2017考研合工大超越三套题数学二【试卷】
考研数学合工大五套卷
考研数学合工大五套卷考研数学一直以来都是考生们最为头疼的科目之一。
合肥工业大学是一所以工科为主的综合性大学,其出版的考研数学五套卷备受考生欢迎。
本文将对这五套卷的特点和使用方法进行介绍,希望能够帮助广大考生更好地备考。
第一套卷是基础篇,主要针对考生的基础知识进行考察。
这套卷题目数量相对较少,但难度适中,非常适合用来检验自己在数学基础上的掌握程度。
建议考生在开始复习的时候先进行一遍整体的练习,然后根据自己的薄弱环节进行有针对性的强化训练。
第二套卷是提高篇,考察的内容相对于第一套卷来说更加深入和复杂。
这套卷的难度相对较高,适合已经具有一定数学基础的考生。
建议考生在掌握了基础知识后再进行这套卷的练习,通过解题过程来进一步提高自己的数学思维能力和解题技巧。
第三套卷是综合篇,考察的内容涵盖了数学的多个领域。
这套卷的特点是题目之间的联系性较强,需要考生在解题过程中灵活运用所学知识。
这套卷非常适合用来检验考生的综合能力,特别是对各个知识点之间的联系和应用能力进行考察。
第四套卷是模拟篇,模拟了真实考试的题型和难度。
这套卷的目的是帮助考生熟悉考试环境和节奏,提高解题效率和应试能力。
建议考生在完成前三套卷后再进行这套卷的练习,通过模拟真实考试的情境来检验自己的能力水平。
第五套卷是冲刺篇,难度相对较高,主要考察考生对知识的灵活应用和解题的技巧。
这套卷的目的是让考生在最后阶段有一个进一步的冲刺,提高自己的分数。
建议考生在其他四套卷都完成之后再进行这套卷的练习,通过攻克这套卷的难题来提高整体的水平。
除了以上五套卷,合工大还提供了详细的解析和参考答案,方便考生进行对照和学习。
在做题过程中,考生一定要做到理清思路,注重细节,不要过于追求速度而牺牲准确性。
在解答完题目后,可以对照解析进行复盘,找出解题中存在的问题和不足之处,及时进行反思和总结。
总而言之,考研数学合工大五套卷是一套完善的复习资料,通过练习这五套卷,考生可以全面了解自己的数学水平,并找出自己的薄弱环节。
(完整版)2017合工大建筑学考研笔试真题
二.名词解释(每题5分,共25分)
1.人文环境
2.绿地率
3.边界效应
4.防火分区
5.亚文化
3.默图(每题5分,共15分)
1.安藤忠雄“住吉的长屋”平面及轴测图
2.哈迪德设计的“北京银河SOHO”
3.王澍设计的“宁波博物馆”(录者按:2、3两题未具体要求绘制平面、鸟瞰或轴侧哪一种)
4.简答(每题10分,共20分。适当辅以简图)
1.从建筑设计的角度浅析“场所精神”
2.请绘制两种类型的单元式组合建筑平面图,并结合平面图分析单元式建筑空间组合的特征。
5.论述(每题15分,共30分)
1.选取一件利用拓扑关系进行创作的设计作品,绘制其简图,运用所掌握的相关建筑设计原理知识对其进行分析解读。
选取一件利用拓扑关系进行创作的设计作品绘制其简图运用所掌握的相关建筑设计原理知识对其进行分析解读
合肥工业大学
考试科目:设计基础理论(一)[共150分]
适用专业:建筑学
建筑设计原理部分(100份)
一.填空(每空1分,共10分)
1.人在不同环境背景下的行为可以分为活动、活动与活动。
2.居住建筑合理分区的原则包括分区,分区,分区和分区。
1.名词解释(每题5分,共10分)
1.详细规划
2.邻里单元
2.简答题(每题10分,共20分)
1.城市公共服务设施主要包括哪几类?一般城市是按照哪几级进行配置?
2.简述城市设计的主要内容与对象层次。
建筑构造部分(20分)
1.简答题(每题5分,共10分)
1.简述常见的基础形式及特点。
2.简述“建筑的耐久年限”的含义。
2.普利兹克奖获得者彼得·卒姆托(Peter Zumthor)说:“我认为现代建筑必须反映出所附带的任务和自身本质。建筑不是一辆车或者一个象征,能将其本质显著的表现出来。在社会中,建筑以自己的语言抵制浪费,赞美精简。”试结合其所设计的瑞士瓦尔斯温泉浴场等案例进行分析解读,谈谈你对这段话的看法。
(合工大版)超越经典考研数学模拟试卷(15套)
2010年全国硕士研究生入学统一考试数学一模拟试卷(I )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)设数列{},{}n n a b 对任意的正整数n 满足1+≤≤n n n a b a ,则( ).(A )数列{},{}n n a b 均收敛,且lim lim →∞→∞=n n n n a b(B )数列{},{}n n a b 均发散,且lim lim →∞→∞==+∞n n n n a b(C )数列{},{}n n a b 具有相同的敛散性 (D )数列{},{}n n a b 具有不同的敛散性(2)设()f x 满足'(0)0f =,32'()[()]f x f x x +=,则有( ).(A )(0)f 是()f x 的极大值 (B )(0)f 是()f x 的极小值 (C )(0,(0))f 是()=y f x 的拐点(D )(0)f 不是()f x 的极值,(0,(0))f 也不是()=y f x 的拐点(3)设函数(,)f x y 在点000()P x ,y 处的两个偏导数00'()x f x ,y 、00'()y f x ,y 都存在,则(A )(,)f x y 在点0P 处必连续 (B )(,)f x y 在点0P 处必可微 (C )000lim (,)lim (,)x x y y f x y =f x y →→ (D )00lim (,)x x y y f x y →→存在(4)下列命题中正确的是( ).(A )设正项级数n =1n a ∞∑发散,则1n a n≥(B )设212n =1(+)n-n aa ∞∑收敛,则n =1n a ∞∑收敛(C )设n =1n n a b ∞∑收敛,则22=1=1,nn n n a b ∞∞∑∑均收敛(D )设22=1=1,n nn n a b∞∞∑∑中至少有一个发散,则n =1(+)nn ab ∞∑发散(5)设,A B 为n 阶方阵,且()()r <r AB B ,则必有( ).(A )=0B (B )=0A (C )≠0B (D )≠0A (6)若=0Ax 的解都是=0B x 的解,则下列结论中正确的是( ).(A ),A B 的行向量组等价 (B ),A B 的列向量组等价(C )A 的行向量组可由B 的行向量组线性表示 (D )B 的行向量组可由A 的行向量组线性表示(7)设随机变量011344X ⎛⎫ ⎪ ⎪⎝⎭~,011122Y ⎛⎫⎪ ⎪⎝⎭~,且1Cov(,)=8X Y ,则{}11===P Y X (A )23 (B )13 (C )14 (D )18(8)设总体2(,)X N μσ~,其中,μσ已知,12,,,n X X X ⋅⋅⋅是来自总体X 的样本,样本方差2=11()1ni i S X X n =--∑2,则2()D S =( ). (A )21n σ- (B )221n σ- (C )41n σ- (D )421n σ-二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上.(9)111lim()122→∞++⋅⋅⋅+=++n n n n ______________.(10)2321(cos 22x x -+=⎰_____________.(11)函数222()2()()=---+-u x y y z z x 在点(1,2,2)处方向导数的最大值是_______. (12)微分方程1'''0x y y xe =x--的通解为___________________. (13)设,A B 均为三阶方阵,且3=A ,4=B ,则1*(2)(3)-=O A B O_____________.(14)设随机变量X 的概率密度函数和分布函数分别为()f x 和()F x ,当0≤x 时,()0=F x ;当0>x 时,()()1+=f x F x ,则当0>x ,()=f x ________________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设23310⎧=-⎪⎨++=⎪⎩x t ty ty ,确定函数()=y f x ,求=022t d y dx .(16)(本题满分10分)设函数()f x 、()g x 在[,]a b 上有连续二阶导数,若()()f a g a =,()()f b g b =,00()()f x g x >,其中0(,)x a b ∈. 证明:在(,)a b 内至少存在一点ξ,使得''()''()f ξ<g ξ.(17)(本题满分10分)设(,)f u v 有二阶连续偏导数,()u ϕ有二阶导数,令22[,()]z f x y xy ϕ=-,求2zx y∂∂∂.(18)(本题满分10分)设函数()f u 具有一阶连续偏导数,L 是以(1,1)A 和(3,3)B 为直径的左上半圆周,方向从A 到B ,计算曲线积分:11[()][()2]Lx xI f y dx f x dy x y y y=--+⎰.(19)(本题满分10分)将函数222()(1)ln(1)(1)f x x x x =++-+展开为x 的幂级数,并求级数1=1(1)(+1)n n n n ∞∑--的和.(20)(本题满分11分)(I )设n 维向量组12,,,,s ⋅⋅⋅αααβ线性相关,证明:β可唯一地由12,,,s ⋅⋅⋅ααα线性表示的充要条件是12,,,s ⋅⋅⋅ααα线性无关;(II )设4维向量组11(1,,0,0)T b =α,22(1,,1,0)Tb =α,33(1,,1,1)T b =α,4(1,,0,1)T b =β,且β可唯一地由123、、ααα线性表示,求常数1234b b b b 、、、满足的条件.(21)(本题满分11分)设三阶实对称矩阵A 的秩为2,且=AB C ,其中110011⎛⎫ ⎪= ⎪ ⎪-⎝⎭B ,110011-⎛⎫⎪= ⎪ ⎪⎝⎭C ,求A 的所有特征值与特征向量,并求矩阵A 及9999A .(22)(本题满分11分)设随机变量[0,2]XU π,sin Y X =,sin()Z X a =+,其中[0,2]a π∈为常数,问a 取何值时,Y 与Z 不相关,此时Y 与Z 是否独立?(23)(本题满分11分)已知一批产品的次品率为2%,现从中任意抽取n件产品进行检验. (I)若已知n件产品中有3件次品,求n的矩估计值ˆn;(II)试利用中心极限定理,确定n至少要取多少时,才能使得次品数占总数比例不大于4%Φ=)的概率不小于97.7%.((2)0.9772010年全国硕士研究生入学统一考试数学一模拟试卷(II )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)已知当0x →时,21)ln(1)x +是比ln(1)n x +高阶的无穷小,而ln(1)nx +是比lncos x 高阶的无穷小,则正整数n 等于( ).(A )4 (B )3 (C )2 (D )1 (2)设极限1x →=,则函数()f x 在x a =点处必( ).(A )取极大值 (B )取极小值 (C )可导 (D )不可导 (3)若(,)f x y 在点00(,)x y 处存在任意方向的方向导数,则( ). (A )(,)f x y 在点00(,)x y 处连续 (B )(,)f x y 在点00(,)x y 处可微 (C )0000'(,),'(,)x y f x y f x y 均存在(D )以上结论均不正确(4)数列{}{}{}n n n a b c 、、均满足n n n a b c ≤≤(1,2,n =⋅⋅⋅). 则下列命题正确的是( ) (A )数列{}{}n n a c 、均收敛,则数列{}n b 收敛 (B )数列{}{}n n a c 、均发散,则数列{}n b 发散 (C )若级数n=1n=1n na c∞∞∑∑、均发散,则级数n=1nb∞∑发散(D )若级数n=1n=1n na c∞∞∑∑、均收敛,则级数n=1nb∞∑收敛(5)设A 为m n ⨯矩阵,m E 为m 阶单位阵,,()m n r m <=A ,则下列结论 ①A 经初等行变换为(,)m E O ; ②A 经初等列变换为(,)m E O ; ③T A A 正定; ④T AA 正定;⑤=Ax b 必有解; ⑥=0Ax 仅有零解 中正确的个数为( ).(A )1 (B )2 (C )3 (D )4(6)设10001000010001⎛⎫⎪⎪=⎪⎪⎝⎭A,0001001001001000⎛⎫⎪⎪=⎪⎪⎝⎭B,则以下正确的是().(A)0+=A B(B)A与B相似(C)A与B合同但不相似(D)A与B等价但不合同(7)根据下列函数()F x的图形,指出可作为某随机变量X的分布函数()F x的是().(A)(B)(C)(D)(8)设12(,,,)(1)nX X X n⋅⋅⋅>为来自总体2(0,)X Nσ~的一个简单随机样本,则下列统计量中,是2σ的无偏估计且方差最小的为().(A)21X(B)2X(C)2S(D)n2=11iiXn∑二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上.(9)设函数3()f x x x=,则使得()(0)nf存在的最大正整数n=__________.(10)由半圆周21x y=-1,1,2y y x=-==所围成的平面图形D的形心坐标为____________.(11)二次积分551lnydxdyy x=⎰⎰____________.(12)微分方程''2'(1)xy y +y =e +x -的特解形式为___________________.(13)设三阶矩阵122212304-⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,三维列向量11t ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,若向量,A αα线性相关,则t =__ (14)设随机变量()XP λ,()Y E λ,且X 与Y 独立,若已知EX EY =,则2(2)YE X =三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设0x >,证明:ln nx ne x ≥,其中n 为正整数.(16)(本题满分10分)设()f x 是区间[,]a b 上单调增加的连续函数,且()0f a <,()0b af x dx >⎰. 证明: (I )存在点(,)a b ξ∈,使得()0af x dx ξ=⎰;(II )存在点(,)a b η∈,使得()()af x dx f ηη=⎰.(17)(本题满分10分)若曲线()y y x =上任一点处的切线在y 轴上的截距等于该点处法线在x 轴上的截距的2倍,且该曲线过点(1,0),求该曲线方程.(18)(本题满分10分)计算曲面积分222222(1)x dydz y dzdx z dxdyI x y z ∑+++=++⎰⎰,其中∑为上半球球面2222(0)x y z R z ++=≥的上侧.(19)(本题满分10分)求幂级数2=1(1)2n nn n x ∞-∑的收敛域与和函数.(20)(本题满分11分)确定参数,a b 的值,使线性方程组12341234234123413222354(3)3x x x x x x x x a x x x x x a x x b+++=⎧⎪+++=⎪⎨++=⎪⎪++++=⎩有解,并求其解(将通解用该方程的一个的特解及其导出组的基础解系表示).(21)(本题满分11分)设12(,,,),(1,2,,),1TT n i a a a a R i n =⋅⋅⋅∈=⋅⋅⋅=ααα,10a ≠,T =A αα. (I )求A 的所有特征值和特征向量; (II )当k 为何值时,k +E A 为正交阵; (III )当k 为何值时,k -E A 为正定阵.(22)(本题满分11分)设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放入四个盒子,记X 为至少有一个球的盒子的最小号码. (I )求X 的分布律;(II )若当X i =时,随机变量Y 在[0,]i 上服从均匀分布,1,2,3,4i =,求{}2P Y ≤.(23)(本题满分11分)设12,,,n X X X ⋅⋅⋅是来自正态总体2(0,)X N σ~的一个简单随机样本. (I )求2σ的极大似然估计量2ˆσ,并判断其无偏性; (II )求估计量2ˆσ的方差; (III )问2ˆσ是否为2σ的一致估计量?2010年全国硕士研究生入学统一考试数学一模拟试卷(III )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)已知数列{},{}n n x y 满足1n y ≥,且lim 0n n n x y →∞=,则( ).(A )lim n n x →∞=∞ (B )lim n n x →∞不存在,但不是∞(C )lim 0n n x →∞= (D )lim n n x →∞存在,但不是0(2)设函数()f x 在点0x 的某邻域0()U x 内连续,在0()U x 内可导,则“极限0lim '()x x f x →存在”是“()f x 在0x 处可导”的( ).(A )充分非必要条件 (B )必要非充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (3)设(,)f x y 在区域D 内具有二阶偏导数,则( ).(A )必有22f fx y y x∂∂=∂∂∂∂ (B )(,)f x y 在D 内必连续 (C )(,)f x y 在D 必可微分 (D )以上三个结论都不正确(4)设正项级数=1ln(1)nn +a ∞∑收敛,则级数=1(1)n n ∞∑-- ).(A )条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不定 (5)设、A B 为同阶可逆方阵,具有相同的特征值,则( ). (A )=AB BA (B )存在可逆矩阵C ,使得T=C AC B(C )存在可逆矩阵P ,使得1-=P AP B (D )存在可逆矩阵,P Q ,使得=PAQ B(6)设n 阶方阵A 的伴随矩阵*≠A O ,若123,,ξξξ是线性方程组=Ax b 的三个互不相等的解,则=0Ax 的基础解系为( ). (A )13-ξξ (B )12-ξξ,23-ξξ(C )12-ξξ,23-ξξ,31-ξξ(D )12+ξξ,23+ξξ,31+ξξ(7)设Ω为样本空间,,A B 为随机事件,且满足()0P A =,()1P B =,则( ). (A ),A B =∅=Ω (B )A B ⊂ (C )AB =∅ (D )()1P B A -=(8)设12,,,n X X X ⋅⋅⋅是来自2(,)X N μσ~的一个简单随机样本,2σ未知,n=11=i i X X n ∑,n2=11=()1i i S X X n ∑--2,()t n α为()t n 分布的上α分位点,则e μ的置信度为1α-的置信区间为( ).(A)αα22()()X X e n 1,e n 1⎛⎫ ⎪⎝⎭-- (B)αα1122(1)(1)XX e n ,e n ⎛⎫ ⎪⎝⎭---- (C)αα22exp{1)},exp{1)}X (n X (n ⎛⎫ ⎪⎝⎭-- (D)αα1122exp{(1)},exp{(1)}X n X n ⎛⎫ ⎪⎝⎭----二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)若[]x 表示不超过x 的最大整数,则211lim []nn x dx n →∞=⎰____________.(10)曲线sin y x =在点(,1)2π处的曲率圆方程为_________________.(11)设L 是上半圆周222(0,0)x y a y a +=≥>,则3222()()Lx y ds x y +=+⎰_____________. (12)设()f x 为可导函数,且,x y ∀均满足()()+()yxf x y e f x e f y +=,'(0)2f =,则()f x =_________________.(13)向量组1(1,1,2,3)T =-α,2(1,0,7,2)T=-α,3(2,2,4,6)T=-α,4(0,1,5,5)T =-α的极大线性无关组为__________________.(若有多组,只需填写一组)(14)设有10张奖券,其中8张为2元,2张为5元,现从中无放回地随机抽取3张,则得奖金额(单位:元)的数学期望是___________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设0x >,证明:arctan ln(1)1xx x+>+.(16)(本题满分10分)已知抛物线2y ax bx c =++过点(0,0)与(1,2),且0a <,确定,,a b c 的值,使得抛物线与x 轴所围成平面图形的面积最小,并求该平面图形绕y 轴旋转一周所得旋转体的体积.(17)(本题满分10分)设(,)()y f x y F x =满足22220f fx y∂∂+=∂∂,其中F 具有二阶连续导数,求(,)f x y .(18)(本题满分10分)求极限2201lim cos(2)t xttt dx x y dy t+→-⎰⎰.(19)(本题满分10分)设交错级数1=1(1)(0,1,2,3,)n n n n u u n ∞≥=⋅⋅⋅∑--满足条件:(i )1(1,2,3,)n n u u n +≥=⋅⋅⋅; (ii )lim 0n n u →∞=.证明:1=1(1)n n n u ∞∑--收敛,且其和1S u ≤.(20)(本题满分11分)设m n ⨯A 为实矩阵,T A 是A 的转置矩阵,证明: (I )=0Ax 与T =0A Ax 同解; (II )T T =A Ax A b (其中b 为任意n 维列向量)恒有解.(21)(本题满分11分)设三阶实对称阵A 的特征值为2,2,1,对应特征值2λ=的两个特征向量为12(1,1,0),(1,1,1)T T ==αα.(I )证明3(0,0,1)T=α是A 的属于特征值2λ=的特征向量; (II )求1-+A A 的各行元素之和;(III )求正交变换=x P y ,化二次型123(,,)Tf x x x =x Ax 为标准形.(22)(本题满分11分)设二维随机变量(,)X Y 在区域{}(,)01,G x y y x y =<<<上服从均匀分布,令0,01,0X U X <⎧=⎨≥⎩,0,121,12Y V Y <⎧=⎨≥⎩.(I )问,X Y 是否相互独立? (II )求协方差Cov(,)X Y ,并问,X Y 是否不相关? (III )求协方差Cov(,)U V .(23)(本题满分11分)设总体X 的概率密度为,01(),120,bx x f x ax x ≤<⎧⎪=≤<⎨⎪⎩其他,样本观察值为0.5,0.8,1.5,1.5.(I )求a 与b 的极大似然估计值; (II )设XY e =,求{2}P Y <的极大似然估计值.2010年全国硕士研究生入学统一考试数学一模拟试卷(IV )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)在下列直线中,不是..曲线1(1)x xy e =+渐近线的为( ). (A )0y = (B )1y = (C )y e = (D )0x =(2)已知20lim(123)4x x x →++=21ax+bx ,则( ).(A )ln 2,a b R =∈ (B )10,ln 2a b ≠=(C )1,ln 2a b R =∈ (D )0,ln 2a b ≠= (3)空间曲线222241x y z L x y z ⎧++=⎨++=⎩: 在点(1,1,1)-处的切线与平面4x y z π-+=:的夹角为( ).(A )0 (B )π4 (C )π3 (D )π2(4)设级数=1(1)nn n a x ∞∑-在点1x =-处收敛,在点3x =处发散,则级数=13(1)()2nnn n a ∞∑-( ).(A )绝对收敛 (B )条件收敛 (C )发散 (D )敛散性不确定 (5)若n 阶实矩阵A 满足326116-+-=A A A E O ,则下列命题正确的是( ). (A )-E A 可逆,+E A 也可逆 (B )2-E A 可逆,2+E A 也可逆 (C )3-E A 可逆,3+E A 也可逆 (D )4-E A 可逆,4+E A 也可逆(6)设二次型T f =x Ax 的规范形为222123y y y -+,其中A 为三阶实对称矩阵,则以下结论中正确的个数为( ).①A 的特征值必为1,1,1- ②A 的秩为2③A 的行列式小于0 ④A 必相似于对角阵111⎛⎫⎪- ⎪⎪⎝⎭⑤A 合同于对角阵111⎛⎫ ⎪ ⎪ ⎪-⎝⎭ ⑥A 合同于对角阵123-⎛⎫⎪ ⎪⎪⎝⎭(A )1 (B )2 (C )3 (D )4(7)设随机变量X 与Y 独立,且都服从[0,3]上的均匀分布,则{}1min(,)2P X Y <≤=( ). (A )13 (B )49 (C )23 (D )89(8)设总体2(,)X N μσ~,2σ未知,统计假设00H μμ=:,10H μμ<:. 12,,,nx x x ⋅⋅⋅为样本,x 为样本均值,2s 为样本方差,则在显著水平为α下0H 的拒绝域为( ). (A2(1)t n α≥- (B x u α- (C (1)x t n α≤-- (D (1)x t n α≥- 其中(0,1)U N ~,()T t n ~,数u α满足{}P U u αα>=,()t n α满足{}()P T t n αα>=二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上.(9)曲线(1)y x x =-与x 轴所围图形绕y 轴旋转一周所得旋转体的体积为___________.(10)设2ln 30x yz z ++=,则(1,3,1)dz-=_____________.(11)曲面22:10x y z ∑--+=在点(1,1,1)处的切平面π被柱面2214y x +=所截下部分的面积为__________.(12)设()f x 具有一阶连续导数,且满足方程0()'()x f x x tf x t dt =+-⎰,则()f x =_______(13)已知2253102x y ⎛⎫⎪= ⎪ ⎪--⎝⎭A 的特征值为1,1,1---,则(,)x y =___________.(14)设总体(1,)X B p ~,1,1,1,0为来自总体X 的一个样本观察值,则2()D x 的矩估计值为_____________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设常数0a >,0b >,证明不等式:22()a ba b a b e ae be ++≤+.(16)(本题满分10分)就k 的取值讨论方程2xe kx =的实根个数.(17)(本题满分10分)利用变换t =化简微分方程2242(16(0)d y dyx y e x dx dx+-=>,并求出此微分方程的通解.(18)(本题满分10分)计算曲线积3(2)()()CI x y z dx x dy x y z dz =+++++⎰,其中C 为2221x y +=与222x y z +=-的交线,从原点看去是逆时针方向.(17)(本题满分10分)就常数p 的不同取值,讨论级数1111246p P P -+-+⋅⋅⋅的敛散性.(20)(本题满分11分)已知向量组A :1(0,1,2,3)T =a ,2(3,0,1,2)T=a ,3(2,3,0,1)T=a ; B :1(2,1,1,2)T =b ,2(0,2,1,1)T =-b ,3(4,4,1,3)T=b ;证明向量组B 能由向量组A 线性表示,但向量组A 不能由向量组B 线性表示.(21)(本题满分11分)已知三阶实对称矩阵A 的特征值为121λλ==,32λ=,且A 的对应于特征值1的特征向量123(,,)T x x x 满足方程12320x x x --=,求正交矩阵Q ,使得T =Q AQ Λ为对角阵.(22)(本题满分11分)设二维随机变量(,)X Y 在区域G :12x ≤≤,10y x≤≤ 上服从均匀分布,记U X =,V XY =,随机事件{}u A U u =≤,{}v B V v =≤. (I )求()u P A 、()v P B 与()u v P A B ,其中12u ≤≤,01v ≤≤;(II )分别求U 和V 的密度函数,及U 与V 的联合密度函数,并问U 与V 是否独立?(23)(本题满分11分)设随机变量()T t n ~,12(,)F F n n ~,常数()t n α、12(,)F n n α分别满足{()}=P T t n αα>,12{(,)}=P F F n n αα>. (I )证明22()(1,)t n F n αα=; (II )112211(,)(,)F n n F n n αα-=;(III )已知0.05(6) 1.943t =,求0.90(6,1)F .2010年全国硕士研究生入学统一考试数学一模拟试卷(V )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里. (1)函数13()lim(1)nnn f x x→∞=+在(,)-∞+∞内( ).(A )处处可导 (B )只有一个不可导点 (C )恰有两个不可导点 (D )至少有三个不可导点(2)设()f x 是(,)a b 区间内的连续函数,()F x 是()f x 在(,)a b 内的一个原函数,则( ). (A )当()f x 在(,)a b 内无界时,()F x 在(,)a b 内也无界 (B )当()f x 在(,)a b 内有界时,()F x 在(,)a b 内也有界 (C )当()f x 在(,)a b 内单调上升时,()F x 在(,)a b 内也单调上升 (D )当()f x 在(,)a b 内单调下降时,()F x 在(,)a b 内也单调下降 (3)设D 是由曲线sin ()22y x x ππ=-≤≤和直线2x π=-,1y =所围成的的区域,f 是连续函数,则322[1()]Dx y f x y dxdy ++=⎰⎰( ).(A )2- (B )1- (C )0 (D )2(4)设1,01()2,12x x f x x x +<≤⎧=⎨-+<≤⎩,又设()f x 展开的正弦级数为=1π()=sin 2nn n S x b x ∞∑,则(7)S =( ). (A )32 (B )32- (C )12 (D )12- (5)若,A B 为n 阶方阵,且(,)A B 经初等行变换可化为(,)n E C ,则矩阵C 为( ). (A )1-B (B )1-A (C )1-A B (D )1-B A (6)已知空间曲线11112222a xb yc zd l a x b y c z d ++=⎧⎨++=⎩:,平行于平面3333a x b y c z d π++=:,则矩阵111222333a b c a b c a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的秩()r =A ( ). (A )0 (B )1 (C )2 (D )3(7)设随机变量,X Y 相互独立,2(0,)X N σ~,111233Y -⎛⎫⎪ ⎪ ⎪⎝⎭~,则1X P Y ⎧⎫≤=⎨⎬⎩⎭( ).(A )11()3σΦ (B )21()3σΦ (C )1()σΦ (D )111()33σ+Φ (8)设二维随机变量(,)X Y 的分布函数为0,min(,)0(,)min(,),0min(,)11,min(,)1x y F x y x y x y x y <⎧⎪=≤<⎨⎪≥⎩,则有( ).(A )X 和Y 独立,且同分布 (B )X 和Y 不独立,但同分布 (C )X 和Y 独立,但不同分布 (D )X 和Y 不独立,且不同分布二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)1x e dx -=⎰___________________.(10)tan 0xx +→=_________________.(11)设,f g 均可微,[,ln ()]z f xy x g xy =+,则z zxy x y∂∂-=∂∂________________. (12)微分方程'''y y y =满足初始条件(0)0y =,'(0)2y =的特解为y =_______________.(13)1234567800=000a a a a a a a a ____________________. (14)已知随机变量X 的密度函数为偶函数,1DX =,且用切比雪夫不等式估计得{}0.96P X ε<≥,则常数ε=____________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设函数()f x 在[,]a b 上可微,且'()f x 在(,)a b 内单调增加,又()()f a f b A ==(常数),证明:(,)x a b ∀∈,恒有()f x A <.(16)(本题满分10分)已知222'()01()xf f xx xx-=+-,且(1)ln2f=,求()f x及()()nf x.(17)(本题满分10分)求函数4(,)3f x y xy x y=--在由抛物线24(0)y x x=-≥与两个坐标轴所围成的平面闭区域D上的最大值和最小值.(18)(本题满分10分)计算曲线积分22()(4)4Lx y dx y x dyx y++-+⎰,其中L 为椭圆周2244x y +=的逆时针方向.(19)(本题满分10分)设有幂级数2=112(+)n nn x nn ∞∑. 求: (I )该幂级数的收敛半径与收敛域; (II )该幂级数的和函数在收敛区间内的导函数.(20)(本题满分11分)设向量(1,2,1)T=α,1(1,,0)2T=β,(0,0,8)T =γ,T =A αβ,T =B βα. 求:(I )4A ,4B ; (II )x 为3维列向量,且满足22442=++B A x A x B x γ,求x .(21)(本题满分11分)已知三元二次型123(,,)Tf x x x =x Ax 经过正交变换=x P y 化为标准形2221232y y y -+. (I )求行列式1*2--A A ; (II )求3224--+A A A E .(22)(本题满分11分)若随机变量X的概率密度函数22(ln )2,>0()=0,0x X x f x x μσ--⎧≤⎩就称X 服从参数为2(,)μσ的对数正态分布.(I ) 证明X 服从参数为2(,)μσ的对数正态分布的充要条件是2ln (,)U X N μσ=~;(II )设X 与Y 相互独立,且均服从参数为2(,)μσ的对数正态分布,证明:V XY =服从参数为2(2,2)μσ的对数正态分布.(23)(本题满分11分)设12,,,(1)n X X X n ⋅⋅⋅>为来自总体()X P λ~的样本,其中未知参数0λ>. (I )求λ的极大似然估计ˆλ; (II )证明ˆ()n P n λλ~.2011年全国硕士研究生入学统一考试数学一模拟试卷(I )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里. (1)设ln ()sin 1xf x x x =-,则()f x 有( ). (A )两个可去间断点 (B )两个无穷间断点(C )一个可去间断点,一个跳跃间断点 (D )一个可去间断点,一个无穷间断点 (2)设函数()f x 在2x =处连续,且2()1lim22x f x x →=-. 函数()g x 在2x =的某邻域内可导,且2'()1lim22x g x x →=-,则( ). (A )函数()f x 在2x =处导数存在, ()g x 在2x =处二阶导数存在 (B )函数()f x 在2x =处取极小值, ()g x 在2x =处也取极小值 (C )函数()f x 在2x =处导数存在, ()g x 在2x =处取极小值 (D )函数()f x 在2x =处取极小值, ()g x 在2x =处二阶导数存在(3)设曲面22222{(,,)1,0}123x y z x y z z ∑++=≥:,并取上侧,则不等于...零的积分为( ). (A )2xd y d z ∑⎰⎰ (B )x d y d z ∑⎰⎰ (C )2z d z d x ∑⎰⎰ (D )z d z d x ∑⎰⎰(4)若幂级数=0(+1)nnn a x ∞∑在1x =处收敛,则级数=0nn a∞∑( ).(A )绝对收敛 (B )条件收敛 (C )发散 (D )敛散性不定 (5)设n 阶方阵12(,,,)n =⋅⋅⋅A ααα,12(,,,)n =⋅⋅⋅B βββ,(,,,)=⋅⋅⋅12n AB γγγ,记向量组(I ):12,,,n ⋅⋅⋅ααα; (II ):12,,,n ⋅⋅⋅βββ; (III ):,,,⋅⋅⋅12n γγγ. 如果向量组(III )线性相关,则( ).(A )向量组(I )与(II )都线性相关 (B )向量组(I )线性相关(C )向量组(II )线性相关(D )向量组(I )和(II )至少有一个线性相关(6)设四阶方阵1234(,,,)=A αααα,其中12,αα线性无关,3α不能由12,αα线性表示,412323=-+αααα,*A 为A 的伴随矩阵,则*()r =A ( ).(A )0 (B ) (C )2 (D )3 (7)设,X Y 为随机变量,3{0}5P XY ≤=,4{m a x (,)0}5P XY >=, 则{m i n (,)0}P X Y ≤=( ). (A )(B ) (C ) (D ) (8)设随机变量(,0.1)i X B i ~,1,2,,15i =⋅⋅⋅,且1215,,,X X X ⋅⋅⋅相互独立,则15=1{816}i i P X <<∑为( ).(A )0.325≥ (B )0.325≤ (C )0.675≥ (D )0.675≤二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)设曲线()y f x =在点(1,0)处的切线在y 轴上截距为1-,则1l i m [1(1)]n n f n→∞++=______________. (10)设为连续函数,且1[()()]1f x xf xt dt +=⎰,则()f x =_____________.(11)设(,)f x y 可微,1'(1,3)2f -=-,2'(1,3)1f -=,(2,)yz f x y x=-,则13x y dz ===(12)121220122cos cos y y y dy x dx dy x dx +=⎰⎰⎰⎰________________.(13)三阶方阵,A B 满足关系式+=E B AB ,A 的三个特征值分别为3,3,0-,则B 的特征值为_____________.(14)设22(200)χχ~,则由中心极限定理得2{240}P χ≤近似等于___________.(用标准正态分布的分布函数()Φ⋅表示)三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设函数π2π2()ln sin n f x x x xdx -=π-⎰,其中n 为正整数,试讨论方程()0f x =根的个数.(16)(本题满分10分)设12a =,111()(1,2,)2n n na a n a +=+=⋅⋅⋅. 证明: (I )lim n n a →∞存在; (2)级数=11(1)nn n a a ∞+-∑收敛.(17)(本题满分10分)设函数()f x 在闭区间[,]a b 上具有二阶导数,且()0f a <,()0f b <,()0baf x dx =⎰. 证明:(,)a b ξ∃∈,使得''()0f ξ<.(18)(本题满分10分)设当0x >时,()f x 可导,且(1)2f =.(I )试确定()f x ,使在右半平面内[2()]()y f x dx xf x dy -+为某函数(,)u x y 的全微分; (II )求(,)u x y ; (III )计算曲线积分[2()]()Cy f x dx xf x dy -+⎰,其中C 是右半平面内从点(1,0)到点(2,2)的任一条简单曲线.(19)(本题满分10分)设有微分方程'',1''2'0,1y y x x y y y x -=<⎧⎨-+=>⎩,试求在(,)-∞+∞内可导的函数()y y x =满足此方程,且有(0)0y =,'(0)1y =.(20)(本题满分11分)设A 为三阶方阵,并有可逆阵123(,,)P p p p ,(1,2,3)i i =p 为三维列向量,使得1100011001-⎛⎫⎪= ⎪ ⎪⎝⎭P AP . (I )证明:12,p p 为()-=0E A x 的解,3p 为2()-=-E A x p 的解,且A 不可相似对角化; (II )当211212112--⎛⎫⎪=-- ⎪ ⎪-⎝⎭A 时,求可逆矩阵P ,使得1100011001-⎛⎫⎪= ⎪ ⎪⎝⎭P AP .(21)(本题满分11分)已知二次型112312323112(,,)(,,)34325x f x x x x x x xa x -⎛⎫⎛⎫⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭的秩为,求常数a 的值,并求一个正交变换化该二次型为标准形.(22)(本题满分11分)设二维随机变量(,)X Y 的密度函数为4,01,01(,)0,x y x y f x y <<<<⎧=⎨⎩其他. (I )问,X Y 是否相互独立? (II )设2U X =和2V Y =的密度函数分别为()U f u 和()V f v ,求(),()U V f u f v ,并指出(,)U V 所服从的分布; (III )求22{1}PU V +≤.(23)(本题满分11分)设l n Y X =,Y 的密度函数为,0()0,0y Y e y f y y λλ-⎧≥=⎨<⎩(1λ>). (I )求EX ;(II )设12,,n XX X ⋅⋅⋅为来自总体X 的简单随机样本,求E X 的极大似然估计.2011年全国硕士研究生入学统一考试数学一模拟试卷(II )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)设函数在(,)-∞+∞内有定义,下列结论正确的是( ). (A )若lim ()2x f x π→∞≠,则2y π=不是曲线()y f x =的水平渐近线 (B )若0lim ()x f x →≠∞,则0x =不是曲线()y f x =的铅直渐近线(C )若()lim1x f x x→∞=,则曲线()y f x =必有斜渐近线 (D )以上都不对(2)设2arctan()()=lim +1n x n n e f x x →∞,则()f x ( ).(A )处处可导 (B )在点1x =-处可导(C )在点0x =处可导 (D )在点1x =处可导(3)设函数(,)z f x y =在点00(,)x y 处有00'(,)x f x y a =,00'(,)y f x y b =,则下列结论正确的是( ).(A )00lim (,)x x y y f x y →→存在,但(,)f x y 在点00(,)x y 处不连续(B )(,)f x y 在点00(,)x y 处连续 (C )()0,x y d z a d x b d y =+(D )00lim (,)x x f x y →及00lim (,)y y f x y →都存在且相等(4)设(n+1)πn πsin n xu dx x =⎰,则=1n n u ∞∑为( ). (A )发散的正项级数 (B )收敛的正项级数(C )发散的交错级数 (D )收敛的交错级数(5)设22221111ab c d a b c d ⎛⎫⎪= ⎪ ⎪⎝⎭A ,,,,a b c d 为互异实数,则下列说法正确的是( ). (A )齐次线性方程组=0Ax 只有零解 (B ) 齐次线性方程组T=0A Ax 有非零解 (C )齐次线性方程组T=0A x 有非零解 (D )齐次线性方程组T=0AA x 有非零解(6)设,A B 均为n 阶方阵,则下列命题正确的是( ).(A )若,A B 为等价矩阵,则,A B 的行向量组等价 (B )若,A B 的行列式相等,则,A B 为等价矩阵(C )若=0Ax 与=0B x 均只有零解,则,A B 为等价矩阵 (D )若,A B 为相似矩阵,则=0Ax 与=0B x 同解(7)设有随机事件,,A B C ,(),(),()(0,1)P A P B P C ∈,若C 分别与,A B 独立,A B =∅.则有( ).(A )A 与B C 独立 (B )B 与A C 独立 (C )C 与AB 独立 (D ),,A BC 两两独立(8)设总体2(,)X N μσ~,其中2,μσ均未知. 假设检验问题为2010H σ≤:,2110H σ>:,已知25n =,0.05α=,20.05(24)36.415χ=,且根据样本观察值计算得212s =,则检验结果为( ).(A )接受0H ,可能会犯第二类错误 (B )拒绝0H ,可能会犯第二类错误 (C )接受0H,可能会犯第一类错误 (D )拒绝0H,可能会犯第一类错误二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)不定积分222arctan 2(1)1xx edx x +=+⎰__________________.(10)设曲线222C x xy y a ++=:的长度为L ,则s i n ()s i n ()s i n ()s i n ()x yx y C a e b e d s e e +=+⎰_________. (11)设()y y x =是由10sin 10ln(1)x t e t x y t dt +⎧-+=⎪⎨=+⎪⎩⎰所确定的函数,则0t dy dx ==______________.(12)以21C y C x x=+为通解的微分方程______________________. (13)设A 为三阶方阵,A 的第一行元素为1,2,3,行列式A 中第二行元素的余子式为1,2,3a a a +++,则常数a =__________.(14)设(,)f x y 为二维随机变量(,)X Y 的密度函数,2U Y =,V X =-,则(,)U V 的密度函数(,)U V f u v =________________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设曲线()y y x =由参数方程给出:ln x t t =,ln 1()t y t t e=>. (I )求()y y x =的单调区间、极值、凹凸区间和拐点; (II )求曲线()y y x =,直线1x e=-,x e =及x 轴所围平面区域的面积A .(16)(本题满分10分)求微分方程()x dyf xy y dx⋅=经变换xy u =后所转化的微分方程,并由此求微分方程22(1)y xy d x x d y +=的通解.(17)(本题满分10分)求幂级数2121(1)(1)nn n n x n∞+--∑=的收敛域及和函数()S x .(18)(本题满分10分)设函数()f x 在[,]a b 上连续,证明:(I )2()[()()]a b b aaf x dx f x f a b x dx +=++-⎰⎰;(II )利用(I )计算π23π6cos (2)xI dx x x π=-⎰.(19)(本题满分10分)在椭球面222221x y z ++=上求一点P ,使得三元函数222(,,)f x y z x y z=++在点P 处沿方向=-l i j 的方向导数最大.(20)(本题满分11分)设,,A B C 均为n 阶方阵,⎛⎫=⎪-⎝⎭AA M CBC .(I )证明:M 可逆的充要条件为,A B 均可逆; (II )如果M 可逆,求其逆矩阵1-M .(21)(本题满分11分)设13λ=,26λ=,39λ=是三阶对称矩阵A 的三个特征值,其对应的特征向量依次为11(2,2,1)3T =-α,21(1,2,2)3T =-α,31(2,1,2)3T =-α. (I )证明112233369TTT=++A αααααα;(II )设(1,2,3)T=β,分别将β和nA β用123,,ααα线性表示.(22)(本题满分11分)设1()X P λ~,2()Y P λ~,且X 与Y 相互独立.(I )证明:12()X Y P λλ++~; (II )求已知3X Y +=时,X 的条件分布.(23)(本题满分11分)设总体X 的密度函数为22,0()0,0x x e x f x x θθ-⎧⎪>=⎨⎪≤⎩,其中(0)θθ>为未知参数,12,,,n X X X ⋅⋅⋅是来自总体X 的简单随机样本.(I )求θ的极大似然估计量θ; (II )指出θ是否为θ的无偏估计.2011年全国硕士研究生入学统一考试数学一模拟试卷(III )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)求抛物线2y x x =+与23y x x =-的公切线为( ).(A )1y x =-- (B )1y x =-+ (C )1y x =- (D )1y x =+ (2)设220()(1)x t f x x e dt -=+⎰,则有( ).(A )(2010)(0)0f=,11()0f x dx -=⎰(B )(2010)(0)0f ≠,11()0f x dx -=⎰(C )(2010)(0)0f =,11()0f x dx -≠⎰(D )(2010)(0)0f ≠,11()0f x dx -≠⎰(3)设当0r +→,222()r C y d x x d yI x y x y -=++⎰与nr 为同阶无穷小,其中C为圆周2221x y r +=,取逆时针方向,则n 等于( ). (A ) (B )2 (C )3 (D )4 (4)设()y y x =是方程22(1)0x y d x x d y +-=及条件(0)1y =的解,则120()y x dx =⎰( ). (A )ln 3- (B )l n 3 (C )1l n 32-(D )1l n 32(5)设12,ηη为线性方程组12311232123322x x x a x x x a x x tx a-+=⎧⎪++=⎨⎪++=⎩的两个不同解,则必有( ).(A )2t =,1230a a a ++= (B )2t ≠,312a a a =+ (C )2t =,312a a a =+ (D )2t ≠,312a a a ≠+(6)设二次型123(,,)T f x x x =x Ax ,其中T=A A ,a =A ,()1r a b +=E ,则( ).(A )对任意的0a >,0b >,正定 (B )对任意的0a >,0b <,正定 (C )对任意的0a <,0b >,正定 (D )对任意的0a <,0b <,正定 (7)已知随机变量010.250.75X⎛⎫ ⎪⎝⎭,向量12,αα线性无关,则向量组12X -αα,12X -+αα线性相关的概率为( ).(A )0.25 (B )0.5 (C )0.75 (D ) (8)设总体X 的密度函数2,01()0,x x f x <<⎧=⎨⎩其他,1234,,,X X X X 为来自总体X 的简单随机样本,则(4)1234m a x (,,,)X X X X X =的密度函数为(4)()X f x =( ). (A )20,0,011,1x x x x ≤⎧⎪<<⎨⎪≥⎩ (B )80,0,011,1x x x x ≤⎧⎪<<⎨⎪≥⎩(C )78,010,x x ⎧<<⎨⎩其他 (D )34,010,x x ⎧<<⎨⎩其他二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)若()x x f t dt xe -=⎰,则1(ln )f x dx x+∞=⎰____________. (10)设函数()y x 满足2''(1)'xy x y x y e +-+=,且'(0)1y =. 若20()lim x y x xa x →-=,则a = (11)设()f r 在[0,1]上连续,则22221lim()n n x y x y f dxdy →∞+≤+=⎰⎰_____________.(12)已知向量222(,,)xy yz zx =A ,则(1,1,2)()grad div -=A ________________.(13)设,A B 为n 阶方阵,12,,n λλλ⋅⋅⋅为B 的n 个特征值,若存在可逆阵P ,使得11--=-+B PAP P AP E ,则12n λλλ++⋅⋅⋅=______________. (14)设(,)(0,14,90)X Y N ;;~,则{1}P X Y <-=_______________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)旋转曲面224z x y =+上某点M 处的切平面为π,若平面π过曲线:2x t =,y t =,3(1)z t =-上对应于1t =的点处的切线,试求平面π的方程.(16)(本题满分10分)设()Df t x y tdx d y =-⎰⎰,其中D :01x ≤≤,01y ≤≤,[0,1]t ∈.(I )求()f t 的表达式; (II )证明'()0f t =在(0,1)内有且仅有一个根.(17)(本题满分10分)求数项级数=1(1)(21)!n n nn ∞-+∑的和.(18)(本题满分10分)设()f x 在[,]a b 上连续,在(,)a b 内可导,()0f a =,()1f b =,()1()f c a c b =-<<. 证明:(,)a b ξ∃∈,使得2(1)'()2()0f f ξξξξ+-=.(19)(本题满分10分)(I )设连续函数()f x 对任意的x 均满足()()2xf x af =,其中常数(0,1)a ∈. 证明()()2n nxf x a f =,进而再证(,)x ∀∈-∞+∞,()0f x ≡; (II )设()g x 具有二阶连续导数,且满足22()3x xg t dt x x =+⎰,求()g x 所满足的微分方程,并求()g x .。
2017合工大超越数一解析 -回复
2017合工大超越数一解析-回复"2017合工大超越数一解析"是以解析2017年合工大超越数一试卷为主题的文章。
在本文中,将逐步回答这份试卷中的问题和解析。
首先,让我们回顾一下这份试卷。
2017年合工大超越数一试卷共有若干道选择题和若干道解答题。
试卷难度适中,内容涵盖了超越数的基本概念和性质,以及相关的计算和推导能力。
一、选择题部分首先我们来看选择题。
这部分题目通过给出多个选项,要求考生从中选择正确的答案。
这些题目主要测试考生对超越数的定义、性质、计算和推导的理解程度。
在解答这部分题目时,考生应注意以下几点:1.仔细阅读题目,理解问题要求和限制条件。
2.关注选项中的细微差别,以免错失正确答案。
3.采用合适的计算方法和推导思路,尽可能缩小答案范围。
通过仔细阅读和深入理解题目,结合对超越数知识的掌握和灵活运用能力,我们可以解答出选择题的正确答案。
二、解答题部分接下来我们来看解答题。
这部分题目要求考生通过分析给出的问题,进行推理、计算和证明。
在解答这部分题目时,考生应注意以下几点:1.分析问题,确定解题思路和方法。
2.列出已知条件,运用相关的定义、定理和性质进行推导和计算。
3.严谨地组织论证过程,确保推导的准确性和严密性。
4.注意清晰地表达答案,采用恰当的语言和数学符号。
通过合理的分析和选择解题方法,结合对超越数知识的理解和运用能力,我们可以解答出解答题的问题并给出正确的解答。
总结起来,解析2017年合工大超越数一试卷是一项任务繁重但有意义的工作。
通过仔细阅读题目,深入理解问题要求和限制条件,结合对超越数知识的掌握和灵活运用能力,我们能够准确地解答选择题和解答题,展现出对超越数领域的深入理解和独立思考能力。
在解析的过程中,我们还要不断总结经验和方法,与其他同学进行交流和讨论,以提高解题的速度和准确性。
同时,我们也应该在回顾解析过程时,思考其中的难点和不足之处,以便在今后的学习和实践中不断改进和提升。
2000-2017考研数学二历年真题word版
2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x=0连续,则 (A )12ab =(B)12ab =- (C )0ab = (D )2ab = (2)设二阶可到函数()f x 满足(1)(1)1,(0)1f f f =-==-且 ()0f x ''>,则 (A) 11()0f x dx ->⎰(B)12()0f x dx -<⎰(C ) 0110()()f x dx f x dx ->⎰⎰(D )111()()f x dx f x dx -<⎰⎰(3)设数列{}n x 收敛,则(A )当limsin 0n n x →∞=时,lim 0n n x →∞=(B)当lim (0n n n x x →∞= 时,则lim 0n n x →∞=(C )当2lim()0n n n x x →∞+=, lim 0n →∞=(D )当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程248(1cos 2)xy y y e x '''-+=+ 的特解可设为ky =(A)22(cos 2sin 2)xx Aee B x C x ++(B )22(cos 2sin 2)xx Axe e B x C x ++(C )22(cos 2sin 2)xx Ae xe B x C x ++ (D )22(cos 2sin 2)xx Axexe B x C x ++(5)设()f x 具有一阶偏导数,且在任意的(,)x y ,都有(,)(,)0,f x y f x y x y∂∂>∂∂则 (A)(0,0)(1,1)f f > (B)(0,0)(1,1)f f <(C )(0,1)(1,0)f f > (D )(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则 (A)010t = (B )01520t << (C)025t = (D)025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得 1000010002P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则123(,,)A ααα=(A )12αα+ (B )232αα+ (C )23αα+ (D)122αα+(8)已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020000C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A) A 与C 相似,B 与C 相似(B ) A 与C 相似,B 与C 不相似 (C) A 与C 不相似,B 与C 相似(D ) A 与C 不相似,B 与C 不相似二、填空题:9~14题,每小题4分,共24分.(9)曲线()21arcsin y x x =+的斜渐近线方程为(10)设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则202t d ydx =(11)()2ln(1)1x dx x +∞++⎰=(12)设函数(),f x y 具有一阶连续偏导数,且()()(),1,0,00y y df x yye dx x y e dy f =++=,则(),f x y = (13)11tan yxdy dx x=⎰⎰(14)设矩阵41212311A a ⎛⎫- ⎪= ⎪ ⎪-⎝⎭的一个特征向量为112⎛⎫⎪⎪ ⎪⎝⎭,则a =三、解答题:15~23小题,共94分。
2017合工大超越数一解析
2017合工大超越数一解析在2017年合肥工业大学超越数学一考试中,难度系数整体较高。
接下来,我们将一步一步回答这些题目,并进行详细解析。
1. (10分) 设函数f(x) = x^2 + bx - 1 (b为实数)。
如果方程f(f(x)) = 0 在区间(-∞, ∞) 上恰有两个不同的根,则b 的取值范围是多少?首先,我们要求f(f(x)) = 0 在区间(-∞, ∞) 上有两个不同的根。
也就是说,f(x)应该有一个实根,而f(f(x))的解应该是f(x)的两个实根之一。
考虑到f(f(x)) 是复合函数,我们可以分别求出f(x) 的实根。
根据韦达定理,方程f(x) = 0 的两个根之和应该等于-b,而两个根之积应该等于-1。
所以我们可以得到以下两个方程:根1 + 根2 = -b (1)根1 * 根2 = -1 (2)同时,我们还知道f(f(x)) 的解应该是f(x) 的两个实根之一。
所以我们可以得到以下两个方程:f(root1) = root1 或f(root1) = root2 (3)f(root2) = root1 或f(root2) = root2 (4)我们希望求出b 的取值范围。
首先,我们解方程(3) 。
将f(root1) 代入函数f(x) 中,我们得到:f(root1) = root1^2 + b * root1 - 1由于f(root1) = root1,我们可以将这个关系代入方程中,得到以下结果:root1 = root1^2 + b * root1 - 1整理方程,我们得到以下二次方程:root1^2 + (b-1)*root1 - 1 = 0同样地,我们也可以解方程(4) 。
将f(root2) 代入函数f(x) 中,我们得到:f(root2) = root2^2 + b * root2 - 1由于f(root2) = root2,我们可以将这个关系代入方程中,得到以下结果:root2 = root2^2 + b * root2 - 1整理方程,我们得到以下二次方程:root2^2 + (b-1)*root2 - 1 = 0现在我们得到了两个二次方程,我们可以解这两个方程来求出根1 和根2 的值。
合工大2017级研究生《数值分析》试卷_A_解答
合肥工业大学研究生考试试卷课程名称数值分析考试日期学院全校2017级研究生姓名年级班级学号得分一、计算题 (每小题5分,满分共30分) 1. 已知近似值*120.10mn x a a a =×"有5位有效数字,试求其相对误差限。
P22练习6.(1)(2) 设*120.10mn x a a a =±×",*1**110.5100.5101100.102m l m l l m x x a a x x−−−+−××≤≤=×× 4411100.5102a −−=×≤×,其中5l =. 2. 设3142A −=−⎡⎤⎢⎥⎣⎦,求Cond()A ∞. 6A∞=,1112232A −−−⎛⎞=⎜⎟−−⎝⎠,172A −∞=; 1Cond()76212A A A∞−==×=3. 设22(35)()x f x −+=,求函数()f x 的差商0123[2,2,2,2,]f π.0123[2,2,2,2,]9f π=4. 设4()f x x=.用Lagrange 余项公式求()f x 关于节点1,0,1,2−的3次Lagrange 插值多项式3()p x .p143,用Lagrange 余项公式,例如求4()f x x=关于节点21,0,1−−的3次Lagrange 插值多项式3()p x .法1:(4)333()()()()()(1)(1)(2)4!f r x f x p x x x x x x ξω=−==+−− 433()()()(1)(1)(2)p x f x r x x x x x x =−=−+−− 443232(22)22x x x x x x x x =−−−+=+−法2:41,0,1,16;0,1,2,3i i y x i ===;01()(1)(2)6l x x x x =−−−11()(1)(1)(2)2l x x x x =+−−,21()(1)(2)2l x x x x =−+−,31()(1)(1)6l x x x x =+−,343332400()()()22()()i i i i i i i p x x y l x x x x x x x x ωω=====+−′−∑∑,5. 设函数0.9 1.4706 1.0 2.3257 1.10.1653(),(),()f f f −===,用三点数值微分公式计算(1.0)f ′′的近似值。
2017考研数学二真题答案
(9)曲线
y
x
1
arcsin
2 x
的斜渐近线方程为_______。
【答案】 y x 2 。
4
【解析】
k
lim
x
x 1
arcsin x1
arcsin
2 x
x
2 ,则斜渐近线方程为
=
3
2a
,即
3
2a
1,可得
a
1 。
2 2
三、解答题:15—23 小题,共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过
程或演算步骤.
x x tetdt
(15)(本题满分 10 分)求极限 lim 0
。
x0
x3
【解析】先对变上限积分 x x tet dt 作变量代换 u x t ,得 0
令 y 0 可得 3x2 3 0 ,故 x 1 。由极限的必要条件可知,函数的极值之梦能取在 x 1 与 x 1处,为了检验该点是否为极值点,下面来计算函数的二阶导数,对(1)式两边同时求导可得,
6x 6y y2 3y2 y 3y 0 ……(2) 当 x 1时, y 1,将 x 1, y 1, y 0 代入(2)式可得 y 2 ,故 y 1 1是函数的极大值。
y
x 1
yey
,
f
x,
y
yeydx xyey c(y) ,
f
y
xe y
xyey
c( y)
xe y
xyey ,即 c( y)
0
,即 c(y) c , f 0,0 0 ,故 c 0 ,即 f xy, eyx
2017年合工大合肥工业大学考研真题、研究生招生简章、招生目录及考试大纲汇总
2017年合工大合肥工业大学考研真题、研究生招生简章、招生目录及考试大纲汇总合肥工业大学考研真题、考研答案及考研资料,由布丁考研网合工大在读学长收集整理,真题都是来自官方原版,权威可靠,内部资料都是我们当年考合工大时用的,考上后针对新的大纲重新进行了整理,参考价值极高。
此外,我们还有很多备考合工大的经验,学弟学妹们有任何报考的疑问均可以咨询我们。
我们还提供一对一VIP辅导,除了传授报考合肥工业大学的内部信息、备考方法及经验外,把专业课的所有重点、难点、考点全部道出,在最短的时间内快速提升成绩,特别适合二战、在职、本科不是985和211、基础比较差的同学。
2017年合肥工业大学硕士生招生简章一、招生基本情况1.招生计划数:我校2017年招收硕士学位研究生2500名(最终计划数以教育部下达指标为准),其中学术型硕士研究生1415名(含推免生);全日制专业学位硕士研究生1085名(含推免生)。
另招收“少数民族高层次骨干人才”硕士研究生20名。
2.招生专业领域:我校有110个(含自主设置)硕士学位学科和专业招收学术型硕士研究生。
有包括工程硕士(工程硕士涵盖机械工程、材料工程、化学工程、电气工程等25个领域)、建筑学硕士、艺术硕士、工商管理硕士(MBA)、公共管理硕士(MPA)、翻译硕士、资产评估硕士、会计硕士和工程管理硕士九种专业学位领域招收全日制专业学位硕士研究生。
3.录取方式:我校2017年招收硕士研究生将按照“推荐免试”和“报名考试”两种方式录取。
二、报考基本条件1.国家承认学历的应届本科毕业生和历届本科毕业生可报考我校各专业硕士研究生(对国家大学英语四级考试不作要求)。
2.获得国家承认的高职高专毕业学历后,经2年或2年以上(从大专毕业到录取为硕士生当年的9月1日),达到与大学本科毕业生同等学力,通过国家大学英语四级考试(成绩≥425分,报考计算机学院、管理学院各专业还须符合报考专业规定的报考条件)的人员,亦可报考我校。
2017数学一模拟4合工大五套卷
z y 1 x 2 dydz (1 y 3 )dzdx (2 y 2 z z 2 )dxdy ,其中: 为曲线 2 2 yx z x 0
介于 y 1, y 1 部分绕 y 轴旋转形成的曲面,其法向量正向与 y 轴夹角大于 (20) (本小题满分 11 分) 已知线性方程组
2
第 4 页 共 4 页
第 1 页 共 4 页
2017 数学考研模拟试卷
合肥工业大学 (共创) 考研辅导中心
Tel:0551-62905018
2017 年全国硕士研究生入学统一考试
数学一(模拟四)
考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时. 一、选择题:1~8 小题,每小题 4 分,共 32 分.下面每小题给出的四个选项中,只有一个选项符合要求, 将所选项前的字母填在答题纸指点位置上. (1) 设 f (u ) 为可导函数,曲线 y f (1 x 2 ) 过点 (1, 4) ,且它在点 (1, 4) 处的切线过点 (0, 0) ,那么 函数 f (u ) 在 u 2 处当 u 取得增量 u 0.01时相应的函数值增量的线性主部是( ) . (A) 0.02 (2) 设积分 I (B) 0.02 (C) 0.04 (D) 0.04
(21) (本小题满分 11 分)
2 2 0 已知矩阵 A 8 2 0 与对角矩阵相似。 0 a 6 T T (1)求坐标变换 X CY ,化二次型 f X AX 为标准形; (2)指出 X AX 0 表示什么曲面。
(22) (本小题满分 11 分) 设随机变量 X ~ e( ) ( =1 的指数分布) ,且 Y = (II) Y 的分布函数 FY ( y ) ; (III)数学期望 E ( XY ) (23) (本小题满分 11 分) 设正态总体 X ~ N ( 0 , ) ,其中 0 为已知常数, X1 ,
合工大高数考研真题
合工大高数考研真题合工大高数考研真题高等数学是考研数学的重要组成部分,对于考研学子来说,合工大高数考研真题是一个必须要面对的挑战。
通过分析合工大高数考研真题,可以帮助考研学子更好地了解考试内容和考点,提高备考效果。
一、真题背景合工大高数考研真题是指合肥工业大学历年来出过的高等数学考研试题。
合工大作为一所知名的工科院校,其高等数学教学水平一直处于国内领先地位。
因此,合工大高数考研真题具有一定的权威性和代表性,是考研学子备考的重要参考资料。
二、真题特点1. 难度适中合工大高数考研真题的难度适中,既有基础性的题目,也有一定难度的拓展题目。
这样的设置能够全面考察考生对高等数学知识的掌握程度和应用能力,对于考生的综合素质提出了较高的要求。
2. 考点全面合工大高数考研真题涵盖了高等数学各个章节的重要知识点,如极限、导数、微分方程等。
通过分析真题,可以发现一些经典的考点和常见的解题方法,帮助考生更好地理解和掌握高等数学的核心内容。
3. 理论与实践结合合工大高数考研真题注重理论与实践的结合,既有基础性的计算题,也有需要考生运用数学方法解决实际问题的应用题。
这种考试形式能够培养考生的数学建模能力和实际问题解决能力,提高数学知识的应用水平。
三、备考建议1. 熟悉考纲在备考合工大高数考研真题之前,首先要熟悉考纲,了解考试的重点和难点。
这样可以有针对性地进行复习和备考,提高备考效果。
2. 系统学习合工大高数考研真题包含了大量的知识点和解题方法,需要考生进行系统学习。
建议考生按照章节顺序进行学习,理解每个知识点的定义、性质和定理,掌握相应的解题方法和技巧。
3. 多做真题合工大高数考研真题是备考的重要参考资料,建议考生多做真题,熟悉考试的题型和解题思路。
通过反复练习,可以提高解题速度和准确性,增强应试能力。
4. 查漏补缺在做真题的过程中,考生可能会发现自己对某些知识点掌握不够牢固或者存在一些盲点。
这时候,要及时查漏补缺,通过查阅教材、参考书籍或者请教老师,弥补自己的不足。
2017考研数学二真题及答案解析
2017考研数学二真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(, 因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)设二阶可导函数)(x f 满足1)1()1(=-=f f ,1)0(-=f ,且0)(>''x f ,则( ))(A ⎰->110)(x f 。
)(B ⎰-<110)(x f 。
)(C ⎰⎰->101)()(dx x f x f 。
)(D ⎰⎰-<1001)()(dx x f x f 。
【答案】)(B【解】取12)(2-=x x f ,显然⎰-<110)(x f ,应选)(B 。
(3)设数列}{n x 收敛,则 ( ))(A 当0sin lim =∞→n n x 时,0lim =∞→n n x 。
)(B 当0)||(lim =+∞→n n n x x 时,0lim =∞→n n x 。
)(C 当0)(lim 2=+∞→nn n x x 时,0lim =∞→n n x 。
)(D 当0)sin (lim =+∞→n n n x x 时,0lim =∞→n n x 。
【答案】)(D【解】令A x n n =∞→lim ,由0sin )sin (lim =+=+∞→A A x x n n n 得0=A 。
(4)微分方程)2cos 1(842x e y y y x +=+'-''的特解可设为=*y ( ))(A )2sin 2cos (22x C x B e Ae x x ++。
合工大-超越-数学二-18年
(4) 积分I
4
tan
x
ln(1
etan x )dx
(
)
4
(A) 0
(B)1
(C)
4
(D)1 4
(5) 设F(x)
1 ex2
dv
x2 ln v
f
(u )du, 其中f
(x)为连续函数,则 lim x0
F(x) 等于 ( x3
)
(A) 2 f (0)
(Ⅱ)求极限 lim
1 n
xn (1 x)n dx.
n 0
(16)(本题满分 10 分)设有二阶微分方程 y (4x e2 y )( y)3 0.
(Ⅰ)视 x为y 的函数,变换此方程;
(Ⅱ)求此方程的通解.
(17)(本题满分 10 分)抛物线 y 3 x2与直线y 2x交于A, B两点,M是抛物线 AB 上的动点,
2018 年全国硕士研究生入学统一考试超越考研数学(二)模拟一
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一个选项是符合题 目要求的,请把所选项前的字母填在答题纸指定位置上.
(1)设 lim ax3 bx2 cx d 4, lim ax3 bx2 cx d 2,当 1,2时,
1
dx
x (ex e y3 e y3 )dy
1 0
.
(10)设函数 f (x) (x [x]) sin 2x, 其中[x] 为取整函数,则 f (100) ( 2017 )
.
2
(11) 设y
f
( x)由
t
2
x t2 y sin