人工智能前沿技术应用趋势与发展展望

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能前沿技术应用趋势与发展展望作者:何宝宏徐贵宝

来源:《中国工业和信息化》2019年第04期

现阶段人工智能技术发展呈现出不同的特点,并面临新的挑战。短期来看,人工智能技术的研究将围绕解决算法理论、数据集基础、计算平台与芯片等方面的问题进行;长期来看,人工智能技术将分别沿着算法和算力两条主线向前发展,并逐步带领人类进入到人机协同的新时代。

随着深度学习技术在智能驾驶、智慧金融、智能制造、智慧农业、智慧医疗、智能家居等領域的逐步应用,作为引领这一轮科技革命和产业变革的战略性技术,人工智能的产业化已经取得了显著的效果,显示出带动性很强的“头雁”效应。中国、美国、英国、德国、法国、日本等主要国家都纷纷将人工智能上升为国家级战略,积极抢占人工智能竞争的制高点。我国还进一步强调要加强人工智能领域前沿技术布局,支持科学家勇闯人工智能科技前沿的“无人区”。

现阶段人工智能技术发展特点

经历了60多年的发展之后,人工智能已经开始走出实验室,进入到了产业化阶段。具体表现出以下几个方面的特点:

深度学习技术逐渐在各领域开始应用

深度学习通过构建多隐层模型和海量训练数据,来学习更有用的特征,最终提升分析准确性。深度学习能够通过数据挖掘进行海量数据处理,自动学习数据特征,尤其适用于包含少量未标识数据的大数据集;采用层次网络结构进行逐层特征变换,将样本的特征表示变换到一个新的特征空间,从而使分类或预测更加容易。因此,深度学习自2006年由Jeffery Hinton实证以来,在云计算、大数据和芯片等的支持下,已经成功地从实验室中走出来,开始进入到了商业应用,并在机器视觉、自然语言处理、机器翻译、路径规划等领域取得了令人瞩目的成绩。

新型算法不断探索

在深度学习应用逐步深入的同时,学术界也在继续探索新的算法。一方面,继续深度学习算法的深化和改善研究,如深度强化学习、对抗式生成网络、深度森林、图网络、迁移学习等,以进一步提高深度学习的效率和准确率。另一方面,一些传统的机器学习算法重新受到重视,如贝叶斯网络、知识图谱等。另外,还有一些新的类脑智能算法提出来,将脑科学与思维科学的一些新的成果结合到神经网络算法之中,形成不同于深度学习的神经网络技术路线,如胶囊网络等。

基础数据集建设已经成为基本共识

自从李飞飞等在2009年成功创建ImageNet数据集以来,该数据集就已经成为了业界图形图像深度学习算法的基础数据集,通过举办比赛等方式极大地促进了算法的进步,使得算法分类精度已经达到了95%以上。这也使得一些大型研究机构和企业逐渐认识到了数据的价值,纷纷开始建立自己的数据集,以便进行数据挖掘和提升深度学习模型的准确率。如美国国家标准研究院的Mugshot、谷歌的SVHN、微软的MS COCO等图像基础数据集,斯坦福大学的

SQuAD、卡耐基梅隆大学的Q/A Dataset、Salesforce的WikiText等自然语言数据集以及2000 HUB5 English、CHiME、TED-LIUM等语音数据集。

新型计算基础设施陆续成为产业界发展目标

由于深度学习对算力有较高的需求,因此相继出现了一些专门的计算框架和平台,如伯克利大学的Caffe、微软的CNTK、Facebook的Torch、亚马逊的MXNet、百度的 PaddlePaddle 等,尤其是谷歌的TensorFlow能够支持异构设备的分布式计算,其平台API能力已经覆盖了CNN、RNN、LSTM等当前最流行的深度神经网络模型。除了从计算框架软件平台进行研发之外,产业界同时也从硬件方面探索计算能力的提升方法。最为直接的方法就是采用计算能力更强的GPU替代原有的CPU等。此外,谷歌、IBM等一些大型企业在大量采用GPU的同时,也在探索进行符合自身计算环境的芯片研发,从而进一步降低成本、提高效率,因此产生了TPU等性能更加卓越的新型芯片。

人工智能技术发展面临的挑战

虽然人工智能技术发展已经取得了前所未有的成绩,但随着深度学习技术应用的不断深化和产业化步伐的逐步加快,人工智能技术发展也面临着不少挑战。

主流技术深度学习还具有较大局限性

一是在有限样本和计算单元的情况下,对复杂函数的表示能力有限,其针对复杂分类问题的泛化能力受限。二是通过深度学习是一种基于概率统计的算法,机器系统学习到的是大概率内容,不是知识,无法像人类一样进行举一反三的应用。三是深度学习存在黑箱问题,不能解释其自身做出决策的原因。

基础数据积累还远远不能满足模型训练需要

由于大数据技术的出现和使用时间还不长,各类基础数据不论从数量上还是从质量上来看,都尚需要较长时间的积累。一方面,某些关键领域和学术数据集还严重不足。另一方面,已有规模化的基础数据集不仅数据质量良莠不齐,而且基本上由少数几家巨头或政府所掌握,鉴于监管和竞争等因素,无法实现有效流动。基础数据的缺乏,使得深度学习模型训练也造成了样本基础缺失。

计算框架和通用智能芯片尚未形成定局

虽然已经出现了TensorFlow、Caffe、CNTK、Torch、MXNet、PaddlePaddle等深度学习计算框架,但由于深度学习应用场景众多,相关应用呈现碎片化特点,无论从功能还是性能角度来讲,用于实现最后应用落地的开源计算框架与实际需求之间都还存在着相当的距离,满足产业发展需求且具有绝对统治地位的开源计算框架也还没有出现。同时,深度学习芯片还只是刚刚起步,而且还基本上属于专有领域的芯片,通用智能芯片的产业化还需要较长时间的探索。

人机和谐共处的有效途径开始艰难探索

由于黑箱问题及其基于概率统计的特点,基于深度学习的智能系统存在产生不可控结果的隐患。我们已经看到,使用了人工智能技术的智能驾驶汽车出现了多次的事故,甚至造成了人员的伤亡。另外,使用了智能算法的自动驾驶飞机也出现了多次坠机事故。这些事故不仅造成了人们的生命和财产损失,也严重打击了人们对人工智能的信心。实际上,这些事故的发生除了有技术方面的原因之外,还涉及到AI伦理的问题,也就是如何保证人类与智能系统之间的和谐共处、协同合作等问题。目前来看,AI的伦理问题还需要较长的探索过程。

人工智能技术发展趋势

短期来看,人工智能技术的发展将围绕对上述问题的解决进行。下面从算法理论、数据集基础、基础设施、人机协同等以下几个方面进行探讨。

算法理论

在算法理论层面,将继续按照深度学习完善和新算法的两条主线发展。首先,深度学习在提升可靠性、可解释性等方面的研究以及零数据学习、无监督学习、迁移学习等模型的研究将成为热点方向,这不仅仅是深度学习算法本身发展的需要,也是产业发展的需要。其次,学术界将继续开展新型算法的探索,包括对传统机器学习算法的改进、传统机器学习算法与深度学习的结合以及与深度学习迥异的新型算法等。

数据集基础

在数据集基础方面,学术界与产业界将共同合作构建语音、图像、视频等通用数据集以及各行业的专业数据集,使得各类数据集能够快速满足相关需求。一方面,随着对人工智能认识的不断加深,将会有越来越多的企业和政府机构开展数据自建和数据标注等工作。另一方面,随着深度学习的发展,将会出现智能化的数据标注系统来帮助和替代人类进行数据标注等工作。再有,在政府引导和支持下,一些开放的标准化数据集将会陆续出现,为整个行业提供标准化训练数据集。

计算平台与芯片

在计算平台与芯片方面,大型企业自研计算框架、自建计算平台,甚至是自研芯片等,仍将是普遍现象。这主要是由于以下两个方面的原因。一是企业出于自身数据和业务安全的考虑,对使用其他机构提供的训练平台仍然持有不信任的态度;二是每个企业的数据中心和相关平台都有其自身的特点,自研计算框架、自建计算平台和自研芯片能够更好地满足自身的业务发展需要。

人机协同机制

相关文档
最新文档