蛋白质组学主要研究技术
比较蛋白质组学研究常用方法
比较蛋白质组学研究常用方法蛋白质组学研究是一门关于生物体内所有蛋白质的研究,它在生物科学领域具有重要意义。
蛋白质组学研究的常用方法包括质谱法、二维电泳法和蛋白质芯片技术等。
下面将对这些方法进行详细比较。
质谱法是蛋白质组学研究中最常用的技术之一、它可以对生物样本中的蛋白质进行分离、鉴定和定量。
质谱法有两种主要类型:质谱-质谱联用(MS-MS)和质谱成像(MSI)。
质谱-质谱联用技术结合了质谱和质谱技术,可以对复杂的样本进行更深入的分析,同时还能确定蛋白质的化学结构和功能。
质谱成像技术则可以在样本表面上实时进行蛋白质定量和定位。
与质谱法相比,二维电泳法是另一种经典的蛋白质组学技术。
二维电泳法通过两个连续的电泳步骤将蛋白质在空间和pH梯度上进行分离。
第一次电泳通常使用等电聚焦电泳技术,根据蛋白质的等电点将其分离出来。
然后,使用SDS-电泳技术将蛋白质按照分子量进行分离。
二维电泳法具有高分辨率和高灵敏度的优点,但是它在分析大量样品时存在一定的局限性。
蛋白质芯片技术是一种新兴的蛋白质组学方法。
它通过将蛋白质分子固定在芯片表面上,使用流式细胞仪等设备对蛋白质进行高通量的鉴定和定量。
蛋白质芯片技术具有高灵敏度、高通量和高自动化性的特点,可以同时分析多个样本,因此在蛋白质组学研究中非常受欢迎。
除了上述常用方法外,还有一些其他的蛋白质组学研究方法。
例如,蛋白质亲和纯化技术可以通过结合靶蛋白质与其他蛋白质或配体来寻找特定蛋白质,并从中分离出目标蛋白质。
蛋白质相互作用研究方法,如酵母双杂交技术和亲和纯化-质谱法,可以用于检测和分析蛋白质之间的相互作用和信号传递网络。
综上所述,蛋白质组学研究涉及多种常用方法,每种方法都有其优点和局限性。
研究人员可以根据研究目的、样本特性和实验需求选择合适的方法。
此外,随着技术的不断发展和改进,蛋白质组学研究方法将越来越多样化和多样性,为研究人员提供更好的工具来揭示蛋白质的结构、功能和相互作用。
蛋白质组学三大基本技术
蛋白质组学三大基本技术
1、质谱技术:质谱技术是蛋白质组学中最常用的和最基本的技术,它可以检测和识
别各种生物样品中的蛋白质和其他大分子有机物,从而可以提高研究的准确性,特别是在
研究动态蛋白信号转导及表观遗传因子的时候,质谱技术的应用更加广泛。
质谱技术包括
两种:基于气相法的高级数据库技术,和基于液相法的maldi技术。
质谱技术主要是利用
质谱仪来获取受体上蛋白质结构的数据,然后利用数据库搜索,来识别出蛋白质结构特征
及在受体上的结合状态。
2、SDS-PAGE技术:SDS-PAGE技术是一种蛋白电泳分析技术,它可以分离组成复合蛋
白的每个蛋白质组分,并对蛋白质的组成成分及其特有的分子量进行测定,是一种蛋白质
分类及检测的基础性技术。
SDS-PAGE技术利用聚丙烯酰胺亚胺(SDS)作为为分子内部量均
分剂,可将蛋白链折叠、聚集形成单个分子,然后进行电泳分离操作,在膜隔开一定距离,然后再对所获取到的蛋白分子特征进行识别,以得出它的结构和分子量的信息,进而得出
受体上分子的特征及其功能。
3、免疫淋巴细胞技术:免疫淋巴细胞技术是实验可能性较好、分离效果更好。
它以
电泳分离技术作为分离介质,从新鲜样品中分离出完整的肽盐化药物,可有效地检测及克
隆受体上的蛋白片段及肩膀,进而得出蛋白质组学上受体特征及其功能。
蛋白质组学的研究方法
蛋白质组学的研究方法蛋白质组学是运用先进的分析技术,通过对细胞内的蛋白质分子进行检测、分离、同位素标记与定量等方法,研究不同细胞型、组织型、发育阶段以及病变状态等生物样本中蛋白质组成及其功能性调控的科学。
它是一门综合性学科,既涉及生物化学、蛋白质工程、分子生物学等学科,也涉及信息学及计算机科学等学科,运用了各种生物学技术和数学模型,将复杂的生物体蛋白质组织成一个有机的整体,从而更好地了解蛋白质的结构与功能关系。
蛋白质组学的研究方法主要包括:一、蛋白质分离与鉴定:蛋白质分离是蛋白质组学的基础步骤,其目的是从生物样本中提取蛋白质。
常用的技术包括凝胶电泳、膜分离、微萃取、液相色谱法以及离心分离等。
蛋白质分离之后,还需要进行鉴定,以获得蛋白质的名称及其细胞定位等信息,以便进行后续研究。
常用的方法包括凝集试验、蛋白质印迹、Western blotting、质谱分析以及二级结构分析等。
二、定量蛋白质组学:定量蛋白质组学是指利用有效的检测技术,对生物样本中的蛋白质进行定量分析,以便获得蛋白质组成及其功能性调控情况的精确信息。
定量蛋白质组学技术主要包括酶标记蛋白质定量、质谱定量以及流式细胞蛋白质定量等。
三、蛋白质组学的应用:蛋白质组学的研究结果可以用来研究基因调控、细胞信号转导、疾病机理等方面的问题。
它可以帮助研究人员更好地理解生物的复杂性,并为有效的治疗策略的制定提供重要的参考和指导。
它还可以用于研究新型药物的研究和开发,为疾病的治疗提供新的思路。
蛋白质组学的发展前景广阔,它不仅可以用于解决当前生物学上的实际问题,还可以为未来的研究提供重要的科学研究基础。
随着技术的进步和数据量的增加,蛋白质组学技术将会为生物学研究带来更多的惊喜和发现。
蛋白质组学及技术介绍PPT通用课件.ppt
3.二相SDS-PAGE
丙烯酰胺/甲叉双丙烯 酰胺溶液
分离胶缓冲液
10%(w/v)过硫酸铵 溶液
(30.8%T,2.6%C):30%(W/V)丙烯酰胺和 0.8%甲叉双丙烯酰胺的水溶 液。将 300g 丙烯酰胺和 8g 甲叉双丙烯酰胺溶解于去离子水中,最后用去离
研究 内容
蛋白质的研究内容主要有两方面:
1、结构蛋白质组学:主要是蛋白质表达模型的研究,包括蛋白质氨基酸序列 分析及空间结构的解析种类分析及数量确定; 2、功能蛋白质组学:主要是蛋白质功能模式的研究,包括蛋白质功能及蛋白 质间的相互作用。
研究 内容
蛋白质组学可分为三个主要领域: 1、蛋白质的微特性以供蛋白质的规模化鉴定和他们的后翻译饰; 2、“差异显示”蛋白质组学供蛋白质水平与疾病在广泛范围的有力应用比 较; 3、应用特定的分析技术如质谱法(包括串联质谱法、生物质谱法)或酵母 双杂交系统以及其他蛋白质组学研究新技术研究蛋白质-蛋白质相互作用。
该方法所研究的蛋白均是在体内经过翻译后修饰的,并且是可 分离的天然状态的相互作用蛋白复合物,能够反映正常生理条件下的 蛋白质间相互作用
蛋白质相互作用
2、酵母双杂交系统:
该系统利用真核细胞调控转录起始过程中,DN A结合结构域(binding domain,BD)识别DNA上的特异序列并使转录激活结构域(activation domain, AD)启动所调节的基因的转录这一原理,将己知蛋白X和待研究蛋白Y的基 因分别与编码AD和BD的序列结合,通过载体质粒转入同一酵母细胞中表 达,生成两个融合蛋白。若蛋白X和Y可以相互作用,则AD和BD在空间上 接近就能形成完整的有活性的转录因子,进而启动转录,表达相应的报告 基因;反之,如果X和Y之间不存在相互作用,报告基因就不会表达。这样, 通过报告基因的表达与否,便可确定是否发生了蛋白质的相互作用。
《蛋白质组研究技术》课件
酵母双杂交技术
利用酵母细胞表达的蛋白与待测蛋白 进行相互作用,筛选出与待测蛋白相 互作用的蛋白。
串联亲和纯化技术
将待测蛋白与其相互作用蛋白一起纯 化下来,再通过分离纯化得到相互作 用蛋白。
03 蛋白质组学在生物医学中 的应用
疾病标志物发现
疾病诊断
通过蛋白质组学技术,发现与疾病相关的特异性蛋白质标志物,有助于疾病的早 期诊断和预后评估。
电泳技术
利用蛋白质在电场中的迁移率不同,将蛋白质分 离成不同的条带。
蛋白质芯片技术
将蛋白质固定在芯片上,通过与待测蛋白质的相 互作用,实现对蛋白质的筛选和检测。
蛋白质鉴定技术
蛋白质鉴定技术
利用各种技术手段对分离得到的蛋白 质进行鉴定,确定其氨基酸序列和分 子量等信息。
氨基酸序列分析
通过测定蛋白质中氨基酸的排列顺序 ,确定蛋白质的种类和来源。
未来发展趋势与展望
技术创新
未来蛋白质组学技术将继续创新 ,如高通量、高灵敏度、高分辨 率的蛋白质检测技术。
跨学科融合
蛋白质组学将与生物信息学、计 算生物学等学科进一步融合,实 现多维度、多层次的数据分析。
临床应用拓展
随着技术的进步和应用研究的深 入,蛋白质组学将在临床诊断、 治疗和药物研发等方面发挥更大 的作用。
分子量测定
利用质谱等技术手段测定蛋白质的分 子量,以验证蛋白质鉴定的准确性。
免疫学检测
利用特异性抗体对蛋白质进行检测和 识别,具有高灵敏度和特异性。
蛋白质功能研究技术
蛋白质功能研究技术
通过各种手段研究蛋白质在生物体内的功能 和作用机制。
细胞生物学技术
通过观察蛋白质在细胞内的定位、分布和动 态变化,研究其功能和作用机制。
蛋白质组学的研究技术
蛋白质组学的研究技术
1. 蛋白质组分离技术
在蛋白质组学研究中,最先要做的就是将蛋白质分离出来,从而得到纯度较高的蛋白质。
目前常用的蛋白质分离技术包括凝胶电泳、液相色谱和质谱等方法。
其中,凝胶电泳是最常用的蛋白质组分离技术之一,包括聚丙烯酰胺凝胶电泳(SDS-PAGE)和二维凝胶电泳(2-DE)等。
蛋白质组学的目的在于研究蛋白质的种类和结构,因此鉴定蛋白质是非常重要的一个环节。
目前比较流行的蛋白质组鉴定技术主要包括质谱和基因组学方法。
其中,基因组学方法包括通过对已知的基因组序列进行比对,来鉴定和预测蛋白质序列。
而质谱则主要是通过对蛋白质的分子量和氨基酸序列等特征进行分析和鉴定。
蛋白质的表达和生物学功能密不可分,因此研究蛋白质的表达非常重要。
目前可供选择的蛋白质组表达技术包括基因工程技术和化学合成技术等。
其中,基因工程技术是最常用的表达技术之一,可以通过将外源DNA序列转化到宿主细胞或者器官中来表达蛋白质。
蛋白质组学研究产生的数据量非常大,因此需要利用计算机和大数据分析技术来对数据进行处理和分析。
这其中涵盖了数据清洗、数据预处理、特征提取和建模等多个方面。
此外,还需要采取一些数据可视化的方法,以让研究人员更直观的观察和理解数据。
蛋白质组学的应用范围非常广泛,包括药物研发、疾病诊断和治疗等领域。
例如,蛋白质组学在癌症诊断、药物靶点鉴定和药物作用机制等方面都有着重要的应用,这些应用也推动了蛋白质组学的迅速发展。
总之,蛋白质组学技术不断创新和发展,可以解决大量生物学和生物医学领域中的重要问题,对于深入探究蛋白质生物学领域的各种问题具有不可替代的作用。
蛋白质组学技术
蛋白质组学技术
蛋白质组学技术指在蛋白质组学研究中所用到的各种技术。
质谱技术是蛋白质组学技术中可实现高通量分析的技术之一,可用于蛋白质组的定性和定量分析。
百泰派克生物科技提供基于质谱的蛋白质组学分析服务。
蛋白质组学技术
蛋白质组学技术指在蛋白质组学研究中所用到的各种技术,包括蛋白质分离纯化技术、鉴定和测序技术、定量技术以及生物信息学分析技术等等。
纯化蛋白质的常规技术一般基于色谱,如离子交换色谱(IEC)、尺寸排阻色谱(SEC)和亲和色谱。
分析选择性蛋白质则可以使用ELISA和western blot技术,但是这些技术一般仅限于分析少数单个蛋白质,且无法确定蛋白质的表达水平。
质谱技术可用于确定蛋白质的氨基酸序列。
利用ICAT、iTRAQ等标记技术可对蛋白质组进行定量分析。
X 光散射技术和核磁共振(NMR)则可提供蛋白质的三维结构信息,这可能有助于理解蛋白质的生物学功能。
蛋白质组学技术。
蛋白质组学技术应用
蛋白质组学研究通过利用不同的技术来鉴定和量化细胞、组织或生物体中存在的总蛋白质,通过使用一种或多种蛋白质组学技术可完整描述细胞的结构和功能信息,以及细胞对各种类型的压力和药物的响应机制。
蛋白质组学技术可被用于多种不同
的研究环境,如用于检测各种诊断标志物、疫苗生产候选物,开发新药物,了解致病机制、应对不同信号改变的表达模式,以及解释不同疾病中的功能蛋白途径等。
蛋白质组学实验技术
蛋白质组学实验技术蛋白质组学实验技术是一种从全局视角研究蛋白质组成、结构和功能的技术。
随着基因组学技术的发展,蛋白质组学已成为研究细胞示踪、疾病生物标志物、药物靶点等领域的重要手段。
本文将介绍比较典型的蛋白质组学实验技术。
1. 二维凝胶电泳(2-DE)2-DE是目前最常用的分离和检测蛋白质的方法之一。
该方法将蛋白质样品通过等电聚焦和SDS-PAGE两次分离,从而实现高分辨率的蛋白质分离。
根据pI和分子量的差异,蛋白质可以被分离成数百到数千个斑点。
这些斑点可以通过印记染色、银染色及荧光染色等方法检测。
此外,2-DE也可用于检测蛋白质的修饰状态或表达水平的变化。
2. 液相色谱-质谱联用(LC-MS)LC-MS是一种高分辨率分析技术,可以根据分子质量和结构鉴定蛋白质及其修饰。
它通过将分离得到的蛋白质通过高效液相色谱(HPLC)分离,再通过质谱分析确定蛋白质的质量和结构信息。
与其他蛋白质分析方法相比,LC-MS可以分析非常复杂的样品,并且可以分析一些低丰度蛋白质和代谢产物。
3. 蛋白质微阵列蛋白质微阵列是一种高通量检测技术,可以检测上千种蛋白质。
它是将大量的蛋白质在玻璃片或硅片上固定成阵列,从而实现对多个蛋白质的检测。
蛋白质微阵列的制备过程相对简单,可以通过打印技术快速生产。
与其他技术相比,它具有检测速度快、样品体积少、数据可重复性好等优点。
4. 捕获质谱法(CAPTURE)CAPTURE是一种高灵敏度的蛋白质检测技术,它可以在低浓度条件下检测蛋白质。
与传统的质谱法不同,CAPTURE通过大量捕获和富集相同或不同类型的蛋白质,从而提高检测的灵敏度。
CAPTURE技术直接从体液中检测目标蛋白质,能够检测多种临床疾病的生物标志物。
5. 蛋白质定量技术蛋白质定量技术是实验过程中必不可少的一步。
目前比较常用的蛋白质定量技术包括倍半胱氨酸定量法、Bradford法、BCA法、Lowry法等。
BCA法和Bradford法常用于蛋白质的定量,因为它们具有高灵敏度、广泛适用性和快速的分析速度。
蛋白质组学研究与应用
蛋白质组学研究与应用随着科技的不断进步和科学研究的不断深入,蛋白质组学作为一门新兴的技术和研究领域,正在逐步发展和应用于生物医药领域。
蛋白质组学,简单来说,就是对蛋白质组的研究,它包括对蛋白质结构、功能、表达和相互作用等方面的研究。
下面,我们将深入探讨蛋白质组学研究和应用,以及它们对生物医药领域的影响。
一、蛋白质组学研究1. 蛋白质组学技术目前,蛋白质组学技术主要分为两大类,即蛋白质质谱技术和蛋白质芯片技术。
蛋白质质谱技术是将蛋白质分离后用质谱技术进行分析,可以得到蛋白质的质量、序列、结构和表达水平等信息。
而蛋白质芯片技术则是将蛋白质固定在芯片上,利用芯片上的探针检测蛋白质的表达和相互作用。
2. 蛋白质组学研究内容蛋白质组学研究的内容非常丰富,主要包括以下几个方面:(1)蛋白质组学在疾病诊断和治疗方面的应用。
比如通过分析肿瘤细胞的蛋白质组成进行癌症诊断,或者通过分析抗生素对细菌蛋白质的影响,寻找新型抗生素。
(2)蛋白质相互作用的研究。
蛋白质之间的相互作用是生命活动中的重要环节,研究蛋白质相互作用可以揭示细胞信号传导、代谢调控等生命活动的机制。
(3)蛋白质的功能和结构研究。
蛋白质的功能和结构是研究蛋白质功能和生命活动的基础,研究蛋白质的功能和结构可以揭示生命活动的机理。
二、蛋白质组学应用1. 药物研发与筛选蛋白质组学在药物研发与筛选方面的应用非常广泛。
通过研究蛋白质相互作用、识别关键蛋白质作用靶点等技术,可以研发出具有高效性和特异性的药物,并对药物的毒副作用和治疗效果进行评估,提高药物的研发效率和成功率。
2. 病理诊断与治疗蛋白质组学在病理诊断与治疗方面的应用也非常广泛。
例如,通过分析患者体液和组织中的蛋白质组成,可以帮助诊断疾病,如癌症、糖尿病、多发性硬化等。
此外,蛋白质组学还可以作为疾病治疗的靶点,研究药物的作用机理和治疗效果。
3. 基因组学和蛋白质组学的结合蛋白质组学和基因组学的结合,可以帮助我们更深入地研究蛋白质功能和相互作用。
蛋白质组学三大基本技术
蛋白质组学三大基本技术
蛋白质组学是一种研究蛋白质结构和功能的科学,它为研究蛋白质及其相互作用提供了一种有效的手段。
蛋白质组学的基本技术主要有质谱分析、电泳分析和免疫分析三种。
质谱分析是蛋白质组学中最重要的技术,它可以确定蛋白质的结构和物质组成,以及蛋白质之间的相互作用。
质谱分析主要通过电喷雾电离和高能质谱来确定蛋白质的结构和物质组成,从而可以研究蛋白质的自由基反应和结合反应。
电泳分析是蛋白质组学中另一重要的技术,它可以用来检测蛋白质的结构和特性。
电泳分析主要通过静电层析、交叉层析、离子交换层析、聚焦层析等手段来研究蛋白质的结构和特性,从而可以研究蛋白质的分子量、组成以及与其他蛋白质之间的相互作用。
免疫分析是蛋白质组学中最后一项基本技术,它可以用来研究蛋白质的抗原性和抗体识别特性。
免疫分析通常通过免疫印迹、免疫沉淀、免疫荧光和免疫质谱等方法,来检测蛋白质的抗原性和抗体识别特性,从而研究蛋白质的结构和功能。
总之,蛋白质组学的基本技术包括质谱分析、电泳分析和免疫分析三种,它们可以帮助我们研究蛋白质的结构和功能,为蛋白质组学的研究提供了重要的技术支持。
蛋白质组学研究方法
蛋白质组学研究方法
蛋白质组学是研究生物体内蛋白质的全套表达、结构和功能的科学,是继基因组学之后的又一门重要的生物学研究领域。
蛋白质组学的研究方法主要包括蛋白质的分离与富集、质谱分析、蛋白质组数据分析等几个方面。
首先,蛋白质的分离与富集是蛋白质组学研究的第一步。
蛋白质在生物体内分布广泛,种类繁多,含量不等,要想全面了解蛋白质组的情况,就需要对蛋白质进行分离和富集。
目前常用的蛋白质富集方法有凝胶电泳、液相色谱、免疫沉淀等,这些方法可以根据蛋白质的特性和研究的目的来选择合适的方式进行富集。
其次,质谱分析是蛋白质组学研究的核心技术之一。
质谱技术可以对蛋白质进行高效、灵敏的检测和定量分析,目前主要包括质谱仪器的发展和质谱数据的分析两个方面。
质谱仪器的发展使得蛋白质的鉴定和定量分析变得更加精准和高效,而质谱数据的分析则需要借助生物信息学等多学科知识进行综合分析,以获得更加准确和全面的蛋白质组数据。
最后,蛋白质组数据的分析是蛋白质组学研究的最终目的。
通过对蛋白质组数据的分析,可以揭示生物体内蛋白质的表达规律、结构特征和功能作用,为生命科学研究提供重要的信息和数据支持。
蛋白质组数据的分析需要借助生物统计学、生物信息学等多学科的知识和方法,以实现对大规模蛋白质组数据的挖掘和解读。
综上所述,蛋白质组学研究方法包括蛋白质的分离与富集、质谱分析和蛋白质组数据分析三个方面,这些方法的综合应用可以为我们深入了解生物体内蛋白质的表达、结构和功能提供重要的技术支持,推动生命科学领域的发展和进步。
蛋白组组学
蛋白组组学蛋白组学是一门研究蛋白质在生物体中组成、结构和功能的学科,是生物信息学领域的重要组成部分。
通过对蛋白质组的研究,人们可以更深入地了解生物体内蛋白质的种类、数量、结构和功能,从而揭示生命活动的规律和机制。
蛋白质是生物体内最基本的功能分子,承担着细胞结构的构建、信息传递、代谢调节等重要功能。
蛋白组学的研究主要包括蛋白质的组成、表达水平、翻译后修饰、互作关系等方面。
通过对蛋白质组的系统分析,可以揭示蛋白质在细胞和生物体水平上的功能和调控机制,为疾病的诊断、治疗和药物研发提供重要的理论基础和实验依据。
在蛋白组学研究中,常用的技术包括质谱分析、蛋白质芯片、蛋白质相互作用分析等。
质谱分析是一种常用的蛋白质鉴定和定量方法,可以通过质谱仪测定蛋白质的质量、序列和修饰信息。
蛋白质芯片是一种高通量的蛋白质检测技术,可以同时分析大量蛋白质的表达水平和功能。
蛋白质相互作用分析可以揭示蛋白质之间的相互作用关系,帮助理解蛋白质网络的结构和功能。
通过蛋白组学的研究,人们可以揭示蛋白质在细胞和生物体中的功能和调控机制,发现新的生物标志物和药物靶点,为疾病的诊断、治疗和药物研发提供重要的科学依据。
例如,蛋白组学在肿瘤研究中发挥着重要作用,可以帮助识别肿瘤特异性蛋白质,揭示肿瘤发生发展的机制,为个性化治疗提供依据。
总的来说,蛋白组学是一门重要的生物信息学学科,对揭示生物体内蛋白质的组成、结构和功能具有重要意义。
通过蛋白组学的研究,人们可以更深入地了解生命活动的规律和机制,为疾病的诊断、治疗和药物研发提供重要的理论基础和实验依据。
希望通过不断地努力和创新,蛋白组学在生命科学领域发挥更大的作用,为人类健康和生命质量的提高做出更大的贡献。
蛋白质组学及技术介绍
蛋白质组学及技术介绍蛋白质组学是研究细胞、组织和生物体中蛋白质产生、结构、功能以及相互作用的一门科学。
蛋白质是生物体中最重要的有机物之一,扮演着许多生理和生化过程的关键角色。
蛋白质组学的目标是通过大规模研究蛋白质的组成、结构和功能,深入了解生物体的调控机制和疾病的发生发展规律。
蛋白质组学的研究内容包括蛋白质的鉴定、分类、结构分析、表达调控、功能研究等。
与基因组学类似,蛋白质组学也具有高通量、全面性、定量性等特点。
蛋白质组学研究可以帮助科学家在生物体水平上揭示生物的基本功能,并揭示蛋白质在各种生理和病理过程中的重要作用。
1.蛋白质分离技术:蛋白质组学研究需要从复杂样品中分离目标蛋白质。
常用的蛋白质分离方法有SDS-、二维电泳等。
其中,二维电泳是一种常用的高分离效果的方法,可以将蛋白质根据等电点和分子量进行分离,更好地了解蛋白质组成。
2.质谱法:质谱法是蛋白质组学研究中最重要的技术之一、质谱法可以用来鉴定蛋白质的氨基酸序列、确定修饰位点、测定蛋白质的分子量等。
常用的质谱方法包括MALDI-TOF、ESI-MS等。
3. 蛋白质组分析软件:蛋白质组学研究得到的大量数据需要通过蛋白质组分析软件进行处理和分析。
这些软件可以对质谱数据进行解析、蛋白质鉴定和定量分析等。
常用的分析软件包括Mascot、MaxQuant等。
4.蛋白质相互作用研究技术:蛋白质在生物体内通常与其他蛋白质相互作用,形成复杂的蛋白质网络。
蛋白质相互作用研究技术可以帮助科学家了解蛋白质在细胞内的功能调控机制。
常用的蛋白质相互作用研究技术有酵母双杂交、蛋白质亲和纯化、共免疫沉淀等。
5.大规模蛋白质组测定技术:蛋白质组学研究需要同时分析大量的蛋白质样品。
目前,已经发展出了很多高通量、全面性的蛋白质组测定技术,如蛋白质芯片技术、TMT标记质谱技术等。
这些技术可以同时分析大量样品,提高研究效率。
总之,蛋白质组学及其相关技术在生物学、生物医学研究中具有重要的地位和应用前景。
蛋白质组学主要研究技术
蛋白质组学主要研究技术目前蛋白质组学的研究手段主要依靠分离技术、质谱技术和生物信息学的发展。
分离技术要求达到高分辨率和高重复率,质谱技术主要包括MALDI-TOF、Q-TOF与MS/MS等质谱设备以及样品的预处理,生物信息学则利用算法的改进和数据库查询比对的完善提高数据结果的判断。
1. 蛋白质组学的分离技术目前蛋白质组学研究广泛采用的是双向电泳技术。
高通量性、对实验要求低、操作简便快速是双向电泳具有的最大优点,它特别适合大规模的蛋白质组学研究。
尽管当前蛋白质的分离技术多种多样,但目前仍然没有一种可以彻底地取代双向电泳技术。
从1975年,O’Farrells[8]等将IEF与SDS-PAGE结合创立了2D-PAGE电泳技术以来。
双向电泳技术在多个方面都得到了提高和改进:(1) IPG胶条的使用。
传统的载体两性电解质等电聚焦存在上样量小、长时间电泳过程中pH梯度不稳定、阴极漂移现象及其导致的碱性蛋白损失、不同批次间重复性差等问题。
IPG 胶条的使用使这些问题得到了极大的改善,这使蛋白质双向电泳数据库的建立成为现实;(2) 样品制备:蛋白质样品的质量好坏从根本上决定了电泳最终结果的好坏。
双向电泳的样品制备有两个关键点,即如何使样品中蛋白质充分溶解以及尽可能减少影响等电点聚焦的杂质,特别是带电杂质。
采用超声或核酸酶处理的方法可以去除核酸,超速离心可除去脂类和多糖,透析、凝胶过滤或沉淀/重悬法可以降低盐浓度。
近来的研究发现磺基甘氨酸三甲内盐(ASB14-16)的裂解效果最好,而2mol/l的硫脲和4%的表面活性剂CHAPS的混合液能促使疏水蛋白从IPG到第二相胶的转换。
以三丁基膦(TBP)取代β-巯基乙醇或DTT,可以完全溶解链间或链内的二硫键,增强了蛋白质的溶解度,并促进蛋白质向第二向的转移。
另外,双向电泳中对低丰度蛋白的分离识别比较困难,除了显色技术的局限外,还存在容易被高丰度蛋白掩盖的问题,这样得到的蛋白质图谱很不完整,经常会忽略那些在生命过程中发挥重要功能的微量活性分子。
蛋白质组学三大基本技术
蛋白质组学三大基本技术
蛋白质组学是一种新兴的生物学研究领域,它结合了生物信息学、分子生物学和代谢学,以研究蛋白质组学为中心,从而进行全面的分子细胞研究。
蛋白质组学的研究主要集中在蛋白质的结构、功能和相互作用等方面。
蛋白质组学的研究是以蛋白质组学的三大基本技术为基础的,即质谱、二级结构和互作分析。
质谱技术是蛋白质组学的基础技术,它可以用来鉴定和定性分析蛋白质。
质谱技术通过把蛋白质分解成各种不同的肽段,然后用高速质谱仪来鉴定和定量分析肽段,从而得出蛋白质的结构和定量。
二级结构分析是蛋白质组学的重要技术,它可以帮助我们了解蛋白质结构的细微差别,从而更好地了解蛋白质的功能和相互作用。
这种技术通过X射线衍射、核磁共振成像、电子显微镜等手段,可以揭示蛋白质的二级结构,进而揭示蛋白质的活性及其功能。
互作分析是蛋白质组学的一种关键技术,它可以帮助我们了解蛋白质组成细胞,以及蛋白质之间的相互作用。
互作分析可以用来检测蛋白质之间的相互作用,例如蛋白质的配体结合、蛋白质的激酶作用和蛋白质的信号转导等。
总之,蛋白质组学是一个非常有趣的领域,它以蛋白质组学的三大
基本技术为基础,可以帮助我们更好地理解蛋白质的结构、功能和相互作用。
展望未来,蛋白质组学在各个生物学领域都将发挥重要作用,并在基础生物学研究中发挥重要作用。
蛋白质组学的主要研究策略
蛋白质组学的主要研究策略蛋白质组学是研究蛋白质组中所有蛋白质的类型、数量、结构和功能的科学领域。
随着蛋白质组学不断发展,越来越多的研究策略被应用于蛋白质组学研究。
本文将介绍蛋白质组学的主要研究策略,希望能对相关研究人员提供指导与启发。
第一种主要研究策略是质谱法。
质谱法是通过测量蛋白质组中蛋白质的质量来研究其特性。
其中,串联质谱技术(MS/MS)可以用来确定蛋白质的氨基酸序列和翻译后修饰等信息。
另外,蛋白质质谱图谱也可以用来鉴定和定量蛋白质组中不同蛋白质的存在和丰度。
第二种主要研究策略是蛋白质互作网络分析。
蛋白质互作网络分析是研究蛋白质间相互作用的一种策略。
通过建立蛋白质间的互作网络,可以揭示蛋白质在细胞内不同通路中的相互作用和功能。
这种方法在研究蛋白质组的结构和功能方面具有重要意义,并对理解疾病的分子机制提供了重要线索。
第三种主要研究策略是定量蛋白质组学。
定量蛋白质组学是研究蛋白质组中蛋白质丰度的策略。
通过比较不同样品中蛋白质的丰度差异,可以发现与疾病相关的蛋白质。
当前常用的定量蛋白质组学方法包括标记和非标记两种。
标记方法包括稳定同位素标记和化学标记,非标记方法通过质谱定量等技术进行蛋白质定量。
第四种主要研究策略是功能蛋白质组学。
功能蛋白质组学是研究蛋白质组中蛋白质功能的策略。
通过确定蛋白质组中每个蛋白质的功能和相互关系,可以揭示蛋白质在生物学过程中的作用机制。
这种方法可以通过基因敲除、过度表达、功能分析等方法进行研究。
总之,蛋白质组学的核心是研究蛋白质组中所有蛋白质的类型、数量、结构和功能。
我们介绍了质谱法、蛋白质互作网络分析、定量蛋白质组学和功能蛋白质组学等主要研究策略。
这些策略相互补充,综合运用可以全面深入地研究蛋白质组。
希望这些信息能够对蛋白质组学研究人员的工作提供指导和启示。
蛋白质组学的技术与应用
蛋白质组学的技术与应用随着生物技术的飞速发展,蛋白质组学逐渐成为了生物学研究的重要领域。
蛋白质组学研究的是在某种特定条件下生物体内所有蛋白质的表达和功能。
这个领域的研究意义非常重大,可以帮助我们深入了解生命的本质,同时也可以为新药的研发提供有力的支持。
本文将介绍一些常见的蛋白质组学技术和应用。
一、二维凝胶电泳技术二维凝胶电泳技术是蛋白质组学领域中最常见的技术之一。
这个技术可以将不同种类的蛋白质从复杂的混合物中分离出来,并用染色剂或放射性同位素等方法进行检测。
这个技术的实施分为两个步骤:首先,通过离子交换和分子筛分离出不同电荷和大小的蛋白质;其次,蛋白质样本按照电荷和分子量在两个不同的方向上进行电泳。
这种技术可以帮助我们了解不同蛋白质的表达和功能。
二、质谱技术质谱技术是一种高效、高灵敏度的蛋白质分析技术。
这个技术可以将蛋白质样本进行分离,并通过质谱仪来检测并鉴定蛋白质成分。
这个技术可以有效地鉴定不同的蛋白质,特别是小分子量的蛋白质,因此在药物研发和疾病诊断方面发挥了重要作用。
三、蛋白质芯片技术蛋白质芯片技术是一种高通量的蛋白质分析技术。
这个技术可以在一张芯片上检测成千上万种不同的蛋白质。
这种技术利用光滑玻璃芯片的光学特性,在上面附着不同的蛋白质分子,并通过荧光或化学计量法来检测芯片上的蛋白质。
这种技术可以极大地提高蛋白质检测的速度和灵敏度,因此在药物研发和疾病诊断方面也发挥了重要作用。
四、蛋白质组学在临床中的应用蛋白质组学技术在疾病诊断和治疗中有着广泛的应用。
比如,在癌症的诊断和治疗中,蛋白质组学技术可以被用来检测人体血液中的蛋白质水平,以此来判断患者的疾病状况和疗效。
在药物研发方面,蛋白质组学技术可以用来快速鉴定潜在药物的作用机制和靶点,并进一步优化药物分子结构和性质。
总之,蛋白质组学技术为我们深入了解生命的本质,帮助我们发现新的治疗方法和药物,并有着广泛的应用前景。
随着技术的不断发展和更新,相信蛋白质组学技术将会在更多的领域发挥重要作用,为我们创造更多的价值。
蛋白质组学的研究内容
蛋白质组学的研究内容蛋白质组学是研究生物体内蛋白质的全集及其功能的科学领域。
蛋白质是生物体中最重要的功能分子之一,参与了几乎所有生命过程,包括细胞机能、信号传导、代谢调控等。
蛋白质组学的发展为我们深入了解生物体的生理与病理提供了重要的手段。
蛋白质组学的研究内容主要包括蛋白质组的鉴定、定量和功能研究。
首先,蛋白质组学致力于全面鉴定生物体内的蛋白质。
通过使用质谱仪等高通量技术,可以对生物体中的蛋白质进行高效、高通量的鉴定。
这些鉴定工作能够揭示细胞中存在的各种蛋白质,为后续的研究奠定基础。
蛋白质组学还关注蛋白质的定量。
在生物体内,不同条件下蛋白质的表达量会发生变化,这种变化往往与生物过程的调控密切相关。
蛋白质组学通过使用定量质谱技术,可以对蛋白质的表达量进行精确测量。
这种定量工作可以帮助我们了解生物体在不同状态下蛋白质的变化规律,进而揭示生物过程的调控机制。
蛋白质组学还包括对蛋白质功能的研究。
蛋白质的功能多种多样,包括酶活性、结构支持、信号传导等。
蛋白质组学通过结合生物信息学和实验方法,可以对蛋白质的功能进行预测和验证。
例如,通过对蛋白质序列的分析,可以预测蛋白质的结构和功能域。
通过实验手段,可以验证这些预测结果,并深入了解蛋白质的功能机制。
蛋白质组学的发展对生命科学和医学研究具有重要意义。
首先,蛋白质组学为疾病诊断和治疗提供了新的途径。
通过研究蛋白质组的变化,可以发现与疾病相关的蛋白质标志物,为疾病的早期诊断和治疗提供依据。
其次,蛋白质组学有助于揭示生物体内复杂的生物过程。
通过对蛋白质组的研究,可以了解蛋白质在细胞中的相互作用、信号传导等机制,进而揭示细胞的生理与病理过程。
此外,蛋白质组学还有助于开发新的药物靶点和治疗策略。
通过研究蛋白质组的变化,可以发现新的药物靶点,并开发相应的治疗策略。
然而,蛋白质组学研究也存在一些挑战和限制。
首先,蛋白质组学需要高度精细的实验技术和数据分析能力。
蛋白质组学的实验操作涉及到多个环节,包括样品制备、质谱测量等,需要研究人员具备专业的技术能力。
植物蛋白质组学的研究及其应用
植物蛋白质组学的研究及其应用植物蛋白质组学是研究植物的全部蛋白质组成和其功能的科学。
植物蛋白质组学技术主要包括蛋白质分离、蛋白质定量、蛋白质鉴定、蛋白质组数据分析等过程。
植物蛋白质组学的研究广泛涉及植物的生长发育、代谢调控、逆境响应、蛋白质互作、基因调控等方面。
植物蛋白质组学的应用可为育种改良、疾病诊断、药物开发等提供基础数据。
一、植物蛋白质组学的技术1.蛋白质分离技术蛋白质分离是植物蛋白质组学研究的第一步,其目的是将复杂的样品中的混合蛋白质分离出来,以便进行后续工作。
常见的蛋白质分离技术包括电泳、柱层析、离子交换、凝胶过滤等。
2.蛋白质定量技术蛋白质定量是植物蛋白质组学研究的重要步骤,目的是根据样品中蛋白质的质量或浓度估算其含量。
常用的蛋白质定量技术包括BCA法、Lowry法、Bradford法、Biuret法等。
3.蛋白质鉴定技术蛋白质鉴定是植物蛋白质组学研究的核心步骤。
它不仅可通过序列分析确认蛋白质的身份,还可确定其翻译后的修饰、亚细胞定位和表达量。
常用的蛋白质鉴定技术包括质谱技术、Western blot等。
4.蛋白质组数据分析蛋白质组数据分析是植物蛋白质组学的重要环节之一,它的主要任务是从复杂的蛋白质组数据中提取有关生物学问题的信息。
常用的数据分析方法包括聚类分析、差异表示分析、KEGG生物通路分析等。
二、植物蛋白质组学的应用1.育种改良植物蛋白质组学可为育种改良提供重要数据。
通过对不同品种植物的蛋白质组进行研究,可以筛选出与重要农艺性状相关的蛋白质,进而鉴定基因组位置和功能,为育种改良提供新思路。
2.疾病诊断植物蛋白质组学也可应用于疾病诊断。
通过分析同一病种或不同病种植物体内蛋白质组的差异,可以筛选出特异性标志蛋白质,进而研究其生物学功能,推断致病机理,探求有效控制手段。
3.药物开发植物蛋白质组学在药物开发领域也有广泛应用。
通过分析病原体与宿主植物交互作用过程中的蛋白质表达变化,可发现免疫反应中关键的蛋白质,进而采用药物靶向机理受靶蛋白质的措施,研制新型抗菌、抗病毒药物。
化学蛋白质组学
化学蛋白质组学
化学蛋白质组学是一种基于化学技术的蛋白质组学研究方法,主要通过化学分析和质谱技术研究蛋白质的性质和组成。
化学蛋白质组学研究主要包括以下内容:
1. 蛋白质分离:以电泳、色谱等方式对复杂的蛋白质混合物进行分离,降低蛋白质样品的复杂度,提高质谱分析的精度。
2. 蛋白质酶解:蛋白质酶解是将蛋白质分解成小的肽段的过程,通常使用肽酶或内切酶进行酶解,以利于质谱分析和蛋白质序列确定。
3. 蛋白质修饰分析:蛋白质在生物体内可以发生多种修饰,如磷酸化、乙酰化等,这些修饰对蛋白质功能发挥具有重要影响。
化学蛋白质组学研究可以通过质谱分析和光谱分析等技术手段来研究蛋白质修饰。
4. 蛋白质定量:蛋白质的定量分析是化学蛋白质组学研究中的一个重要环节,通常使用TMT、iTRAQ等多重标记技术或定量质谱技术进行蛋白质的相对定量与绝对定量。
化学蛋白质组学研究方法已成为蛋白质组学研究的重要手段之一,加速了蛋白质组学研究的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LexA蛋白 单纯疱疹病毒的VP编码区 大肠杆菌的LexA蛋白 BD AD
选择酵母细胞作为双杂交系统的宿主菌株: 1.酵母细胞具有翻译后加工功能 2. 酵母细胞有很多的营养缺陷型标记,筛选阳性 克隆比较方便、容易。 3. 酵母细胞有性生殖形成二倍体细胞,转化容易, 转化率高
构建两种可在大肠杆菌和酵母细胞中复制的 穿梭质粒载体
3. 单杂交系统
用于研究蛋白质与DNA的相互作用 检测蛋白质能否和DNA结合 筛选能和DNA结合的蛋白质
只用双杂交系统中的DNA-AD质粒,不用DNA-BD质粒, 故称为单杂交系统 待研究的蛋白质可看作双杂交系统中GAL4的BD结构域 将待研究蛋白质基因与DNA-AD质粒重组,以融合形式表达 AD-蛋白质 重组质粒转入酵母细胞
高拷贝,插入的片段小
技术操作 (一)噬菌体载体: 1. 噬菌体载体 由噬菌体基因组改造而成 含有完成噬菌体生命周期全部遗传成分 一种抗生素遗传标记 一对限制酶切点 2.噬菌粒 噬菌体和质粒的杂合体 质粒的复制子和抗性基因 噬菌体的PⅢ基因或PⅧ基因及基因间隔区 间隔区有单链DNA合成和包装信号 感染细菌后需辅助噬菌体协助包装
3. 从大肠杆菌中提取两种重组质粒共转化 酵母细胞 在缺少Trp、Leu和His,含有X-gal的培 养基上筛选 在此培养基上生长的蓝色菌落证明X 蛋白和Y蛋白能互相作用。
酵母的接合型 a接合型 α接合型 单倍体 二倍体 单倍体
DNA-BD载体 转化 a接合型酵母 Trp筛选
ቤተ መጻሕፍቲ ባይዱ
DNA-AD载体 转化 α接合型酵母
X和Y蛋白间无作用
(三)、酵母双杂交系统的应用
1. 检测两种已知蛋白质之间在体内是否存在 相互作用. 这是酵母双杂交系统最基本用途 将两种已知蛋白质的编码基因分别克 隆到BD载体和AD载体上,共同转染酵母细 胞。若报告基因得到表达,则证明两种蛋 白质之间在细胞内存在相互作用。
2. 筛选与已知蛋白质相互作用的新的蛋白质。 这是酵母双杂交技术最广泛,最有价值 的用途 将已知蛋白质基因克隆在BD载体上, 将要筛选的 cDNA库克隆在AD载体上,据 此可从cDNA库中筛选出能与已知蛋白质 相互作用的新蛋白质。
蛋白质组学研究内容
• 蛋白质鉴定: 双向电泳结果找出差异蛋白质电 对差异点蛋白质: 分子量及等电点分析 western blot或者免疫共沉淀等技术初步鉴 定蛋白质种类 质谱技术分析蛋白质的氨基酸序列 在数据库中比对确定蛋白质的家族归属。
• 蛋白质的修饰: 真核生物蛋白质翻译后会进行修饰: 磷酸化 乙酰化 糖基化 这些修饰是调节蛋白质功能的重要方式
酵母单杂交原理示意图
4. 反向双杂交系统 鉴定导致蛋白质不能相互作用的突变 鉴定能破坏蛋白质相互作用的因子 采用反式选择性报告基因 Ure3基因编码的酶催化嘧啶类似物5-氟 清酸转化成细胞毒性物质,使细胞死亡 两种蛋白质能相互作用,Ure3基因表达, 细胞死亡 两种蛋白质不能相互作用,Ure3基因不 能表达,细胞得以生长
(一)、酵母双杂交技术原理
酵母双杂交系统的建立基于对真核生物转 录激活因子结构与功能的认识
真核生物转录激活因子 DNA结合结构域 转录激活结构域 AD BD 组件式:结构可互相分开 功能互相独立 空间较近时表现活性 中间序列对活性无影响
N端 147AA BD
C端
213AA AD
酵母转录因子GAL4
5. 绘制蛋白质相互作用网络或图谱 双杂交系统的BD及AD质粒均接上 cDNA库,让它们随机表达蛋白 通过检测报告基因的表达可以证实一 系列崭新蛋白中两两间的相互作用 如能证实在蛋白质A-B、B-C和C-D 间都存在相互作用,据此可绘制出 A→B→C→D的蛋白间联系图谱
(四)、酵母双杂交系统的局限与发展
• 分子识别 蛋白质之间普遍存在的专一性结合作用 抗体与抗原、酶与底物、配体与受体 结合局部构像相嵌互补,必要时局部构像发生变化 局部有相应的化学基团产生足够结合力 • 分子自我装配 在特定条件下生物大分子自动装配成具有生物活性的细胞器 或病毒 蛋白质、核酸、糖装配成核糖体 • 多酶体 相关的酶彼此有机的结合在一起 丙酮酸脱氢酶:丙酮酸脱氢酶、二氢硫辛酸乙酰转移酶、二 氢硫辛酸脱氢酶
1. Ampr基因-大肠杆菌筛 选标记 2. Trp、Leu-酵母筛选标 记 3. 3 X与BD以融合蛋白形 式表达,Y与AD以融合 蛋白表达 pGBT9质粒 pGAD424质粒
报告基因 在GAL4结合的顺式作用元件下游需 连接报告基因。 目前应用最多的报告基因是LacZ基 因,表达后能在X-Gal培养基上产生蓝色 菌落。 其次是His基因,表达后能使酵母菌 在缺少组氨酸的培养基中生长。 现在多提倡两种报告基因同时应用, 颜色筛选和营养缺陷筛选同时进行,以 降低假阳性的出现
三、噬菌体表面显示技术-筛选结合结构域
技术建立的原理和条件: 1.抗原抗体反应 抗原抗体特异性反应通过抗原决定簇实现 抗原决定簇位于分子表面,5-7氨基酸组成 2.多肽在噬菌体表面有独立活性 3.多肽化学合成技术的日趋成熟
丝状噬菌体特点: 基因组是单链DNA,只能感染F+细菌 复制形式是双链,可用于基因操作和转化 有5种结构蛋白: PⅢ通过与F菌毛结合感染细菌 PⅧ与噬菌体的成熟和稳定有关
8X4=32密码 终止密码TAG 第三个硷基不用A:不出现TAA和TGA 都有简并密码 第三个碱基:A和G是简分(NNK)6,N:等量4种碱基 K:等量G/T两种碱基 两侧加酶切位点 经PCR扩增 酶切合成的基因片段 (2)载体酶切,与合成基因重组,转化 (3)细菌培养 (4)在培养液中收集噬菌体颗粒
(二)合成编码随机短肽的核苷酸序列: (NNK)x或(NNS)x N=A、T、C、G K=G、T S=G、C x=氨基酸数 NNK或NNS组成32个密码代表20种氨基酸 和一个终止密码TAG 第三个硷基不用A:不出现TAA和TGA 都是简并密码 第三硷基用C或T :互为简并密码
AAG T ATG T AGG T ACG T
黑龙江省重点学科检查汇报 蛋白质组学主要研究技术
刘兴汉
哈尔滨医科大学生物化学与分子生物学教研室 哈尔滨医科大学 省部共建国家重点实验室培育基地— 生物化学与分子生物学学科 黑龙江省生物医药工程重点实验室
人类基因组计划结束给科学工作者极大鼓舞,同时也引 出了更多的问题: 大量涌现出的新基因,它们有什么功能?编码什么蛋白? 在生命过程中发挥什么样的作用? 这些问题靠传统的研究方法不可能解决。蛋白质组 (proteome)和蛋白质组学(proteomics)的概念就是在这 个基础上提出的。 1994年9月在意大利Marc Wilkins正式提出了蛋白质组 (proteome)的概念。用于指代特定时间一个基因组或者一 种组织产生并利用的所有蛋白质。
Leu筛选
Trp、Leu、His 蓝色菌落 X和Y蛋白相互作用
X基因与DNA-BD质粒重组
Y基因与DNA-AD质粒重组 分别转化大肠杆菌
Amp培养基 X-BD重组质粒 Y-AD重组质粒
共转化酵母细胞
Trp和Leu营养缺陷培养基 Trp、Leu、His营养缺陷培养基
X-gal
蓝色菌落
无菌落生长
X和Y蛋白相互作用
分析结构和功能
四、酵母双杂交技术-蛋白质相互作用
一、酵母双杂交系统的原理 二、酵母双杂交系统的操作程序 三、酵母双杂交系统的应用 四、酵母双杂交系统的局限与发展
酵母双杂交系统(Yeast two-hybrid system) 也叫相互作用陷阱 (Interaction trap) 由Fields和Song于1989年建立 用于研究细胞内蛋白质与蛋白质间的 相互作用。
• 蛋白质功能确定: 研究蛋白质的功能,蛋白质相互作用 酵母杂交技术 噬菌体展示技术 RNA干扰技术
• 蛋白质功能研究: 噬菌体表面展示技术(phage surface display) 酵母杂交技术(yeast hybridization) RNA干扰技术 • 蛋白质鉴定 双向电泳技术 质谱分析技术
酵母双杂交系统的发展
1. 哺乳动物细胞双杂交系统 主要增强蛋白质翻译后的修饰作用, 用于检测在酵母细胞中修饰不完全的蛋 白之间的相互作用 单纯疱疹病毒BP16编码区取代GAL4 的AD结构域 氯霉素乙酰转移酶或荧光素酶为报 告基因
2. 细菌双杂交系统 直接在细胞质内研究蛋白之间相互作 用,适用于不能进入细胞核的蛋白质。 百日咳博代杆菌中腺苷酸环化酶催化结 构域可分为T18和T25两个相对独立的功能 单位
蛋白质相互作用的研究技术
• 蛋白质:结构蛋白 功能蛋白 • 生命基本过程是功能蛋白质在时空上 有序和协调作用的结果 • 从研究单一蛋白质的结构与功能关系 发展为研究蛋白质间的相互作用
一、蛋白质相互作用的种类
• 分子或亚基的聚合 四级结构蛋白质亚基间的互相聚合 聚合的亚基是固定不变的 聚合靠氢键、疏水作用力等次级键 • 分子杂交 同工酶亚基间的聚合 聚合的亚基是可变的 聚合靠次级键
多肽种类=206,肽库必须足够大
肽库的筛选
受体蛋白
生物素标记
生物素—受体蛋白 噬菌体肽库 滴定板微量 生物素—受体蛋白—多肽噬菌体 链亲和素
生物素—受体蛋白—多肽噬菌体
链亲和素 滴定板 洗去未结合噬菌体
酸洗脱
插入特定多肽的噬菌体
•
鉴
定
插入特定多肽噬菌体 提DNA 测序 由DNA序列推测多肽氨基酸序列 合成多肽
3. 确定蛋白质之间相互作用的结构域或活 性区 将一个蛋白质突变或缺失掉不同的片 段,再检测两种蛋白质在双杂交系统中 还能否保持转录激活作用,从而确定蛋 白之间相互作用的结构域或活性区。 4. 筛选多肽类新药 将药物作用的靶蛋白基因克隆在BD载 体上,待筛选的多肽药物基因克隆在AD载 体上,从中筛选作用于靶蛋白的多肽类新药
二、蛋白质间作用力
• 氢键 主链氢键:二级结构 侧链氢键:三、四级结构 表面氢键: 蛋白质间作用 • 离子键 正电荷与负电荷间的静电引力 酸性氨基酸和碱性氨基酸多在球形蛋白质的表面, 解离的带电基团互相吸引 和溶液的盐浓度有关