想方法――分类与讨论作一些探讨,不妥之处,敬请斧正。

解决这类问题,通常要用“分类讨论”的方法,即根据问题的条件和所涉及到的概念;运用的定理、公式、性质以及运算的需要,图形的位置等进行科学合理的分类,然后逐类分别加以讨论,探求出各自的结果,最后归纳出命题的结论,达到解决问题的目的。

它实际上是一种化难为易。

化繁为简的解题策略和方法。

一、科学合理的分类把一个集合a分成若干个非空真子集ai(i=1、2、3n)(n≥2,n∈n),使集合a中的每一个元素属于且仅属于某一个子集。

即①a1∪a2∪a3∪∪an=a②ai∩aj=φ(i,j∈n,且i≠j)。

则称对集a进行了一次科学的分类(或称一次逻辑划分)科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。

在此基础上根据问题的条件和性质,应尽可能减少分类。

二、确定分类标准在确定讨论的对象后,最困难是确定分类的标准,一般来讲,分类标准的确定通常有三种:(一)根据数学概念来确定分类标准例如:绝对值的定义是:所以在解含有绝对值的不等式|log x|+|log(3-x)|≥1时,就必须根据确定log x ,log (3-x)正负的x值1和2将定义域(0,3)分成三个区间进行讨论,即02还是x≤2,所以以2为标准进行分类讨论可得轨迹方程为: y= y解(2)如图1,由于p,q的位置变化,q弦长|pq|的表达式不同,故必须分-1o 2 3x点p,q都在曲线y2=4(x+1)以及一点 p在曲线y2=4(x+1)上而另一点在曲线y2=-12(x-3)上可求得:从而知当或时,(二)根据数学中的定理,公式和性质确定分类标准。

高中数学思想方法8篇

高中数学思想方法8篇

高中数学思想方法8篇高中数学思想方法精选8篇高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的`转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法21、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

概述高中数学的数学思想

概述高中数学的数学思想

概述高中数学的数学思想著名数学教育家波利亚有两句名言:“中学数学的首要任务就是加强解题训练”。

“掌握数学就意味着善于解题”。

而数学思想是对数学事实与数学理论(概念、定理、公式、法则、方法等)的本质认识,是数学中处理问题的基本观点,是对中学数学基础与基本方法本质的概括。

它高于知识与方法,居于更高层次的地位,指导知识与方法的运用,能使知识向更深更高层次发展。

数学思想主要有数形结合思想,化归转化思想,函数与方程思想,分类讨论思想,整体代换思想等,下面我就这几种思想在解题中的应用做一些浅谈。

1 数形结合思想数形结合思想是重要的数学思想之一,它是根据数学问题的条件和结论之间的内在联系,把“形”与“数”巧妙地结合起来,使抽象思维形象化,达到化难为易,化繁为简,使问题得到解决,很多数学问题,本来是代数方面的问题,但通过观察可以发现它具有某种几何特征,由几何特征发现数与形之间的对应关系,从而将代数问题化为几何问题,使问题获得解决。

如:已知x、y、z∈R+,求证:分析:观察所证不等式特点,利用数形结合处理。

在平面上任选一点P,作:∠CPB=∠CPA=∠APB=120°设:PA=x,PB=y,PC=z,连接AB、BC、AC,则得到△ABC,然后由余弦定理求得AB,AC,BC,再由三角形性质两边之和大于第三边即可得证。

可见,恰当地应用数形结合是提高解题速度、优化解题过程的一种重要方法。

这正如著名数学家华罗庚先生所说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休”。

2 化归转化思想化归转化也是一种常用的思想方法,就是将陌生困难问题在一定条件下转化为一个比较熟悉的、比较容易解决的问题。

它一般表现为将问题进行不断的转化,把陌生、不规范、复杂的问题转化为熟悉、规范、简单的问题,使之逐步成为容易解决或已经解决过的问题模式。

如将数列问题转化为较熟悉的等差,等比数列问题求解。

如:已知数列{}满足关系=1,,求数列{an}的通项公式。

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用

中学数学数形结合思想在解题中的应用一、学问整合1.数形结合是数学解题中常用的思想方法,运用数形结合的方法,许多问题能迎刃而解,且解法简捷。

所谓数形结合,就是依据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使困难问题简洁化,抽象问题详细化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与敏捷性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=214223.纵观多年来的高考试题,奇妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是探讨“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发觉解题途径,而且能避开困难的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要留意培育这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

二、例题分析例1.的取值范围。

之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

高中数学常见思想方法总结

高中数学常见思想方法总结

高中数学常见思想方法总结目录一、基本概念与思想 (2)1.1 数学思维方式 (3)1.1.1 几何直观 (4)1.1.2 逻辑推理 (6)1.1.3 形数结合 (7)1.2 高中数学常见解题思想 (8)1.2.1 分类讨论思想 (9)1.2.2 数形结合思想 (10)1.2.3 参数思想 (11)1.2.4 类比思想 (13)二、高级思想方法与应用 (14)2.1 模型思想 (15)2.1.1 实际问题模型化 (17)2.1.3 方程模型 (19)2.2 抽象思想 (20)2.2.1 数学抽象 (21)2.2.2 逻辑抽象 (22)2.2.3 方法抽象 (24)2.3 综合思想 (25)2.3.1 多种数学知识的综合运用 (27)2.3.2 不同数学方法的综合运用 (28)2.3.3 数学与其他学科的综合运用 (29)三、数学思想方法在解题中的具体应用 (31)3.1 题型分析 (33)3.1.1 函数题型 (33)3.1.2 不等式题型 (35)3.1.3 数列题型 (36)3.1.5 概率题型 (38)3.2 解题策略 (40)3.2.1 已知条件分析 (41)3.2.2 数形结合策略 (42)3.2.3 构造法策略 (44)3.2.4 特殊值法策略 (45)3.2.5 分类讨论策略 (46)一、基本概念与思想代数思想:代数是数学的一个重要分支,主要研究数与数的运算以及代数式、方程、函数等代数对象的性质。

代数思想强调符号表示等量关系和函数关系,是数学问题解决的重要工具。

几何思想:几何学是研究空间图形和性质的学科。

高中数学中的几何思想包括平面几何和立体几何,涉及图形的性质、图形的变换、空间想象等。

函数与变量思想:函数描述了一个量与另一个量的关系,是数学中重要的概念之一。

变量思想强调在变化中寻找规律,是解决数学问题的重要方法。

数形结合思想:将数学中的数与形相结合,通过图形的直观性来理解和解决数学问题,是高中数学中常见的思想方法。

高中数学基本数学思想

高中数学基本数学思想

高中数学基本数学思想1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.中学数学中还有一些数学思想,如:集合的思想;补集思想;归纳与递推思想;对称思想;逆反思想;类比思想;参变数思想有限与无限的思想;特殊与一般的思想。

分类讨论思想在高中数学解题中的应用

分类讨论思想在高中数学解题中的应用

分类讨论思想在高中数学解题中的应用分类讨论是一种常见的数学思想,它在高中数学解题中起到了重要的作用。

本文将讨论分类讨论思想在高中数学解题中的应用。

一、分类讨论思想的特点分类讨论是一种通过将问题拆分成不同情况,进行分别考虑的方法。

它具有如下特点:1.适用范围广:分类讨论可以用来解决各种问题,包括一元方程、二次方程、几何问题等等。

2.思维灵活:分类讨论可以采取不同的拆分方式,具有很大的灵活性。

3.准确性高:分类讨论可以保证每种情况都被考虑到,并得到相应的结果,不会漏掉任何一种情况。

四.难度低:分类讨论不需要很高的数学功底,只需要将问题分解成各种情况进行分别考虑。

1.一元二次方程的解法一元二次方程ax²+bx+c=0的解法有多种,其中一种常用的方法是分类讨论。

当a≠0时,如果Δ=b²-4ac>0,则方程有两个不相等的实数根;如果Δ<0,则方程无实数根。

2.几何证明在几何证明中,分类讨论也是一个常见的方法。

例如,在证明“等腰三角形的两底角相等”时,可以将三角形分成底角等于顶角的情况和底角小于顶角的情况,分别证明。

3.概率问题在解决概率问题时,分类讨论也是一种常用的方法。

例如,要求抛掷两个骰子点数和为6的概率,可以将所有情况分成两个骰子点数和小于6的情况和等于6的情况,然后计算出每种情况的概率,再相加。

4.数列问题在数列问题中,分类讨论也可以用来解决一些难题。

例如,要求找出一个数列的通项公式,可以将其分成等差数列和等比数列两种情况,然后根据每种情况的特点进行计算。

5.排列组合问题总之,分类讨论是一种非常实用的数学思想,它可以解决多种问题,需要我们在高中数学学习中积极掌握和应用。

浅析分类讨论思想在高中数学解题中的应用

浅析分类讨论思想在高中数学解题中的应用

浅析分类讨论思想在高中数学解题中的应用1. 引言1.1 分类讨论思想在解题中的重要性分类讨论思想在解题中的重要性可以说是至关重要的。

在解决数学问题时,分类讨论思想可以帮助我们将复杂的问题分解成若干个简单的子问题,从而更清晰地理解和解决整个问题。

通过分类讨论思想,我们可以将问题进行分类归纳,找到问题的规律和特点,有针对性地进行思考和解决。

这种系统化的方法可以帮助我们更快速地找到解题的思路,提高解题的效率。

分类讨论思想还可以帮助我们培养逻辑思维能力和分析问题的能力。

通过对问题进行分类、归纳和比较,我们可以锻炼自己的思维能力,提高自己的解题水平。

分类讨论思想在解题中的重要性不言而喻。

它不仅可以帮助我们更好地理解和解决数学问题,还可以培养我们的思维能力和解决问题的方法。

在高中数学的学习中,我们应该重视分类讨论思想的应用,不断提升自己的解题能力。

在解决实际问题时,也可以借鉴分类讨论思想的方法,提高解决问题的效率和准确性。

1.2 分类讨论思想的定义分类讨论思想是指在解决问题时,将问题按照某种特定的标准进行分类,并对每一类情况进行详细讨论和分析的思维方法。

通过分类讨论思想,我们可以将复杂的问题化繁为简,从而更清晰地理解问题的本质,找到问题的解决方法。

分类讨论思想的核心在于将问题进行分类,将问题的各种可能性进行系统地归纳和分析。

通过将问题细分为不同情况,我们可以更具体地审视每个情况下的特点和规律,从而更有针对性地解决问题。

分类讨论思想的关键在于对问题进行合理的分类和细致的讨论,以确保我们不会遗漏任何可能的情况,也不会将不同情况搞混。

分类讨论思想在解题中的应用是非常广泛的,无论是在代数问题、几何问题、概率问题还是综合性问题中,都能发挥重要作用。

通过分类讨论思想,我们可以更高效地解决问题,提高解题的准确性和深度。

掌握分类讨论思想是高中数学学习中的重要内容,也是培养学生逻辑思维和分析能力的重要途径。

1.3 分类讨论思想的应用意义分类讨论思想可以帮助我们更好地理清解题的思路,将一个复杂的问题分解为若干个简单的子问题,从而有针对性地进行解决。

浅谈数学思想方法在高中数学解题中的应用

浅谈数学思想方法在高中数学解题中的应用
证 唯 物 主 义 观 点.一 般 地 。 函数 思 想 是 构 造 函 数 从 而 利 用 函数 的性 质解 题.在 解 题 中 ,善 于 挖 掘 题 目中 的 隐 含 条 件 ,
经 解 决 或 比较 容 易 解 决 的 问 题 , 最 终 使
原 问 题 得 到解 决. ’
行分类 . 然 后 对 每 种 情 况 进 行 分 类 研 究 得出结论 . 进 而 综 合 各 种 结 论 得 到 问 题
( 1 _ y

1 > t
为 常 数, ≠ 一 ÷) .
分析 : 含 参数 的不等 式 , 参 数。 决 定
了勉 + 1 的 符 号 和 两根 - - 4 a 、 6 a 的 大小 , 故
x y z
例3 设 等差数列 { } 的前n 项的和
为 , 已 知a  ̄ = 1 2 , S t 2 > 0 , S 1 3 < 0 .
的, 不 遗漏 、 不 重复 , 科 学划 分 , 分 清
主次 .不 越 级 讨 论 .其 中最 重 要 的 一 条
是“ 不漏不重” .
多元方程 没有什 么本质 的区别 , 如 函数
变形 , 即等 价 转 化.
y = f ( x ) , 就 可以看做关 于 , , , 的二元方程 > 0( a f ( x ) - - y = O .可以说 . 函数 的研究离不开方

3 七 嘉 ≥ 壶 8 ・

分 别 加 以讨 论.

分析 : ( 1 ) 问利 用 公 式 与5 n 建 立 不 等式 , 容 易求 解d 的取 值 范 围 ;
④ 数学思想方法在解题 中的
意义
美 国著 名 数 学 教 育 家 波 利 亚 说 过 . 掌 握 数 学 就 意 味 着 要 善 于解 题 .而 当 我 们解题时 遇到一个新 问题 , 总 想 用 熟 悉 的题 型去 “ 套” , 这只 是满 足于解 出来 。

高中数学难题解题思路的“大道至简”

高中数学难题解题思路的“大道至简”

高中数学难题解题思路的“大道至简”高中数学难题的解题思路可以概括为“化繁为简,灵活运用”。

熟练掌握数学思想:例如,函数思想是解决“数学型”问题中的一种思维策略。

通过建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题和解决问题。

此外,函数方程的思想,归纳演绎的思想、数形结合、符合化思想、整体思想(不仅仅在物理中使用).......。

例如,遇到一个函数同构比大小的证明问题,优先观察题目给出的特点,先尝试同构,而不是惯性思维直接做差进行比较。

数学语言的语义训练:对于数学高考题目的难点就在于分析和转化,分析要求大家读懂题目,不是简单的认识字,而是要联系学过的知识,清楚有多少种解答的方法。

转化也是非常考验解题能力,怎样转化(高考数学题核心转化一般在4步以内),通常在难题解答时,也就是说换种说法,马上就有了解题思路,这也是日常训练中对于数学的语义做重点训练的原因。

注意特殊与普通意义的联系:一些命题在普遍意义上成立时,在个别情况下一定也成立。

根据这个标准,可以确定选、填题中的正确答案。

注意:特殊、极限的情况同样适用于探求主观题的解题思路,很有效(先假设后证明)。

例如,x属于实数,那么特殊值肯定符合,在抽象函数中体现的尤为明显。

用极限计算法则思考题目:对要求的未知量,先设想一个与它有关的变量,确认变量通过无限过程的结果就是所求的未知量,构造函数或数列,并利用极限计算法则得出结果,或者利用图形的极限位置计算出结果。

善用分类讨论法解题:解数学题时,通常到某一个步骤时,不能用统一的方法和公式继续下去,因为被研究的对象包含了多种可能。

此时,用分类讨论法来考虑多种可能性,全面地解决问题。

例如,含参问题解决的优先方法是分离参数,在分类讨论。

注意:分类讨论高考有轮换考的趋势,例如今年考了,隔年考的概率很大。

逆向思维:从问题的反面或侧面思考可能会有意想不到的收获。

以待求量作为已知量进行缺步解答,对于一些疑难问题,如果无法一次性解决,可以将其划分为一个个子问题或一系列的步骤,逐个解决。

高中数学6种数学思想

高中数学6种数学思想

高中数学6种数学思想1.函数与方程思想函数与方程的思想是中学数学最基本的思想。

所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。

而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2.数形结合思想数与形在一定的条件下可以转化。

如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。

因此数形结合的思想对问题的解决有举足轻重的作用。

解题类型:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。

③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

3.分类讨论思想分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。

原因四是实际问题中常常需要分类讨论各种可能性。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。

常见的类型:类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。

类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈高中数学解题中常用的数学思想
发表时间:2017-01-12T14:17:49.790Z 来源:《教育研究·教研版》2016年11月作者:牟禹霖
[导读] 具有一定的复杂性和逻辑性,这就要求学生能够掌握良好的数学思维,去解决在学习和解答习题中遇到的问题。

作者单位:东北师大附属中学高三21 班
〔摘要〕数学思想方法是数学学科的灵魂,它充分的反映在数学课堂教学之中,体现在数学习题的解答里面。

在解题中只有运用数学思想方法,才能够准确高效的对数学习题进行解答。

近几年高考习题也越来越重视对学生数学思想方法的考查,因此在高中数学课堂中进行数学思想的教学十分重要。

〔关键词〕高中数学数学解题数学思想
在高中数学课堂教学中,学生的解题是依赖数学思想方法来实现的,通过正确的、巧妙的数学思想把所学的知识运用到解决问题当中去。

但在教学中只注重对学生数学成绩的提升,忽视了对学生数学思想的培养,致使学生的数学综合能力得不到提升。

1 高中数学课程中数学思想方法的重要性高中数学大纲指出:“会合乎逻辑的、准确的阐述自己的思想和观点,能够运用数学的思想、概念和方法,形成良好的思维品质”。

高中数学中的知识点是从我们日常生活中的数学知识中筛选出来的,具有一定的复杂性和逻辑性,这就要求学生能够掌握良好的数学思维,去解决在学习和解答习题中遇到的问题。

纵观高中数学学科的教材、课程标准、数学习题等,无不体现着数学思想,函数与方程、归化与转化、主元、对称性、系统与统计等思想方法普遍的存在与每道习题之中。

数学思想是对数学知识内容和所用方法的本质认识,是经过不断的研究和论证得来的,具有一般意义和相对稳定的特征,如果学生在学习的过程中能够熟练的掌握数学思想,就能够极大的提升自己的解题能力。

如,在数学学科中,集合是一种基本的数学教学语言,同时也是数学学科重要的理论基础。

在数学关系的表达,数学知识点的讲解时,都可以运用几何进行表述,集合的思想广泛的存在于各个习题之中,例如表示方程和不等式的解,用集合表示基本的逻辑关系和推理等等,集合几乎是数学学科中的流通货币,适用于绝大部分的习题解答,学生只有熟练的掌握了集合的数学思想,才能高效的进行习题解答。

2 在教学中渗透数学思想数学知识点之间都是存在着联系的,同样数学思想之间这是存在着很大的联系的,如解答函数的习题会用归化的数学思想等,很多学生在高中数学学习中感到非常的吃力,往往是学生没有看到数学思想之间存在的联系。

因此教师在培养学生的解题能力时要从培养学生的数学思想入手,帮助学生看到数学思想之间存在的联系,使学生建立属于自己的知识架构。

如,数形结合的思想是数学学科最具特色的思想方法,它将代数几何的精华都集中了起来,数形结合的思想既发挥了代数方法,解题过程的程序化优势,又发挥了几何解题方法的形象直观立体的特征,集多种优秀的解题思想为一身。

学生如果能够很好的掌握数学的解题方法,能够大大的提升学生的解题能力。

3 精选习题进行练习习题练习是课堂教学有效的延伸,是提升学生解题能力的重要手段,通过习题练习学生能够有效的找到运用教师教授的数学思想,强化自己对数学思想的掌握能力,并通过不断的练习掌握有效的数学思想运用方法。

“好记性不如烂笔头”学生的掌握了很多的数学思想方法,但是不知道怎么运用,那么一切也是徒劳的,所以教师在对学生进行解题能力的提升时要注重对学生进行习题的练习,通过不断的习题练习提升学生对数学思想的运用能力。

但是在现阶段的高中数学教学中,很多数学教师都采用传统教学的“题海战术”对学生进行习题训练,希望能够通过大量的练习提升学生对数学思想的运用能力,但是学生在量的习题练习中很容易使学生产生厌倦心理,达不到教师预期的教学目标。

因此教师在设计练习的习
题时,要注重习题的质量,为学生设置符合学生实际的习题进行练习。

笔者在为学生设计练习题时,会将学生的易错点、历年高考的常考题型、教材中的重点进行整理,为学生设计针对性的训练习题,在降低学生学习压力的同时提升学生的数学思想方法的掌握能力。

如,在直角坐标系中xoy 中l:y=t(t≠0)交y 轴于点M, 交抛物线C:y2=2px(p>0)于点P,M 关于点P 的对称点为N,连结ON 并延长
直线与除以外没有其它公共点.理由如下:直线MH 的方程为,即代入y2=2px 得y2-4ty+4t2=0,解得y1=y2=2t, 即直线MH 与C 只有一个公共点, 所以除H 以外直线MH 与C 没有其它公共点。

通过这种蕴含着数学思想的习题,能够有效的提升学生的解题能力,加强学生对数学思想的理解,即降低了学生的学习负担,又提升了学生的学习效率,真正的做到了“减负提质”。

总之,在高中数学教学中,学生的解题能力直接决定着学生的学习成绩,而数学思想又直接影响着学生的解题能力。

因此教师在教学中要积极的转变自己的教学观念,不断革新自己的教学方法,找到有效提升学生数学综合能力的教学方法。

参考文献1 季霞.函数思想方法在初中数学教育中的应用研究[J].数理化学习,2014(12)2 张月肖.函数思想中的唯物辩证法[J].教育实践与研究(中学版),2009(11)3 仝秀阁.谈高考复习中数学思想方法教学的必要性[J].成功:教育版,2009(4)。

相关文档
最新文档