PP热成型工艺

PP热成型工艺
PP热成型工艺

PP(聚丙烯)热成型片材,是目前国内正压热成型中应用最为广泛、用量最大的一类片材即使在整个热成型用片材的家族中,也早已后来居上,与PVC、PS材料用量几乎不相上下目前市场上随处可见的"一次性"塑料果冻杯、饮水用卫生杯、豆浆杯、豆腐盒等几乎百分之百用PP片材热成型加工而成;在国内年生产量已经达几十甚至上百亿只的"一次性"塑料酸奶杯市场上,PP材料也占据着大半个江山;日常生活中的"一次性"快餐盒、方便面碗、冷饮杯等产品用PP片材热成型加工而成的更是多得难以计数用PP片材热成型加工而成的塑料包装产品在医药、轻工、玩具、食品、旅游等领域的应用真是屡见不鲜主要原因在于PP材料是最轻的塑料品种之一,密度仅0.89--0.91g/cm3,材料成本低;其次是原材料价格相对便宜,市场货源充足,容易购买;另外就是生产技术易掌握,配料简单,容易加工;最重要的是生产设备便宜,容易上马

随着国内片材生产线的推陈出新,外资和进口设备的引进,以及新的原辅材料的应用,热成型行业呈现蓬勃发展的态势热成型片材加工技术也随着设备、材料和用途的不同而五花八门日益成熟的片材加工技术逐渐打破了旧式的常规理论现在,即使在同一条片材生产线,也可以用不同的工艺生产出不同用途、不同规格、不同材质的合格片材;同一种规格用途的片材也可以用不同的设备、工艺加工出来"无模式"给生产带来极大的方便

PP热成型片材可以用压延法、压光法、流涎法(有气刀或无气刀)等方式生产

在这篇文章里谈谈用"压延法"生产生产各种PP热成型片材的一些技术仅供各位参考,不妥之处,恳请批评指正

本文以最简单的"挤出机--T型机头--立式三辊压光机--牵引--卷取"的设备配置为基准(高档片材生产线一般采用"精密挤出"技术,有PLC高度自动化可编程计算机控制系统、熔体泵、静态混炼器等,三辊多为卧式结构,采用伺服电机独立传动,配有独立循环水控制系统,一般采用"压光法"生产一般为了防止辊筒、机架变形,影响片材加工精度,原则上不主张在高档片材生产线上采用"压延法"生产所以,有的高档片材生产线有自动保护功能,当用压延法生产片材时,如果三辊驱动电机过载时,整个生产线会自动停机)

"压延法"与其他几种方法最大的区别是在机头进入的第一和第二两个辊筒之间有明显的光滑而且均匀的余胶在旋转,第三个辊筒一般不用压紧中间的辊筒

由于辊筒间有一定余胶,对稳定生产起着很大作用,因此普通的机电配置即可满足即不需要熔体泵、静态混炼器、PLC高度自动化可编程计算机控制系统等可以降低很大的投资成本和生产成本只是辊筒、机架强度比"压光法"、"流涎法"要高些,因为辊筒受到较大的分离力用"压延法"生产时,操作方便,工人易掌握技术要领,设备维修也很简单目前,国产设备几乎100%可以满足要求所以,当采用"压延法"工艺生产PP热成型片材时,用国产设备比用进口设备更实惠

常见热成型用PP原材料的选用:PP颗粒料通常选用挤出板材级、片材级,拉丝级、窄带级或热成型级

一.当采用"压延法"加工较厚PP"正压热成型片材"(0.50--2.50 mm)时,PP材料对设备适应性很强,工艺要求比较宽松

以立式三辊上进料为例:采用"压延法"生产时,上辊与中辊之间有余胶,细如铅笔在生产0.50mm--2.5mm甚至更厚的正压热成型PP片材时,对设备适应范围较宽,工艺调节比较容易此外,还有以下几种优势:

(1)用"压延法"工艺生产PP正压热成型片材时,PP材料对螺杆、料筒的适应性比较强:

不论是在理论上推荐的专用、突变式、分离型、L/D=22-25的单螺杆,还是渐变式、通用、排气式、L/D=2O-35、屏障型、分流型等其他新型单螺杆,都在实际生产中有成功生产的事例

这是由于在实际生产中,各个工厂实力不同,不可能都拥有专用的设备或配置,加之材料的频繁更换,不可能每次都更换为专用的料筒和螺杆所以,在实际生产中:一条片材生产线既可以用来生产HIPS、CPS、*材,也可以安排生产PP、PE片材,还可以加工PP降解材料、含填充母料的PP、PE片材

专业生产片材生产线设备的企业,所推出的片材生产线一般都适合加工PP材料如:天津恒瑞、上海金伟、金湖、汕头达诚、伟达等

(2)用"压延法"工艺生产PP正压热成型片材时,PP材料对机头结构、调速方式、传动方式、温控方式、唇口开度、进料方式(上进料、下进料)适应性很强

PP材料加工范围较宽,所以温度的设置也比较宽泛由于PP材料的熔点是164--170℃,而在实际生产中,加工温度的设置可从170℃至270℃,具体随材料产地不同、设备不同、加工地不同而有所差异

唇口开度一般没有太严格的要求,但唇口开度应该至少大于片材厚度在实际操作中,片材规格较多,调整唇口开度比较麻烦,甚至可以一直采用生产最厚片材的唇口有的采用唇口(厚)开度≈片材厚度x(1+10--30%);有的是当片材厚度低于0.8mm时唇口开度采用1.0mm,当片材厚度大于0.8mm低于1.5mm时,唇口开度采用2.0mm(由于一般热成型用片材的厚度很少超过2.0 mm)

较常见三辊温度的循环水控制在30℃-80℃三辊循环水路有串联、并联、独立控制等几种方式,都能满足生产要求

例如:A.台湾产的片材生产线:螺杆ф150 mm X34,无排气式单螺杆和料筒;衣架式机头,宽100mm,带阻尼条;辊筒ф490mmX110mm,链条传动,液压油缸控制上下辊筒升降;独立循环水箱自动恒温控制三辊温度;立式下进料;直流变频调速电机,功率300HP;边角料随机粉碎随即挤进料斗使用;真空上料

当用"压延法"生产(厚)1.70 mm X(宽)710 mm CPP 时,正常生产工艺记录如下:

(1)配料为:粒料PT103(台湾福聚烯)50Kg,粉碎料60Kg(其50Kg厚碎料,10Kg 薄碎料),粉状透明剂(香港产)0.2Kg

(2)机身温度控制:233-237-235-236-239-239-245-250-243(单位:℃)

(3)机头温度控制:235-235-235-235-235(单位:℃)

(4)三辊水温控制:(下-中-上)28.4-28.6--23.5(单位:℃)

(5)螺杆转速:57.7(r/min)

(6)三辊线速度:9.3(m/min);牵引力:30.8KN

(7)主电机转速:938(r/min);主机电流:390A

(8)上下辊筒状态:上下辊都压

(9)余胶状态:细如圆珠笔芯,均匀分布,呈直线,在挤出坯料上边只在中辊和下辊之间存在

(10)过滤网:80目X2+100目;网前压力230Kg/cm2

(11)唇口开度:2.3mm

(12)机头距三辊中心线距离:100mm

(13)片材质量:表面良,透明度良,(到正压制杯热成型机试)热成型性能良

注意:(a) 在试验时:上下辊都压;余胶细如圆珠笔芯,均匀分布,呈直线,在挤出坯料上边,只在中辊和下辊之间存在;温度设置比较随意

(b) 由于主机电流较大,而螺杆转速并不快,所以,机身、机头温度还可升高10-20℃

(c) 通过试验,当上下辊都压,余胶不仅在上辊与中辊间存在,也在中辊与下辊间存在,余胶细如圆珠笔芯,均匀分布,呈直线时,片材也可以正常生产和使用

(d) 通过试验,当上辊不压,仅压下辊,余胶细如圆珠笔芯,均匀分布,呈直线,在挤出坯料上边,只在中辊和下辊之间存在时,片材也可以正常生产和使用

(e) 通过试验,机身正向温度设置(235-260℃)、逆向温度设置(260-235℃)或设置都一样(245℃),片材均可以正常生产和使用

说明:(1)这条生产线主要用于"压光法"生产PP、HIPS、CPS等片材

(2)在此只想证明:从工艺角度讲,这条生产线用"压延法"生产PP热成型片材是可行的,且形式多样

B.汕头达成包装机械厂JP-750P挤出片材机组:螺杆ф105 mm X35,排气式单螺杆及料筒;整流子调速电机,功率100KW;衣架式机头,带阻尼条;三辊规格ф316 mmX800mm,链条传动;手动蜗杆减速器控制上辊筒升降,下辊筒不能升降;立式上进料;恒温循环水箱控制三辊温度

当用"压延法"生产(厚)1.50mmX(宽)580mmWPP生物降解正压热成型片材时,正常生产工艺记录如下:

(1)配料:PP生物淀粉降解粒料(西安万杰)100Kg +降解碎料120Kg

(2)机身温度:180-185-190-190-195-195(单位:℃)

(3)机头温度:195-190-195(单位:℃)

(4)过滤网:60目X2+80目X2

(5)余胶状态:粗如食指,均匀分布,旋转良好、光滑

(6)上辊温度:40℃;中辊45℃,下辊:30℃

(7)唇口开度:2.5mm

(8)在余胶大小保持适量的情况下,主机速度和三辊速度可同时加快或减慢

(9)片材质量:表面良,(到正压制杯热成型机试)热成型性能良,拉伸均匀

说明:(a) 本生产线主要用于HIPS、CPS、环保降解材料、高填充PP、PE片材生产同样适于一般非填充PP热成型片材的生产

(b) 用"压延法"也可以生产较薄的PP负压(真空)成型热成型生物降解片材(见后面三(2))

(c)由于含有大量淀粉,机身温度不能太高,过滤网不能太多、太密,否则片材易发黄,甚至纵向出现烧焦线条

(d)当用这条生产线加工PP填充片材(填充母料超过50%)时,三辊、机身温度应适当升高,以利均匀塑化,防止挤出机负载过大而损坏设备

C.汕头达成包装机械厂JP-90-700挤出片材机组:

单螺杆ф90X28,分离型;电磁调速电机,功率37KW;,直管式机头,无阻尼条;三辊规格ф256X700mm,蜗轮传动,气动控制下辊筒升降,上辊不能升降;立式下进料;并联或串联循环水路

(b)生产工艺比较简单,不在此赘述,可参照A、D

D.浙江宏华挤出片材生产线:双阶渐变式单螺杆ф100mm X30,无排气孔料筒;电磁调速电机,功率45KW;三辊规格ф260mmX800mm,齿轮传动,手动丝杠控制上辊筒升降,下辊筒不能升降;衣架式机头,带阻尼条;立式上进料;并联循环水路;人工上料;切边料单另粉

当用"压延法"生产0.55mmX580 CPP正压热成型片材时,正常生产工艺记录如下:

(1)配料:T30S粒料(濮阳)25Kg,碎料70Kg(其中60Kg厚碎料),

粉状透明剂(国产)0.03Kg

(2)机身温度:200-220-230-240-240-240(单位:℃)

(3)机头温度:225-220-225(单位:℃)

(4)主机(表显示):1450 r/min;三辊(表显示):525 r/min

(5)三辊温度(温度表测出水口水温):上辊48℃,中辊45℃,下辊35℃

(6)余胶状态:细如铅笔,均匀分布,旋转良好

(7)唇口开度:1.20mm

(8)机头距中辊距离:250mm

(9)过滤网:60目X3+80目X2

(10)片材质量:表面良好,(在压力热成型机上试)拉伸性能良好,塑杯无破损,底部也无发白现象,透明度良好

说明:(a) 通过试验,当上中下辊筒温度在30-35℃,主机在1200r/min,余胶保持不变,做出的热成型片材拉伸性能仍然良好,且透明度有所提高

(b) 机身温度还可降低10-20℃

(c) 透明剂有粒状的,粉状的当用粉状透明剂的时候,可在配方中用白油、松节油、酒精少量,以使粉状透明剂均匀分散,提高透明度

PP生产工艺问题

. 1工艺表,分通用工艺和专用工艺,必须严格按工艺目录执行,每次发放工艺,优先专用工艺,核对配方后再选用通用工艺,疑问及时联系工艺员处理; 1. 2 温度设定改性PP一般在210度左右,高光PP和某些含特殊物质的产品需有1-2区230度;防火PP一般在210-230度; 1. 3 转速,原则上以设备允许最大为准,不得轻易降低转速,如降低则需作为工艺异常记录; 1. 4 电流设定,同样以设备允许最大为准,尤其是01,02类产品,必须达到最佳班产,打板工艺必须调至最大,保证与生产一致。含粉体多下料不太稳定时,生产可以以电流为准,调整喂料,维持电流恒定; 1. 5真空,保持良好,一般在0.06以上。 1 .6附属设备,尤其在高等级产品时,最好先试运行,保证清机后不会因为这些附属设备原因停机等待; 1.7模孔数,是重要参数,一般填充pp都是尽量多开,17个以上,具体可根据标准班产进行调整,而汽车料因含POE等原因可适当少开几个,保持外观,72机则需据实际情况定。 1.8混料工艺,基本的原则:粒料一般在开始加,但是低熔点的如POE类在后面加,所有加油必须缓慢加入,尤其是粉体类料,油必须成线加入,粉体加入需防止飞扬,及时注意高混机是否有结快,及时清理; 1.9.1 改性PP01,02类严格按混料工艺时间混料,当02类含AH类粉体与其他粉体时,必须先加AH类粉体再加其他粉体,特别和S-01N等一起时; 1.9.2 改性PP 03类AH类粉体量多时,一般分两次加入,加一半以后再缓慢成线加油,再加另一半和其他粉体,混料时间,一般加一次AH类粉体60-70秒,使混出的料基本成粒状; 1.9.3只有PP粒料和POE的汽车类料,混料时间适当调短,POE一定最后加,约8秒后放料; 1.9.4防火PP 01类含十溴、AH类粉体、锑白时,将AH类粉体调整到其他两粉体之前加,锑白因比重较大,尽量在粉体的最后加,AH类粉体含量大时,可仿效改性PP03,将AH类粉体加入后缓慢加入油; 1.9.5 防火PP02类,八溴阻燃体系的混料,如04类含AH类粉体时,也基本同上,先AH类粉体,油,再其他粉体; 1.9.6 防火PP混料段加入回收料多的情况下,常需造粒,易堵塞模头,影响正常班产,还容易造成新的破碎料,所以防火PP类造粒尽量集中造粒, 1.9.7 混料机数,高等级的PP料容易受混料原因黑点超标,为便于清理重新混料,该类料混料机数一次不得大于2机,另粉体含量高的料料斗混料太多容易分层,堆积粉体,影响挤出生产,混料机数也必须控制在2-3机,

注塑成型工艺流程图

注塑成型工艺流程图 一、注塑成型的基本原理: 注塑机利用塑胶加热到一定温度后,能熔融成液体的性质,把熔融液体用高压注射到密闭的模腔内,经过冷却定型,开模后顶出得到所需的塑体产品。 二、注塑成型的四大要素: 1.塑胶模具 2.注塑机 3.塑胶原料 4.成型条件 三、塑胶模具 大部份使用二板模、三板模,也有部份带滑块的行位模。 基本结构: 1.公模(下模)公模固定板、公模辅助板、顶针板、公模板。2.母模(上模) 母模板、母模固定板、进胶圈、定位圈。3.衡温系统冷却.稳(衡)定模具温度。 四、注塑机 主要由塑化、注射装置,合模装置和传动机构组成;电气带动电机,电机带动油泵,油泵产生油压,油压带动活塞,活塞带动机械,机械产生动作; 1、依注射方式可分为: 1.卧式注塑机 2.立式注塑机 3.角式注塑机 4.多色注塑机 2、依锁模方式可分为: 1.直压式注塑机 2.曲轴式注塑机 3.直压、曲轴复合式 3、依加料方式可分为:

1.柱塞式注塑机 2.单程螺杆注塑机 3.往复式螺杆注塑机4、注塑机四大系统: 1.射出系统 a.多段化、搅拌性及耐腐蚀性。 b.射速、射出、保压、背压、螺杆转速分段控制。 c.搅拌性、寿命长的螺杆装置。 d.料管互换性,自动清洗。 e.油泵之平衡、稳定性。 2.锁模系统 a.高速度、高钢性。 b.自动调模、换模装置。 c.自动润滑系统。 d.平衡、稳定性。 3.油压系统 a.全电子式回馈控制。 b.动作平顺、高稳定性、封闭性。 c.快速、节能性。 d.液压油冷却,自滤系统。 4.电控系统 a.多段化、具记忆、扩充性之微电脑控制。 b.闭环式电路、回路。 c.SSR(比例、积分、微分)温度控制。

PP标准流程操作手册

PP标准流程操作手册

1.PP模块的主数据 (3) 1. 1物料主数据 (3) 1.1.1物料主数据的创建 (3) 1.2 BOM (9) 1.2.1 BOM的创建 (9) 1.2.2 BOM的删除 (11) 1.2.2 BOM反查清单 (14) 1. 3创建工作中心 (17) H (21) SAP001 (22) 按照示例填写 (23) 1. 4创建工艺路线 (24) 1101 (25) 4下达的(通用) (26) 在上图标识位置依据实际情形做相应的爱护 (27) 2.修改关于物料的销售与运作打算 (27) 1101 (28) 110 (29) 10=生产-销售 (29) 10 (29) 3=库存水平/(销售/30) (29) 能够手工输入,也能够按照目标日供应量进行运算 (29) 3.将销售运作打算转为物料需求打算 (29) 1101 (30) 选择“物料或产品组成员的生产打算” (30) 4.运行MRP (33) 1101 (33) 1,3,1,3,1 (33) 5.查看MRP运行结果并转换生成订单 (34) 1101 (35) 6.生产订单的下达 (38) 6.1生产订单的自动下达 (38) 6.2生产订单的手工下达 (42) 6.3生产订单下达的取消 (46) 7.依照生产订单进行收货 (49) 8.对生产订单的投料 (53) 9、生产订单的确认 (57) 10、与生产相关的其他内容 (59)

10.1MMD1创建MRP参数文件 (59) 10.2MP80创建推测参数文件 (65) 1.P P模块的主数据 PP模块的主数据要紧包括以下几方面:物料主数据,bom,工作中心,工艺路线,以下将详细讲述这些主数据的具体创建。 1.1物料主数据 1.1.1物料主数据的创建 事务代码:MM01 录入事务代码MM01,进入下图1 字段名称填写内容填写规则和说明 物料1100101037 采纳外部给号原则,严格 按照物料的编码规则进 行编写 行业领域三全食品按示例填写

注塑成型工艺

目录 第一章注塑成型 (1) 1.1 概述 (1) 1.2 注射成型的工艺过程 (1) 第二章注射成型 (3) 2.1加料 (3) 2.2加热塑化 (3) 2.3注射成型 (4) 第三章设备选型 (6) 3.1 设备选型总原则及要求 (6) 3.1.1 设备选型的原则 (6) 3.1.2 设备选型的要求 (6) 3.2 注塑机的选择 (7) 第四章参考文献 (8)

第一章注塑成型 1.1 概述 注塑是一种工业产品生产造型的方法。产品通常使用橡胶注塑和塑料注塑。注塑还可分注塑成型模压法和压铸法。注射成型机(简称注射机或注塑机)是将热塑性塑料或热固性料利用塑料成型模具制成各种形状的塑料制品的主要成型设备,注射成型是通过注塑机和模具来实现的。 塑料注塑是塑料制品的一种方法,将熔融的塑料利用压力注进塑料制品模具中,冷却成型得到想要各种塑料件。有专门用于进行注塑的机械注塑机。目前最常使用的塑料是聚苯乙烯。 1.2 注射成型的工艺过程 完整的注塑成型工艺过程包括成型前的准备,注射成型和成型后的加工处理三个阶段,归纳见图1-1: 塑料性能检测丨丨切除流到货物 预热、干燥丨制品初检→热处理 着色、造粒↓↑丨机械加工 嵌件预热、安放→→注射成型丨热处理 涂脱模剂↑丨修饰 试模丨丨装配 清洗料筒质量检验 成型前准备注射成型成型后的加工处理 图1-1 注塑成型工艺过程 1.2.1 计量加料与预塑化 加料量应等于制品的质量与浇道内料柱质量之和。加料时由料斗口下端的计量装置控制。当注射保压动作完成后,螺杆后退时,粒料均匀的落入机筒内被预塑化。 预塑化是当加入机筒内的粒料在一定温度范围内被转动的螺杆推向机筒前端,在温度作用下再加上螺杆转动中的挤压,剪切和摩擦力等综合条件影响,原料塑化成熔融状

上海震旦家具公司sa实施专案pp新增物料物料清单工艺工作中心流程p

第八章-PP08_新增物料/物料清单/工艺/工作中心流程 1.流程说明 此流程描述系统新增常规物料/物料清单/工艺/工作中心的全过程,包括相关数据的收集、维护、审核等严格把关的过程,以确保主数据创建的完整性和准确性。 新增物料:由研发部提出新增物料需求,确定物料编号,再由各相关部门填写物料主数据维护单之相关数据,由相关部门主管、数据维护部门主管核准后根据物料 主数据维护单维护系统数据MM01,数据正确后创建物料结构清单,研发部存 档备份报表。 新增物料清单:研发部提出物料结构维护需求,填写物料结构维护单,由研发部工程课主管、数据维护部门主管核准后根据表单维护系统数据CS01,由研发部 存档备份报表。 新增工艺/工作中心:生产部提出并确定新增物料的相关工艺/工作中心需求,再由财务 部提出新增活动类型需求,确认工序费及成本中心后,确定工艺/工 作中心数据,填写新增物料工艺/工作中心数据或复制现存工艺/工作 中心参数,生成物料数据维护单经过生产部主管、数据维护部门主管 核准后根据表单维护系统数据CA01、CR01,由研发部存档备份报表。 注意:物料主数据维护单、物料结构维护单、物料工艺/工作中心维护单的数据必须由各相关部门维护完整,并由相关部门主管审核。应严格控制授权的主数据维护人 员人数,以避免主数据的意外、错误更改。

2.流程图 3.系统操作 3.1.操作范例1 新建一个物料: 后勤?物料管理?物料主记录?物料?创建(一般)?立即 交易代码:MM01 栏位名称栏位说明资料范例 物料需新增物料的号码系统内部给号行业领域物料所存在的领域M 物料类型所需新增物料的品别,具体物料类型如下成品AOF

PP生产工艺

PP生产工艺 目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo 气相工艺、Basell公司的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 1 淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。 2 气相法工艺 气相法聚丙烯工艺的研究和开发始于20世纪60年代,1967年BASF 公司在Ludwigshafen建成一套采用立式搅拌床反应器的气相聚丙烯工艺中试装置。1969年BASF和Shell的合资ROW公司在德国Wesseling采用立式搅拌床反应器建成世界上第一套2.5万吨/年气相聚丙烯工业装置,命名为Novolen工艺。

UNIPOLPP工艺流程说明

PP工艺流程说明 本装置采用Dow化学公司的Unipol气相法聚合工艺技术,设计生产能力为20万吨/年,年操作时间8000小时,可生产均聚物(77个牌号)、无规共聚物(33 个牌号)和抗冲共聚物(52个牌号)共162个牌号。 UNIPOL PP装置由多个工区组成,包括: 2.221原料供给和精制(Part 1) 乙烯和氮气由管道自界区外送入。氢气由装置内水电解制氢生产,T2由装 置界区外直接采购。 1)氮气进料和精制 来自界区的氮气分为三股,第一股为普通氮气,用于公用工程站和氮气再生系统;第二股经氮气过滤器丫-1101过滤后作为过滤氮气使用; 最后一股经氮气预加热器E-1108加热到20°C,进入氮气脱氧塔C-1109内除掉氧气,脱氧后的氮气通过氮干燥塔C-1112除去水分,然后通过精制氮气过滤器丫-1115除去一定粒径的杂质,利用氮气压缩机K-1102 /K-1103 (—开一备)将一部分精制氮气的压力升至4.24MPaG后送入第一、第二反应系统,未经压缩的低压精制氮气用于部分公用工程和精制塔再生后系统的置换。 2)电解制氢及氢气进料 本装置的氢气采用水电解方式制得,装置内采用两套80Nm3/h水电解制氢 装置。电解制氢得到的氢气经纯化后进入氢气贮罐C-1201, C-1201为水电解制 氢的出口缓冲罐,操作压力为3 MPaG,之后由压缩机K-1208或K-1209压缩至 4.55 MPaG经氢气过滤器丫-1211过滤后送入反应系统及再生系统。同时供DMTO 装置使用1 kg/h。 3)乙烯进料 来自界区的乙烯在经过乙烯预加热器E-1008加热到100C,进入乙烯CO脱除塔C-1006,之后经乙烯后冷却器E-1009冷却到40C,冷却后的乙烯进入乙烯干燥塔C-1012进行干燥,后经乙烯过滤器丫-1002过滤.过滤后的乙烯分成两股:一股经乙烯压缩机K-1003增压至4.21 MPaG,经乙烯过滤器Y-1004进入第一聚合反应系统;另外一股直接进入第二聚合反应器系统。 4)T2进料 外购的液态T2用氮气保护从钢瓶中压到T2进料罐C-1505。之后由T2进料泵G-1503/G-1504/G-1507升压至3.94 MPag后送入反应系统。T2系统里所有的放空气都送至T2密封罐C-1502中,经油洗后排空,废油由最终用户自行处理。由矿物油桶泵G-1514和矿物油冲洗罐C-1512组成的矿物油冲洗系统用于T2 系统维修前的冲洗。

成型工艺流程及条件介绍

成型工艺流程及条件介绍第一節成型工艺 1.成型工艺参数类型 (1). 注塑参数 a.注射量 b.计量行程 c.余料量 d.防诞量 e.螺杆转速 f.塑化量 g.预塑背压 h.注射压力和保压压力 i.注射速度 (2)合模参数 a.合模力 b.合模速度

c.合模行程. d.开模力 e.开模速度 f.开模行程 g.顶出压力 h.顶出速度 i.顶出行程 2.温控参数 a.烘料温度 b.料向与喷嘴温度 c.模具温度 d.油温 3.成型周期 a.循环周期 b.冷却时间 c.注射时间

d.保压时间 e.塑化时间 f.顶出及停留时间 g.低压保护时间 成型工艺参数的设定须根据产品的不同设置. 第二节成型条件设定 按成型步骤:可分为开锁模,加热,射出,顶出四个过程. 开锁模条件: 快速段中速度 低压高压速度 锁模条件设定: 1锁模一般分: 快速→中速→低压→高压 2.快锁模一般按模具情况分,如果是平面二板模具,快速锁模段可用较快速度,甚至于用到特快,当用到一般快速时,速度设到55-75%,完全平面模可设定到

80-90%,如果用到特快就只能设定在45-55%,压力则可设定 于50-75%,位置段视产品的深浅(或长短)不同,一般是开模 宽度的1/3. 3.中速段,在快速段结束后即转换成中速,中速的位置一般 是到模板(包括三板模,二板模)合在一块为止,具体长度应 视模板板间隔,速度一般设置在30%-50%间,压力则是 20%-45%间. 4.低压设定,低速设定一般是在模板接触的一瞬间,具体位 置就设在机台显示屏显示的一瞬间的数字为准,这个数字一般是以这点为标准,,即于此点则起不了高压,高于此点则大,轻易起高压.设定的速度一般是15%-25%,视乎不同机种而定,压力一般设定于1-2%,有些机则可设于5-15%,也是视乎不同机种不同. 5.高压设定,按一般机台而言,高压位置机台在出厂时都已 作了设定,相对来讲,是不可以随便更改的,比如震雄机在 50P.速度相对低压略高,大约在30-35%左右,而压力则视乎 模具而定,可在55-85%中取,比如完全平面之新模,模具排气良好,甚至于设在55%即可,如果是滑块较多,原来生产时毛 边也较多,甚至于可设在90%还略显不足. 加热工艺条件设定

挤出成型工艺参数包括温度(优质借鉴)

挤出成型工艺参数包括温度、压力、挤出速率和牵引速度等。 1. 温度 温度是挤出成型得以顺利进行的重要条件之一。从粉状或粒状的固态物料开始,高温制品从机头中挤出,经历了一个复杂的温度变化过程。严格来讲,挤出成型温度应指塑料熔体的温度,但该温度却在很大程度上取决于料筒和螺杆的温度,一小部分来自在料筒中混合时产生的摩擦热,所以经常用料筒温度近似表示成型温度。 由于料筒和塑料温度在螺杆各段是有差异的,为了使塑料在料筒中输送、熔融、均化和挤出的过程顺利进行,以便高效率地生产高质量制件,关键问题是控制好料筒各段温度,料筒温度的调节是靠挤出机的加热冷却系统和温度控制系统来实现的。 机头温度必须控制在塑料热分解温度以下,而口模处的温度可比机头温度稍低一些,但应保证塑料熔体具有良好的流动性。 此外,成型过程中温度的波动和温差,将使塑件产生残余应力、各点强度不均匀和表面灰暗无光泽等缺陷。产生这种波动和温差的因素很多,如加热、冷却系统不稳定,螺杆转速变化等,但以螺杆设计和选用的好坏影响最大。 表9-1是几种塑料挤出成型管材、片材和板材及薄膜等的温度参数。 表9-1 热塑性塑料挤出成型时的温度参数 塑料名称 挤出温度/℃ 原料中水分 控制/% 加料段压缩段均化段机头及口模段 丙烯酸类聚合物室温100~170 ~200 175~210 ≤0.025醋酸纤维素室温110~130 ~150 175~190 <0.5 聚酰胺(PA)室温~90 140~180 ~270 180~270 <0.3 聚乙烯(PE)室温90~140 ~180 160~200 <0.3 硬聚氯乙烯(HPVC)室温~60 120~170 ~180 170~190 <0.2 软聚氯乙烯及氯乙烯共聚 物 室温80~120 ~140 140~190 <0.2 聚苯乙烯(PS)室温~100 130~170 ~220 180~245 <0.1

注塑机工艺流程

塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。(莱普乐注塑机节能改造网提供) 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 低速填充。热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

PP工艺流程

2.2 工艺说明 2.2.1 聚合反应机理 由于丙烯分子中存在一个不饱和碳碳双键,因此和所有烯烃一样,化学性质较为活泼,能发生催化加氢、亲电加成、自由基加成、氧化、聚合反应。其中聚合反应是一种非常重要的化学反应。丙烯聚合的反应机理相当复杂,一般来说可以划分为四个基本反应步骤:活化反应;形成活化中心;链引发;链增长及链终止。对于活化中心,普遍接受的是单金属活性中心理论。该理论认为活性中心是呈八面体配位并存在一个空位的过渡金属原子。首先单体与过渡金属配位,形成Ti配合物,减弱了Ti-C键,然后单体插入过渡金属和碳原子之间。随后空位与增长链交换位置,下一个单体又在空位上继续插入。如此反复进行,丙烯分子上的甲基就依次照一定方向在主链上有规则地排列,即发生阴离子配位定向聚合,形成等规或间规PP,工业上就是以此反应原理来合成聚丙烯树脂的。聚丙烯均聚物反应式如式2―1 聚丙烯聚合物中还有共聚物,如以丙烯为主要单体,以少量乙烯为第二单体或称共聚单体)进行共聚而成的聚合物,这种聚合反应叫共聚反应。如式2―2 聚丙烯的聚合反应为放热反应。 2.2.2 生产方法、技术路线及特点 2.2.2.1 生产方法及技术路线 装置采用DOW CHEMICAL COMPANY(陶氏化学公司)的UNIPOLTM PP工艺。该工艺是陶氏化学公司下属联碳公司(UCCP)和壳牌公司于二十世纪八十年代开发的一种气相流化床聚丙烯工艺,采用高效催化剂体系,主催化剂为高效载体催化剂,助催化剂为三乙基铝、给电子体。该工艺的核心设备为立式气相流化床反应器、循环气压缩机、循环气冷却器和挤压造粒机组。流化床反应器是空心式容器,其顶部带有扩大段,底部带有分布器,第一反应器操作压力为3.4MPaG,温度67℃,第二反应器操作压力为2.1MPaG,温度70℃;循环气压缩机为单级、离心式压缩机。 2.2.2.2 工艺特点

注塑工艺过程

注塑工艺过程 第八章注塑成型过程 及注塑模具计算机辅助设计中的流变学问题 1.注塑成型过程的流变分析 1.1 注塑成型过程简介 注塑成型,又称注射模塑,是热塑性塑料制品重要的成型方法。可用于生产形状结构复杂,尺寸精确,用途不同的制品,产量约占塑料制品总量的30% 。近年来,热固性塑料,越来越多的橡胶制品,带有金属嵌件的塑料制品也采用注射成型法生产。精密注射成型,气辅注射成型,多台注射机共注射及注射成型过程的全自动控制等为注射成型工艺发展的新领域。 注塑成型的主要设备是柱塞式或螺杆式往复注射机,以及根据制品要求设计的注射模具。塑化好的熔体靠螺杆或柱塞的推力注入闭合的模腔内,经冷却固化定型,开模得到所需的制品(见图8-1)。 图 8-1 典型注射成型设备示意图

注塑过程是循环往复、连续进行的。全部注塑过程由一个主循环和 两个辅助工序组成,见图8-2。 图 8-2 注塑过程循环示意图 与该过程相对应,一个循环中模腔内物料承受的压力随时间或温度的 变化曲线如图8-3 所示。图中各段时间的总和为一个注塑成型周期。 图 8-3 典型注塑周期的程序图 1-柱塞前进时间; 2-合模时间; 3-开模时间; 4-残余压力; a—静置时间;b —充模时间;c—保压时间;d —倒流时间;e—封口时间; f—封口后冷却时间 要得到令人满意的注塑制品,除掌握准确的时间程序外,还要借助于流变学理论,掌握模腔内的物料填充情况,即掌握流道和模腔内的压力变化程序和温度变化程序。 目前已经能够运用流变学和传热学理论,采用计算机辅助设计方法,数值计算模具设计中遇到的一些与流道设计、传热管路设计有关的问题,数字模拟流道和模腔内的物料填充图和压力、温度场分布图,为模具设计提供有价值的资料。 但是由于各种模具内流道形状复杂,模具温度不稳定,物料注射速度高,非牛顿流动性突出,流动过程间歇,所以对这样一个复杂的注射过程要求得其精确解几乎是不可能的。 下面首先运用流变学基本方程,结合若干经验公式,对注模过程中模腔内压力的变化进行分析,说明一些有意义的现象;然后介绍注射模具计算机辅助设计中的流变学方法。 一般螺杆式往复注射机及模具的功能区段可分为三段:塑化段,注射段,充模段。 塑化段同螺杆挤出机,物料在其中熔融、塑化、压缩并向前输送。 注射段由喷嘴、主流道、分流道、浇口组成,物料在其中的流动如同在毛细管流变仪中的流动。 充模段是关键,熔体由浇口进入模腔,发生复杂的三维流动以及不稳定传热、相变、固化等过程,流动情况十分复杂。 为简便起见,选择几何形状最简单的圆盘形模具和管式流道入口进行研究。

聚丙烯管(PP-R管)生产工艺

聚丙烯管(PP-R管)生产工艺 摘要:三型聚丙烯管具有节能,耐腐蚀,不结垢、卫生,无毒,耐热、耐压,使用寿命长,质轻高强,流体阻力小等优点,是替代镀锌钢管的新一代产品。介绍PP-R管的特点,原料生产工艺,国内现状、施工方法、项目投资估算及市场前景分析。 1前言 80年代以前,我国的住宅及公共建筑的上水管基本上是镀锌钢管,由于受材质自身的局限,镀锌钢管存在使用寿命短、易造成水质二次污染等缺点。为了保障人们日常饮用水的质量,我国部分地区,如上海、浙江、河北、江苏等省市已先后提出淘汰镀锌钢管,用高质量的塑料管代替。目前,在我国已相继开发了PVC管、PE管、铝塑复合管、玻璃钢管、钢塑复合管和PP-R管等一批塑料管材,并取得了一定的市场占有率。 PP-R管是欧洲90年代开发的,以新型无规聚丙烯为原料,经挤出成型制作的塑料管材。由于其优越的性能,正日益受到人们的青睐。 2PP-R管的主要性能 聚丙烯管分为均聚聚丙烯(PP-H)、嵌段共聚聚丙烯(PP-B)和无规聚丙烯(PP-R)3种。PP-H、PP-B、PP-R管材的刚度依次递减,而抗冲击强度则依次增加。给水用聚丙烯管是用特殊的PP-R制成。PP-R 管作为一种新型的管材,具有以下性能特点: 2.1节能 PP-R管的生产能耗仅为钢管的20%,并且其导热系数低[0.2W/(m.K)],也仅为钢管的1/200,应用于热水系统将大大减少热量损失。2.2耐腐蚀、不结垢、卫生、无毒 使用PP-R管可免去使用镀锌钢管所造成的内壁结垢、生锈而引起的水质“二次污染”。由于PP-R组份单纯,基本成份为碳和氢,符合食品卫生规定,无毒,更适合于饮用水输送。 2.3耐热、耐压、使用寿命长 PP-R管的长期使用温度达95℃,短期使用温度可达120℃。在使用温度为70℃,工作压力为1.2MPa条件下,长期连续使用,寿命可达50年以上。

注塑成型工艺流程及工艺参数

注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较为密实,密度较高;在压力较低区域,塑料较为疏松,密度较低,因此造成密度分布随位置及时间发生变化。保压过程中塑料流速极低,流动不再起主导作用;压力为影响保压过程的主要因素。保压过程中塑料已经充满模腔,此时逐渐固化的熔体作为传递压力的介质。模腔中的压力借助塑料传递至模壁表面,有撑开模具的趋势,因此需要适当的锁模力进行锁模。涨模力在正常情形下会微微将模具撑开,对于模具的排气具有帮助作用;但若涨模力过大,易造成成型品毛边、溢料,甚至撑开模具。因此在选择注塑机时,应选择具有足够大锁模力的注塑机,以防止涨模现象并能有效进行保压。 3.冷却阶段 在注塑成型模具中,冷却系统的设计非常重要。这是因为成型塑料制品只有冷却固化到一定刚性,脱模后才能避免塑料制品因受到外力而产生变形。由于冷却时间占整个成型周期约70%~80%,因此设计良好的冷却系统可以大幅缩短成型时间,提高注塑生产率,降低成本。设计不当的冷却系统会使成型时间拉长,增加成本;冷却不均匀更会进一步造成塑料制品的翘曲变形。 根据实验,由熔体进入模具的热量大体分两部分散发,一部分有5%经辐射、对流传递到大气中,其余95%从熔体传导到模具。塑料制品在模具中由于冷却水管的作用,热量由模腔中的塑料通过热传导经模架传至冷却水管,再通过热对流被冷却液带走。少数未被冷却水带走的热量则继续在模具中传导,至接触外

PE PP生产工艺

目前世界上拥有聚乙烯技术的公司很多,拥有LDPE技术的有7家,LLDPE和全密度技术的企 业有10家,HDPE技术的企业有12家。从技术发展情况看,高压法生产LDPE是PE树脂生产 中技术最成熟的方法,釜式法和管式法工艺技术均已成熟,目前这两种生产工艺技术并存。发达国家普遍采用管式法生产工艺。此外,国外各公司普遍采用低温高活性催化剂引发聚合体系,可降低反应温度和压力。高压法生产LDPE将向大型化、管式化方向发展。低压法生产HDPE和LLDPE,主要采用钛系和络系催化剂,欧洲和日本多采用齐格勒型钛系催化剂,而美国多采用络系催化剂。目前世界上主要应用的聚乙烯生产技术用11种,现简单介绍如下: (1)巴塞尔公司气相法Spherilene工艺 生产线性PE可从很低密度PE(ULDPE)到LLDPE,也可生产HDPE等。采用齐格勒-纳塔型钛基催化剂和Spherilene气相法工艺。在轻质惰性烃类存在下,催化剂和进料先进行本体预聚合,在缓和条件下发生本体聚合。浆液进入第一台气相反应器,采用循环气体回路冷却器散热,再进入二台气相反应器。生产产品密度从ULDPE(小于900kg/m3)到HDPE(大于960 kg/m3),熔体流动速率(MFR)从0.01-100。因采用二台气相反应器,故可生产双峰级和特种聚合物。Spherilene工艺1992年推向市场以来,现已拥有生产能力180万吨/年。六套生 产装置(美国1套、韩国2套、巴西2套、印度1套)己投入运转,另有二套(印度和伊朗各1套)在建设中,单线生产能力可从10万吨/年-30万吨/年。目前,中国没有这类技术的生产装置。 (2)北欧化工公司北星(Bastar)工艺

注塑成型工艺参数

注塑成型工艺参数 第一节注塑工艺参数 在制品和模具确定之后,注塑工艺参数的选择和调整对制品质量将产生直接影响。注塑工艺具体是指温度、压力、速度、时间等有关参数,实际成型中应综合考虑,在能保证制品质量(如外观、尺寸精度、机械强度等)和成型作业效率(如成型周期)的基础上来决定。尽管不同的注塑机调节方式各有所异,但是对工艺参数的设定和调整项目基本是相同的。注塑工艺参数与注塑机的设计参数是有关联的,但是在这里主要是从注塑工艺角度理解这些参数。 一、注塑参数 1.注射量:注射量是指注塑机螺杆(或柱塞)在注射时,向模具 内所注射的物料熔体量(g )。因此,注射量是由聚合物的物理性能及螺杆中料筒中的推进容积来确定的。 由此可见,选择注射量时,一方面必须充分地满足制品及其浇注系统的总用料量,另一方面必须小于注塑机的理论注射容积。如果选取用注射量过小则会因注射量不足而使制品产生各种缺陷,但过大又造成能源的浪费。 所以注塑料机不可用来加工小于注射量 10% 或超过注射量 70% 的制品,据统计世界上制品生产厂家大约有 1/3 的能源浪费在不合理地机型选择上。 2.计量行程(预塑行程):每次注射程序终止后,螺杆是处在料 筒的最前位置,当预塑程序到达时,螺杆开始旋转,物料被输送到螺杆头部,螺杆在物料的反压力作用下后退,直至碰到限位开关为止。这个过程称计量过程或预塑过程,螺杆后退的距离称计量容积,也正是注射容积,其计量行程也正是注射行程。因此制品所需的注射量是用计量行程工来调整的。 由此可知,注射量的大小与计量行程的精度有关,如果计量行程调节

太小会造成注射量不足,如果计量行程调整太大,使料筒前部每次注射后的余料太多,使熔体温度不均或过热分解,计量行程的重复精度的高低会影响注射量的波动.料温沿计量行程的分布是不均匀的,增加计量行程会加剧料温的不均匀性.螺杆转速、预塑背压和料筒的温度都将对熔体温度和温差有显着地影响. 在注射前处于螺杆头部计量室外中的熔体温度最高,虽然也有温差,但在这时较小,在注射后,螺杆槽中熔体的温度最低,停留一段时间之后熔体温度上升.这种温差可以采用调整螺杆转速轴向背压或使用新型螺杆等办法使其得到改善。 3.余料量:螺杆注射完了之后,并不希望把螺杆头部的熔料全部注射出去,还希望留存一些,形成一个余料量。这样,一方面可防止螺杆头部和喷射接触发生机械破损事故,另一方面,可通过此余料垫来控制注射量的重复精度达到稳定注塑制品质量的目的。如果余料垫过小,达不到缓冲目的,如果过大会使余料累积过多。近代注射塑机是通过螺杆注射终止时的极限位置来控制冲量的:如果位移传感器所检测的实际值超出缓冲垫的设定范围(一般 2-10mm )。 4.防延量:防延量是指螺杆计量(预塑)到位后,又直线地倒退一段距离,使计量室中熔体的比体积增加,内压下降,防止熔体从计量室外向外流出(通过喷嘴或间隙)。这个后退动作称防流延动作,防流延量可视聚合物沾度、相对密度和制品的情况进行设定,过大的防延量会使计量室中的熔料夹杂汽泡,严重影响制品质量。 5.螺杆转速:螺杆转速影响注塑物料在螺杆中输送;影响塑化能力、塑化质量和成型周期等因素的重要参数。随着转速提高塑化能力会增加。提高螺杆转速,流量加大,熔融温度的均匀性却有所改善。熔体温度和螺杆转速之间随着螺杆转速的提高,熔体温度也有所提高。 螺杆转速根据注塑条件用注塑机的额定螺杆转速,以额定量

注塑模具精加工工艺流程

注塑模具精加工工艺流程 一幅模具是由众多的零件组配而成,零件的质量直接影响着模具的质量,而零件的最终质量又是由精加工来完成保证的,因此说控制好精加工关系重大。在国内大多数的模具制造企业,精加工阶段采用的方法一般是磨削,电加工及钳工处理。在这个阶段要控制好零件变形,内应力,形状公差及尺寸精度等许多技术参数,在具体的生产实践中,操作困难较多,但仍有许多行之有效的经验方法值得借鉴。 模具零件的加工,根据零件的外观形状不同,大致可把零件分三类:板类、异形零件及轴类,其共同的工艺过程大致为:粗加工——热处理(淬火、调质)——精磨——电加工——钳工(表面处理)——组配加工。 1. 零件热处理 零件的热处理工序,在使零件获得要求的硬度的同时,还需对内应力进行控制,保证零件加工时尺寸的稳定性,不同的材质分别有不同的处理方式。随着近年来模具工业的发展,使用的材料种类增多了,除了Cr12、40Cr、Cr12MoV、硬质合金外,对一些工作强度大,受力苛刻的凸、凹模,可选用新材料粉末合金钢,如V10、ASP23等,此类材质具有较高的热稳定性和良好的组织状态。 针对以Cr12MoV为材质的零件,在粗加工后进行淬火处理,淬火后工件存在很大的存留应力,容易导致精加工或工作中开裂,零件淬火后应趁热回火,消除淬火应力。淬火温度控制在900-1020℃,然后冷却至200-220℃出炉空冷,随后迅速回炉220℃回火,这种方法称为一次硬化工艺,可以获得较高的强度及耐磨性,对于以磨损为主要失效形式的模具效果较好。生产中遇到一些拐角较多、形状复杂的工件,回火还不足以消除淬火应力,精加工前还需进行去应力退火或多次时效处理,充分释放应力。

UNIPOLPP工艺流程说明

p p工艺流程说明 本装置采用Dow化学公司得U n i p ol气相法聚合工艺技术,设计生产能力为20万吨/年,年操作时间8000小时,可生产均聚物(77个牌号)、无规共聚物(33 个牌号)与抗冲共聚物(52个牌号)共162个牌号。 UN I P OL PP装置由多个工区组成,包括: 2、2、2、1原料供给与精制(P ar t 1) 乙烯与氮气由管道自界区外送入。氢气由装置内水电解制氢生产,T 2由 装置界区外直接采购。 1 )氮气进料与精制 来自界区得氮气分为三股, 第一股为普通氮气,用于公用工程站与氮气再生系统;第二股经氮气过滤器丫-1 10 1过滤后作为过滤氮气使用; 最后一股经氮气预加热器E-110 8加热到20 °C,进入氮气脱氧塔C—11 0 9 内除掉氧气,脱氧后得氮气通过氮干燥塔C-1 112 除去水分, 然后通过精制氮气过滤器丫-1115 除去一定粒径得杂质,利用氮气压缩机K—1102 /K-1 103(一开一备)将一部分精制氮气得压力升至4、24M PaG后送入第一、第二反应系统, 未经压缩得低压精制氮气用于部分公用工程与精制塔再生后系统得置换。 2)电解制氢及氢气进料 本装置得氢气采用水电解方式制得,装置内采用两套80 N m3/h水电解制氢装置。电解制氢得到得氢气经纯化后进入氢气贮罐C—1 20 1, C—1201为 水电解制氢得出口缓冲罐,操作压力为 3 M P aG,之后由压缩机K—12 0 8或K —12 0 9 压缩至4、5 5 M PaG经氢气过滤器丫― 1211过滤后送入反应系统及再生系统。同时供D M TO 装置使用1 kg /h0 3)乙烯进料 来自界区得乙烯在经过乙烯预加热器E—1008加热到1 0 0C,进入乙烯C O脱除塔C -100 6 ,之后经乙烯后冷却器E-1009冷却到4 0C,冷却后得乙烯进入乙烯干燥塔C-1 012 进行干燥,后经乙烯过滤器丫—1 002 过滤、过滤后得乙烯分成两股:一股经乙烯压缩机K —1003增压至4、2 1 M P aG ,经乙烯过滤器丫—1004 进入第一聚合反应系统; 另外一股直接进入第二聚合反应器系统0 4)T2 进料 外购得液态T2用氮气保护从钢瓶中压到T2 进料罐C-1505。之后由T 2 进料泵G-1 5 03/G-150 4 / G-1 5 0 7升压至3、94 M Pa g后送入反应系统。T 2系统里所有得放空气都送至T2密封罐C—15 0 2中,经油洗后排空,废油由最终用户自行处理0 由矿物油桶泵G-151 4 与矿物油冲洗罐C-1512 组成得矿物油冲洗系统用于T 2系统维修前得冲洗。 2、2、2、2 丙烯精制(Part 2)

相关文档
最新文档