最新光合作用的原理和应用PPT
合集下载
5.4.2光合作用的原理和应用PPT完美课件(共18张)
AB段:光合<呼吸
B点:光补偿点,即光合 作用强度=细胞呼吸强度。
光补偿点
BC段:光合>呼吸
C点对应的横坐标:光饱和点, 增加光照强度光合作用强度 不再增加。
真正光合速率=净光合速率+呼吸速率
项目 净光合速率(又称表
观光合速率) 真正光合速率(又称 实际光合速率)
呼吸速率(黑暗中测 量)
表示方法 O2的释放量、CO2的吸收量、
肉体下沉,让 精 神在 碧 波 中 飞 升。
•
8.南北朝乐 府 民歌 虽 有 某 种 意义 上 的 差 别 ,可 在 语 言 节 奏、 质 朴 纯 真 风格 、 心 灵 绽 放的 美 丽 上 等 方面 的 “ 内 在 的美 ” 是 相 同 的。
•
5.对比是本 文 主要 的 表 现 手 法, 以 媳 妇 迫 于生 活 压 力 让 丈夫 监 守 自 盗 与丈 夫 的 断 然 拒绝 为 对 比 . 突出 了 丈 夫 的 品质 。
Байду номын сангаас
•
6.一个真性情 的 人 活 在 一个 最 冷 酷 的 现实 中 , 一 个 最洁 净 的 人 落 在一 个 最 肮 脏 的泥 塘 里 , 一 个最 遵 循 内 心 真实 的 人 面 对 的是 种 种 的 虚 伪和 狡 诈 。 你
6CO2+12H2O
叶绿体 光能
C6H12O6+6H2O+6O2
原料
条件
产物
CO2
水 浓分 度
光矿温
照
质 元
度
素
探究.实践
探究光照强度对光合作用强度的影响 1.打孔
2.处理叶片
3.自变量处理 4.观察记录
2.影响光合作用的因素
B点:光补偿点,即光合 作用强度=细胞呼吸强度。
光补偿点
BC段:光合>呼吸
C点对应的横坐标:光饱和点, 增加光照强度光合作用强度 不再增加。
真正光合速率=净光合速率+呼吸速率
项目 净光合速率(又称表
观光合速率) 真正光合速率(又称 实际光合速率)
呼吸速率(黑暗中测 量)
表示方法 O2的释放量、CO2的吸收量、
肉体下沉,让 精 神在 碧 波 中 飞 升。
•
8.南北朝乐 府 民歌 虽 有 某 种 意义 上 的 差 别 ,可 在 语 言 节 奏、 质 朴 纯 真 风格 、 心 灵 绽 放的 美 丽 上 等 方面 的 “ 内 在 的美 ” 是 相 同 的。
•
5.对比是本 文 主要 的 表 现 手 法, 以 媳 妇 迫 于生 活 压 力 让 丈夫 监 守 自 盗 与丈 夫 的 断 然 拒绝 为 对 比 . 突出 了 丈 夫 的 品质 。
Байду номын сангаас
•
6.一个真性情 的 人 活 在 一个 最 冷 酷 的 现实 中 , 一 个 最洁 净 的 人 落 在一 个 最 肮 脏 的泥 塘 里 , 一 个最 遵 循 内 心 真实 的 人 面 对 的是 种 种 的 虚 伪和 狡 诈 。 你
6CO2+12H2O
叶绿体 光能
C6H12O6+6H2O+6O2
原料
条件
产物
CO2
水 浓分 度
光矿温
照
质 元
度
素
探究.实践
探究光照强度对光合作用强度的影响 1.打孔
2.处理叶片
3.自变量处理 4.观察记录
2.影响光合作用的因素
光合作用的原理和应用ppt课件
利用体外环境中的某些无机物氧化时所释放的能量来制造有机物的合成作用。
例如:硝化细菌、硫细菌、铁细菌等少数种类的细菌
2NH3+3O2 硝化细菌 2HNO2+2H2O+能量 2HNO2+O2 硝化细菌 2HNO3+能量
化能自养生物 (硝化细菌、铁细菌等)
光能自养生物 (如绿色植物、蓝细菌)
能量
6CO2+6H2O
六、影响光合作用强度的因素及其应用
六、影响光合作用强度的因素及其应用
内部因素1:叶龄
在一定范围内,随幼叶的不断 生长,叶面积不断增大,叶绿体 不断增多,叶绿素含量不断增加, 光合作用强度不断增加
农作物、果树管理后期适当摘除老叶、残叶保证植物及时换新叶,同时 可降低其呼吸作用消耗有机物
六、影响光合作用强度的因素及其应用 内部因素2:叶面积指数
总光合 O2的产生/生成量
净光合
有机物的产生/制造量
CO2的吸收量 O2的释放量 有机物的积累/剩余量
呼吸
黑暗下CO2的释放量 O2的消耗/利用量(黑暗下O2的吸收量) 有机物的消耗量
六、影响光合作用强度的因素及其应用
实验原理
叶片含有空气上浮
抽气 叶片下沉 光合作用产生O2
O2充满细胞间隙
叶片上浮
B
C.鲁宾和卡门用同位素示踪的方法发现了光合作用中氧气来自水
D.阿尔农发现在光照下,叶绿体可合成ATP,并发现该过程总与水的光解相伴
2.下列叙述不正确的是( )
A.有氧呼吸过程中产生的[H]与氧气结合生成水分子,释放大量的能量
B.线粒体的内膜和基质中都能生成[H]
B
C.光合作用光反应阶段产生NADPH是在叶绿体的类囊体薄膜上完成的
光合作用的原理和应用PPT
ADP + Pi
光反应阶段
1.光反应阶段
条件 :必须有光 场所: 类囊体薄膜上
水的光解:2H2O
反应 ATP的合成: ADP
光 色素
H2O
O2
①水的光解 叶绿体 中的色 素 ②酶 [H] 供氢 酶
光能
ATP
供能
酶
ADP+Pi 光反应
4[H]+O2↑
+
Pi
+
光能
酶
ATP
产物:[H]、O 、ATP 2
注意:光反应和暗反应是一个整 体,二者紧密联系,缺一不可。光 反应是暗反应的基础,光反应 阶段为暗反应阶段提供能量( ATP)和还原剂[H],暗反应阶 段产生的ADP和Pi为光反应阶 段合成ATP提供原料。
下图是光合作用过程图解,请分析后回答下列问题:
H2O B F
光
A
C
D E+Pi H G J
能量转变: 光能
ATP中活跃的化学能
2C3
光 供氢 反 〔H〕 酶 应 阶 ATP 供能 段
酶
还
原
固 定
CO2 C5
多种酶 参加催化
ADP + Pi
(CH2O)
暗反应阶段
H2O
O2
①水的光解 叶绿体 中的色 素 ②酶 [H] 供氢 酶
2c3 ②
还 原 ① 固 多种酶 定
CO2
C5
2.暗反应阶段
光能
7、二氧化碳中碳的转移途径是CO2 C3 (CH2O)。
光能 ATP中 活跃化学能 8、光反应阶段能量变化是 。
9、暗反应阶段能量变化是ATP中活跃化学能转化为 有机物中稳定化学能 。
《光合作用》ppt
THANKS
详细描述
在光合作用中,合成的糖类等有机物质会被运输到细胞的各个部位,包括根、茎、叶等器官。这些有机物会通 过韧皮部运输到植物的其他部位,以满足植物生长发育的需求。同时,这些有机物也会被分配到不同的器官中 ,以维持植物各部分的正常生长和发育。
04
光合作用的场所和条件
光合作用的场所
叶绿体
光合作用的主要场所是叶绿体,它是一种含有叶绿素的细胞器, 能够吸收阳光,将光能转化为化学能。
培养光合作用领域的优秀人才与国际合作
总结词
培养光合作用领域的优秀人才与加强国际合作是推动光合作用研究的重要措施。
详细描述
培养具有国际视野和创新能力的高水平人才是推动光合作用研究的关键。同时,加强国际合作与交流 ,共同开展光合作用研究,有利于加快研究进程,提高研究水平,为人类创造更多的生态、社会和经 济效益。
2023
《光合作用》ppt
目录
• 光合作用简介 • 光合作用的过程 • 光合作用中的物质变化 • 光合作用的场所和条件 • 光合作用的应用与意义 • 光合作用的未来研究与发展趋势
01
光合作用简介
什么是光合作用?
01
02
03
光合作用的定义
光合作用是植物、藻类和 某些细菌通过捕获光能, 将二氧化碳和水转化为有 机物质的过程。
糖类的合成与储存
总结词
糖类的合成和储存是光合作用中物质变化的另一个重要环节。
详细描述
在光合作用中,通过一系列酶的催化作用,将三碳化合物和五碳化合物等小分子 化合物转化为糖类等有机物质。这些糖类被储存在细胞的叶绿体中,作为植物生 长发育所需的能量来源。
有机物的运输与分配
总结词
有机物的运输和分配是光合作用中物质变化的最后一个环节。
光合作用的原理和应用PPT
生物质供热
利用生物质进行燃烧供热, 可用于家庭、工厂和城市 供暖等。
04
光合作用的限制因素
光照不足
光照是光合作用的主要能量来源,光 照不足会导致光合作用效率降低,影 响植物的生长和产量。
在农业生产中,可以通过合理密植、 选择适宜的种植方式、利用人工光源 等方式来提高光照强度,促进光合作 用的进行。
释放氧气
光合作用过程中,植物释放氧气,为人类和其他生物提供呼吸所需 的氧气。
净化空气
植物通过吸收空气中的有害气体和尘埃颗粒,起到净化空气的作用。
生物能源利用
01
02
03
生物燃料
利用光合作用将植物中的 能量转化为生物燃料,如 生物柴油、生物乙醇等, 可替代化石燃料。
生物质能发电
利用植物废弃物等生物质 进行燃烧发电,减少对化 石燃料的依赖。
植物光合作用
植物光合作用是植物利用阳光、 水和二氧化碳合成有机物的过程, 是地球上最重要的化学反应之一。
植物细胞中的叶绿体在光合作用 中起着关键作用,叶绿体中的叶 绿素能够吸收阳光并将其转化为
能量。
植物光合作用的产物主要是葡萄 糖和氧气,葡萄糖可以进一步转 化为其他有机物,如纤维素和果
糖等。
藻类光合作用
藻类是一类微小的生物,具有多种类 型,其中一些种类可以进行光合作用。
不同种类的藻类光合作用的产物有所 不同,如某些藻类可以产生油类等有 机物,这些产物可以用于生产生物燃 料和食品添加剂等。
藻类光合作用的过程与蓝藻和植物的 光合作用类似,也是利用阳光、水和 二氧化碳产生有机物和氧气。
03
光合作用的应用
光合作用增强剂的应用
叶面施肥
通过叶面施肥的方式,将光合作用增强剂喷洒在植物叶片上,可以促进植物的 光合作用,提高植物的生长和产量。
光合作用ppt免费课件
详细描述
光合作用的能量转换是植物吸收光能后,将这个能量转化为化学能,存储在葡萄糖中。这个过程是地球上最重要 的能量转换过程之一,它为整个生物圈提供了基础能量来源。
光合作用中的物质转换
总结词
光合作用中的物质转换是指植物在光合作用过程中,将二氧化碳和水等无机物质转化为葡萄糖和氧气 的有机物质的过程。
详细描述
温度对光合作用的影响主要体 现在酶的活性上。在一定的温 度范围内,光合作用速率随温 度的升高而加快;但当温度过 高时,光合作用速率会降低。
水是光合作用的原料之一,水 分不足会导致光合作用速率下 降。同时,植物通过蒸腾作用 散失水分,这也会对光合作用 产生影响。
提高光合作用效率的方法
优化光照条件
保持适宜的水分供应
详细描述
光合作用是地球上最重要的化学反应 之一,它利用光能将无机的二氧化碳 和水转换成有机物质,并释放氧气, 为生物圈提供食物和氧气。
光合作用的重要性
总结词
光合作用为生物圈提供食物、氧气和能量,维持生态平衡和生物多样性。
详细描述
光合作用是地球上所有生物的食物来源,它产生的有机物质是生物体生存和繁 衍的基础。同时,光合作用释放的氧气也是生物呼吸所需的重要气体,对维持 生态平衡和生物多样性具有重要意义。
在光合作用中,植物通过一系列的生化反应,将吸收的二氧化碳和水等无机物质转化为葡萄糖和氧气 等有机物质。这个过程需要叶绿体中的叶绿素作为催化剂,并需要光能提供能量。
04
光合作用的效率与影响因素
光合作用的效率
光合作用是植物、藻类和 某些细菌利用光能将二氧 化碳和水转化为葡萄糖, 并释放氧气的过程。
光合作用的效率取决于多 种因素,包括光照强度、 光质、温度、水分、二氧 化碳浓度等。
光合作用的能量转换是植物吸收光能后,将这个能量转化为化学能,存储在葡萄糖中。这个过程是地球上最重要 的能量转换过程之一,它为整个生物圈提供了基础能量来源。
光合作用中的物质转换
总结词
光合作用中的物质转换是指植物在光合作用过程中,将二氧化碳和水等无机物质转化为葡萄糖和氧气 的有机物质的过程。
详细描述
温度对光合作用的影响主要体 现在酶的活性上。在一定的温 度范围内,光合作用速率随温 度的升高而加快;但当温度过 高时,光合作用速率会降低。
水是光合作用的原料之一,水 分不足会导致光合作用速率下 降。同时,植物通过蒸腾作用 散失水分,这也会对光合作用 产生影响。
提高光合作用效率的方法
优化光照条件
保持适宜的水分供应
详细描述
光合作用是地球上最重要的化学反应 之一,它利用光能将无机的二氧化碳 和水转换成有机物质,并释放氧气, 为生物圈提供食物和氧气。
光合作用的重要性
总结词
光合作用为生物圈提供食物、氧气和能量,维持生态平衡和生物多样性。
详细描述
光合作用是地球上所有生物的食物来源,它产生的有机物质是生物体生存和繁 衍的基础。同时,光合作用释放的氧气也是生物呼吸所需的重要气体,对维持 生态平衡和生物多样性具有重要意义。
在光合作用中,植物通过一系列的生化反应,将吸收的二氧化碳和水等无机物质转化为葡萄糖和氧气 等有机物质。这个过程需要叶绿体中的叶绿素作为催化剂,并需要光能提供能量。
04
光合作用的效率与影响因素
光合作用的效率
光合作用是植物、藻类和 某些细菌利用光能将二氧 化碳和水转化为葡萄糖, 并释放氧气的过程。
光合作用的效率取决于多 种因素,包括光照强度、 光质、温度、水分、二氧 化碳浓度等。
光合作用的原理和应用课件
光合作用的原理和应用课件
目 录
• 光合作用的基本原理 • 光合作用的类型 • 光合作用的应用 • 光合作用的未来发展
01 光合作用的基本原理
光合作用定义
总结词
光合作用是植物、藻类和某些细 菌通过光能将二氧化碳和水转化 为有机物和氧气的过程。
详细描述
光合作用是地球上最重要的化学 反应之一,它为生物圈提供食物 和氧气,是维持地球生态平衡的 关键过程。
光合作用在农业上的应用
提高作物产量
通过优化光照、温度等环境因素, 促进光合作用,提高作物的光能
利用率,进而增加产量。
培育抗逆性作物
利用光合作用相关基因的遗传改 良,培育出抗旱、抗寒、抗盐碱 等抗逆性强的作物品种,提高农
作物的适应性和生存能力。
精准农业
通过实时监测和数据分析,了解 作物的光合作用状况,制定精准 的农业管理措施,如合理施肥、
人工光合作用
模拟自然光合作用过程,开发人工光合系统,实现高 效、清洁的能源生产。
光合作用的研究前景
01
生物燃料生产
利用光合微生物生产生物燃料, 替代化石燃料,减少温室气体排 放。
农业增产
02
03
气候变化减缓
通过提高植物的光合效率,增加 农作物产量,满足不断增长的食 物需求。
通过减少温室气体排放和增加碳 汇,光合作用研究有助于减缓气 候变化。
环境保护与可持续发展
通过推广光合作用原理在环境保护中的应用,促进可持续 发展目标的实现,如减少温室气体排放、提高资源利用效 率等。
04 光合作用的未来发展
光合作用的研究进展
基因编辑技术
利用CRISPR-Cas9等基因编辑技术,对光合微生物进 行基因改造,提高其光合效率。
目 录
• 光合作用的基本原理 • 光合作用的类型 • 光合作用的应用 • 光合作用的未来发展
01 光合作用的基本原理
光合作用定义
总结词
光合作用是植物、藻类和某些细 菌通过光能将二氧化碳和水转化 为有机物和氧气的过程。
详细描述
光合作用是地球上最重要的化学 反应之一,它为生物圈提供食物 和氧气,是维持地球生态平衡的 关键过程。
光合作用在农业上的应用
提高作物产量
通过优化光照、温度等环境因素, 促进光合作用,提高作物的光能
利用率,进而增加产量。
培育抗逆性作物
利用光合作用相关基因的遗传改 良,培育出抗旱、抗寒、抗盐碱 等抗逆性强的作物品种,提高农
作物的适应性和生存能力。
精准农业
通过实时监测和数据分析,了解 作物的光合作用状况,制定精准 的农业管理措施,如合理施肥、
人工光合作用
模拟自然光合作用过程,开发人工光合系统,实现高 效、清洁的能源生产。
光合作用的研究前景
01
生物燃料生产
利用光合微生物生产生物燃料, 替代化石燃料,减少温室气体排 放。
农业增产
02
03
气候变化减缓
通过提高植物的光合效率,增加 农作物产量,满足不断增长的食 物需求。
通过减少温室气体排放和增加碳 汇,光合作用研究有助于减缓气 候变化。
环境保护与可持续发展
通过推广光合作用原理在环境保护中的应用,促进可持续 发展目标的实现,如减少温室气体排放、提高资源利用效 率等。
04 光合作用的未来发展
光合作用的研究进展
基因编辑技术
利用CRISPR-Cas9等基因编辑技术,对光合微生物进 行基因改造,提高其光合效率。
2024版《光合作用》ppt优秀课件
目的
通过本课件的学习,使学生了解光合作用的基本概念、原理、过程和意义,培养学生的科学素养和环保意识,提 高学生的综合素质和实践能力。
光合作用的重要性
维持地球生态平衡
光合作用是地球上生物圈的重要组成 部分,它能够将太阳能转化为化学能, 并释放出氧气,为地球上的生物提供 生存条件。
促进农业生产
推动新能源发展
光能使水分子裂解为氧气、质子和电子,氧气释放到大气中。
ATP和NADPH的生成
03
通过光合磷酸化和电子传递链,生成ATP和NADPH,为后续暗
反应提供能量和还原力。
暗反应机制
01
02
03
二氧化碳的固定
二氧化碳与五碳糖结合, 生成不稳定的六碳中间产 物。
还原反应
利用光反应产生的ATP和 NADPH,将六碳中间产 物还原为三碳糖。
光合作用与生态系统的关系
深入研究光合作用与生态系统的相互作用关系,揭示光合作用在生态系统中的功能和调 控机制,为生态系统的保护和恢复提供科学依据。
THANKS
感谢观看
其他环境因素对光合作用的影响
水分对光合作用的影响
矿质元素对光合作用的影响
水分是光合作用的原料之一,缺水会导致光 合作用速率下降。
一些矿质元素如氮、磷、钾等对光合作用有 重要作用,缺乏这些元素会导致光合作用减 弱。
空气污染对光合作用的影响
农业生产措施对光合作用的影响
空气污染中的有害物质如二氧化硫、氟化物 等会对叶绿体造成损害,影响光合作用进行。
随着人类对可再生能源的需求不断增 加,光合作用在新能源领域的应用前 景广阔,如利用光合作用原理开发太 阳能电池等。
光合作用在农业生产中具有重要作用, 通过提高作物的光合效率,可以增加 作物产量和品质,提高农业生产效益。
通过本课件的学习,使学生了解光合作用的基本概念、原理、过程和意义,培养学生的科学素养和环保意识,提 高学生的综合素质和实践能力。
光合作用的重要性
维持地球生态平衡
光合作用是地球上生物圈的重要组成 部分,它能够将太阳能转化为化学能, 并释放出氧气,为地球上的生物提供 生存条件。
促进农业生产
推动新能源发展
光能使水分子裂解为氧气、质子和电子,氧气释放到大气中。
ATP和NADPH的生成
03
通过光合磷酸化和电子传递链,生成ATP和NADPH,为后续暗
反应提供能量和还原力。
暗反应机制
01
02
03
二氧化碳的固定
二氧化碳与五碳糖结合, 生成不稳定的六碳中间产 物。
还原反应
利用光反应产生的ATP和 NADPH,将六碳中间产 物还原为三碳糖。
光合作用与生态系统的关系
深入研究光合作用与生态系统的相互作用关系,揭示光合作用在生态系统中的功能和调 控机制,为生态系统的保护和恢复提供科学依据。
THANKS
感谢观看
其他环境因素对光合作用的影响
水分对光合作用的影响
矿质元素对光合作用的影响
水分是光合作用的原料之一,缺水会导致光 合作用速率下降。
一些矿质元素如氮、磷、钾等对光合作用有 重要作用,缺乏这些元素会导致光合作用减 弱。
空气污染对光合作用的影响
农业生产措施对光合作用的影响
空气污染中的有害物质如二氧化硫、氟化物 等会对叶绿体造成损害,影响光合作用进行。
随着人类对可再生能源的需求不断增 加,光合作用在新能源领域的应用前 景广阔,如利用光合作用原理开发太 阳能电池等。
光合作用在农业生产中具有重要作用, 通过提高作物的光合效率,可以增加 作物产量和品质,提高农业生产效益。
《光合作用的原理》课件
用的效率。
光照强度和光谱分布
03
光照强度和光谱度和光谱分布的需求不同。
04
光合作用的意义与影响
光合作用对生物圈的影响
01
维持大气中氧气和二氧化碳的平衡
光合作用吸收二氧化碳并释放氧气,对维持大气中氧气和二氧化碳的平
衡起着重要作用。
02
促进生物多样性的形成
02
03
优化种植结构
通过合理安排农作物的种 植密度和搭配,充分利用 光能,提高整体产量。
应用生长调节剂
使用植物生长调节剂,如 赤霉素、细胞分裂素等, 促进植物的光合作用,进 而提高产量。
合理施肥
根据土壤养分状况和作物 需求,合理施用氮、磷、 钾等肥料,增强植物的光 合作用能力。
人工模拟光合作用
研发光合作用催化
光合作用的重要性
总结词
光合作用为地球上的生物提供了食物 、氧气和能量,维持了地球的生态平 衡。
详细描述
光合作用是地球上生物生存的基础, 它产生的有机物和氧气为地球上的生 物提供了必要的能量和养分,维持了 地球的生态平衡和生物多样性。
光合作用的发现历程
总结词
光合作用的发现经历了漫长的历史,科学家们通过实验和观察逐步揭示了光合 作用的奥秘。
光合作用中的物质转化
总结词
光合作用中的物质转化是指植物通过光合作用将光能转换为化学能,并合成有机物。
详细描述
在光合作用过程中,植物吸收光能后,将水分子分解为氧气和电子,同时生成ATP和NADPH。这些能量和电子 被用于将二氧化碳还原为葡萄糖,最终形成有机物。这个过程实现了从光能到化学能的转换,为植物的生长和发 育提供了所需的能量和物质基础。
二氧化碳
光合作用需要二氧化碳作为原料,二氧化碳浓度 、温度等因素也会影响光合作用的效率。
(完整版)光合作用优秀课件
过程简述
光合作用可以简单分为光反应和暗反应两个阶段。在光反应阶段,植物吸收光 能,将水分解为氧气和还原氢;在暗反应阶段,植物利用还原氢和大气中的二 氧化碳,在酶的催化下合成有机物。
光反应与暗反应区别联系
区别
光反应发生在叶绿体类囊体薄膜上, 需要光,产物为氧气、还原氢和ATP; 暗反应发生在叶绿体基质中,不需要 光,产物为有机物。
联系
光反应为暗反应提供还原氢和ATP,暗 反应为光反应提供ADP和Pi。二者紧密 联系,共同完成光合作用。
能量转化与物质循环过程
能量转化
光合作用实现了光能向化学能的转化。在光反应阶段,植物吸收光能并将其转化为 ATP中的化学能;在暗反应阶段,这些化学能被用来合成有机物。
物质循环
光合作用参与了自然界的碳循环。植物通过光合作用将大气中的二氧化碳转化为有 机物,同时释放出氧气。这些有机物在植物体内被利用或转化为其他生物可利用的 物质,从而实现了碳在生物圈中的循环。
(680nm)的吸收和传递;PSI产生的还原力用于NADPH的形成,而
PSII产生的氧化力用于水的光解和质子的释放。
电子传递链载体和路径选择
电子传递链载体
包括质体醌、细胞色素b6f复合体、质蓝素(PC)等。
路径选择
在光合作用中,电子从PSII传递到PSI主要有两条路径,一是通过细胞色素b6f复合体的循环电子传递路径,二是 通过PSI的直接电子传递路径。不同植物和环境下,两条路径的选择有所差异。
除叶绿素外的其他色素,如类胡萝卜素、藻胆素等。
对光合作用影响
辅助色素能够吸收不同波长的光,扩大光合作用的光谱范围;同时,它们还能保护叶绿素免受强光破坏。
叶绿素含量测定方法
分光光度法
利用分光光度计测定叶绿素提取液在特定波长下的吸光度,根据标准曲线计算叶绿素含 量。
光合作用可以简单分为光反应和暗反应两个阶段。在光反应阶段,植物吸收光 能,将水分解为氧气和还原氢;在暗反应阶段,植物利用还原氢和大气中的二 氧化碳,在酶的催化下合成有机物。
光反应与暗反应区别联系
区别
光反应发生在叶绿体类囊体薄膜上, 需要光,产物为氧气、还原氢和ATP; 暗反应发生在叶绿体基质中,不需要 光,产物为有机物。
联系
光反应为暗反应提供还原氢和ATP,暗 反应为光反应提供ADP和Pi。二者紧密 联系,共同完成光合作用。
能量转化与物质循环过程
能量转化
光合作用实现了光能向化学能的转化。在光反应阶段,植物吸收光能并将其转化为 ATP中的化学能;在暗反应阶段,这些化学能被用来合成有机物。
物质循环
光合作用参与了自然界的碳循环。植物通过光合作用将大气中的二氧化碳转化为有 机物,同时释放出氧气。这些有机物在植物体内被利用或转化为其他生物可利用的 物质,从而实现了碳在生物圈中的循环。
(680nm)的吸收和传递;PSI产生的还原力用于NADPH的形成,而
PSII产生的氧化力用于水的光解和质子的释放。
电子传递链载体和路径选择
电子传递链载体
包括质体醌、细胞色素b6f复合体、质蓝素(PC)等。
路径选择
在光合作用中,电子从PSII传递到PSI主要有两条路径,一是通过细胞色素b6f复合体的循环电子传递路径,二是 通过PSI的直接电子传递路径。不同植物和环境下,两条路径的选择有所差异。
除叶绿素外的其他色素,如类胡萝卜素、藻胆素等。
对光合作用影响
辅助色素能够吸收不同波长的光,扩大光合作用的光谱范围;同时,它们还能保护叶绿素免受强光破坏。
叶绿素含量测定方法
分光光度法
利用分光光度计测定叶绿素提取液在特定波长下的吸光度,根据标准曲线计算叶绿素含 量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
第
第
一
绿色植物
二
组
(如小球 藻)
组
H2O
H218O
预测1:若第一组为O2,第二组为18O2,则全部来自H2O 预测2:若第一组为18O2 ,第二组为O2 ,则全部来自CO2 预测3:若两组既有18O2、也有O2,则来自两者。
C18O2
O2
CO2
18O2
第
一
组
H2O
第
二
组
H218O
结论:光合作用释放的氧气全部来自水 光合作用产生的有机物又是怎样合成的?
②图中C是___[H____,它被传递到叶绿体的_基__质___部位,用
于_用__作__还_原__剂__],_还__原__C_3____ 。
色素吸收
③图中D是_A_T__P,在叶绿体中合成D所需的能量来自的__光__能__
④图中G_C_5_化__合__物_,F是_C_3_化__合__物___,J是__糖__类_________ ⑤图中的H表示_光__反_应___, H为I提供_[_H_]_和_A_T_P___
光合作用原理的应用
1、光合作用发生的部位是叶绿体 。 2、光合作用分为 光反应 和 暗反应 两个阶段。 3、光合作用释放氧气来自于 水 物质。
4、光合作用中的ATP形成于 光 反应阶段。 5、光反应为暗反应提供 [H] 和 ATP 物质。 6、光反应场所__类__囊_体__薄__膜_____,
暗反应场所是__叶__绿__体__基_质______。
卡尔文
美国
用14C标记14CO2,供小球 藻进行光合作用,探明了 CO2中的C在光合作用中转 化成有机物中C的途径,这 一途径称为卡尔文循环。
光合作用的过程
划分依据:反应过程是否需要光能
光反应 暗反应
光反应在白天可以进行吗?夜间呢?有光才能反应 暗反应在白天可以进行吗?夜间呢?
有光、无光都能反应
类囊体膜
H2O
酶
[H ]
Pi +ADP ATP
三碳化合物 2C3
叶绿体基质 C3的
CO2
CO2的 固定
多种酶
还原
五碳化合物 C5
卡尔文循环
糖类
暗反应阶段
场所: 叶绿体的基质中
条件:
[H] 、ATP、酶 CO2的固定:CO2+C5
酶
2C3
物质变化 C3的还原:2[HC]3、ATP
酶 (CH2O)+ C5 +H2O
原料和产物的对应关系:
C (CH2O) H
O
CO2
H2O CO2
O2
H2O
能量的转移途径:
光能
ATP中活跃 的化学能
碳的转移途径:
(CH2O)中稳定 的化学能
CO2
C3
(CH2O)
下图是光合作用过程图解,请分析后回答下列问题:
H2O
B
C
光
A
D
F CO2
G
E+Pi
J
①图中A是__色_素___,B是H___O__2 __,它来自于I__水____的分解。
类囊体膜
H2O
光反应阶段
酶
进入叶绿
体基质,
[H 参与暗反 ]应
Pi +ADP 场所: 叶绿体内的类囊体薄膜上
ATP 供暗反
应使用
条件: 光、色素、酶 水的光解:H2O
光能 (还原剂) [H] + O2
物质变化 ATP的合成:ADP+Pi +能量(光能) 酶 ATP
能量变化 光能转变为活跃的化学能贮存在ATP中
光合作用在哪里进行?
五、1880年,恩格尔曼的水绵实验:100页
没
没
有
有
氧
氧
气
气
的
极
的
黑 暗
细 的 光
环
束
境
有 光 环 境
实验证明:氧是由叶绿体释放出来的,叶绿 体是绿色植物进行光合作用的场所。
光合作用释放的氧气到底 来自CO2还是H2O ?
六、美国鲁宾和卡门实验(同位素标记法)
C18O2
? CO2
水的光解; 光AT能P的生A成TP中活
跃化学能
CO2的固定; C3的还原
ATP中活 跃化学能
有机物中稳 定化学能
光反应是暗反应的基础,为暗反应提供[H]和ATP, 暗反应为光反应提供ADPO 叶绿体 (CH2O)+O2
光合作用总过程:
可见光
2H2O O2
2C3
光解
酶
吸收
4[H]
7、二氧化碳中碳的转移途径是 co2 c3 (CH2O)
一、1648年海尔蒙特 栽培柳树实验
结论:植物的物质积累 不是来自于土壤,而是 完全来源于水。
你认为他的结论正确吗?
二、1771年普里斯特利 的实验
结论:绿色植物可以更新空气
重复普利斯特利的的实 验有时成功,有时失败, 可能的原因是什么?
三、1779年荷兰的科学家英格豪斯
结论:植物体 只有在光下才 能更新污浊的 空气。
ADP+Pi 糖类
能量变化
ATP中活跃的化学能转变为糖类等 有机物中稳定的化学能
三碳化合物 2C3
叶绿体基质
CO2
CO2的 固定
多种酶
五碳化合物 C5
ATP [H]
糖类
比较光反应、暗反应
光反应阶段
暗反应阶段
条件
光、色素、酶 (不需光)酶、[H]、ATP
场所 叶绿体类囊体膜
叶绿体基质中
物质变化 能量变化
甲
乙
(1)他在实验中控制的单一变量是什么?
(2) 英格豪斯知道植物更新了空气中的什么成 分吗?为什么?
1785年----空气的组成成分----绿叶在光下吸收了 CO2,释放了O2
(3)在这一过程中,光能哪里去了?
1845年--梅耶(德)--能量转化和守恒定律--植物 在进行光合作用时,把光能转化成化学能储存起来。
色素分子
ATP
还 原
多种酶
酶
能
ADP+Pi
固定 CO2 C5
(CH2O)
光反应
暗反应
总结: 水的光解:
光反应
H2O 酶→2 [H] + 1/2O2
ATP的合成 :
ADP + Pi + 光能 酶 ATP
CO2的固定:
暗反应
CO2 + C5酶→ 2C3
CO2的还原:
酶
2C3 + [H] ATP (CH2O) + C5
光能转化为化学能储存 在什么物质中?
四、1864年德国的植物学家萨克斯 采用碘液检测淀粉
一半遮光
一半曝光
绿色 叶片
黑暗 处理
遮光 碘蒸汽 曝光
结论:绿色叶片在光合作用下产生了淀粉。
不变蓝 变蓝
①为什么要把绿叶在暗处放置一昼夜? ②叶片部分遮光,部分曝光,目的是什么? ③这个实验得出什么结论?
结论:植物在光下产生了淀粉
光合作用的原理和应用 PPT
光合作用的概念 指绿色植物通过叶绿体,利用光能,
把二氧化碳和水转化成储存着能量的有 机物,并且释放出氧气的过程。
光合作用的实质 合成有机物,储存能量
光合作用的探究历程
问题:植物生长所需的物质来自何处?
亚里士多德 (Aristotle)
观点:植物体由“土壤汁”构成,即植 物生长发育所需的物质完全来自土壤。