第1章 数字信号处理基础讲解
精品课程《数字信号处理》PPT课件第1章 离散时间信号与系统

n
(a) (a)
(b) (b)
第1章 离散时间信号与系统 3. 序列的和 z(n) x(n) y(n)
4. 序列的乘积
f (n) x(n) y(n)
5. 序列的标乘
f (n) cx(n)
两序列的和是指同序号 n 的序列值
逐项对应相加而构成的一个新序列
两序列相乘是指同序号 n
的序列值逐项对应相乘
k必为整数
第1章 离散时间信号与系统
分三种情况讨论正弦序列周期
N 2k = 2 k 0 0
2 1. 0
为正整数,只要 k =1,
N
2 0
为最小正整数,即序列周期;
第1章 离散时间信号与系统
1.
2 0
为正整数,只要
k
=1, N
2 0
为最小正整数,即周期
sinnω0
1
o1
5
10 n
1
第1章 离散时间信号与系统
x(n) sin(n0 )
sin(n0T
)
0
0T
数字域角频率 0:反映序列变化的速率 ,单位 ( rad/间隔 ) 模拟域角频率 0:反映信号变化的速率 ,单位 ( rad/s )
0 0T
0
0
fS
数字域角频率是模拟域角频率对采样频率的归一化
第1章 离散时间信号与系统 6. 复指数序列
x(n) Ae j0 n
x n
2 不是整数, 0
N k
(N,k为互素整数)N
k
2 0
已知:x n sin 4π n ,求其周期。
11
ω0
4π , 则有:2π
11
ω0
2π
11 4π
数字信号处理知识点总结

数字信号处理第0章绪论1.数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.DSP系统构成输入抗混叠滤波A/DDSP芯片D/A平滑滤波输出输入信号首先进行带限滤波和抽样,然后进行A/D(Analog to Digital)变换将信号变换成数字比特流。
根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。
DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号。
3.信号的形式(1)连续信号在连续的时间范围内有定义的信号。
连续--时间连续。
(2)离散信号在一些离散的瞬间才有定义的信号。
离散--时间离散。
4.数字信号处理主要包括如下几个部分(1)离散时间信号与系统的基本理论、信号的频谱分析(2)离散傅立叶变换、快速傅立叶变换(3)数字滤波器的设计第一章离散时间信号一、典型离散信号定义1.离散时间信号与数字信号时间为离散变量的信号称作离散时间信号;而时间和幅值都离散化的信号称作为数字信号。
2.序列离散时间信号-时间上不连续上的一个序列。
通常定义为一个序列值的集合{x(n)},n 为整型数,x(n)表示序列中第n 个样值,{·}表示全部样本值的集合。
离散时间信号可以是通过采样得到的采样序列x(n)=x a (nT),也可以不是采样信号得到。
二.常用离散信号1.单位抽样序列(也称单位冲激序列))(n δ⎩⎨⎧≠==0,00,1)(n n n δδ(n):在n=0时取值为12.单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n u 3.矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(4.实指数序列,)()(n u a n x n =,a 为实数5.正弦型序列)sin()(φω+=n A n x 式中,ω为数字域频率,单位为弧度。
15On 1-10()0sin nω()t 0sin Ω16.复指数序列nj e n x )(0)(ωσ+=7.周期序列如果对所有n 存在一个最小的正整数N ,使下面等式成立:)()(N n x n x +=,则称x(n)为周期序列,最小周期为N 。
数字信号处理第四版(高西全)第1章

本章作为全书的基础,主要学习时域离散信号的表示 方法和典型信号、时域离散线性时不变系统的时域分析方
第1章 时域离散信号和时域离散系统
1.2 时域离散信号
实际中遇到的信号一般是模拟信号,对它进行等间
假设模拟信号为xa (t),以采样间隔T对它进行等间隔 采样,得到:
x(n) xa (t) tnT=xa (nT ) - n (1.2.1)
x(n) x(m) (n m) m
(1.2.12)
这种任意序列的表示方法,在信号分析中是一个很有用的
第1章 时域离散信号和时域离散系统
例如, x(n)={-0.0000 ,-0.5878 ,-0.9511,
-0.9511,-0.5878,0.0000,0.5878, 0.9511,0.9511,
0.5878,0.0000},相应的 n=-5, -4, -3,
序列x(n)的MATLAB表示如下:
in (π 8
n)
0
π 8
第1章 时域离散信号和时域离散系统
(2) 2π/ω0不是整数,是一个有理数时,设 2π/ω0=P/Q,式中P、Q是互为素数的整数,取k=Q,那么 N=P,则该正弦序列是以P为周期的周期序列。例如, sin(4πn/5), 2π/ω0=5/2, k=2, 该正弦序列是以5为周期的周
axis([-5, 6, -1.2, 1.2]); xlabel('n'); ylabel('x(n)')
数字信号处理第一章(1)

绪论
• 为何要上数字信号处理?
在当今科学技术迅速发展的时代,大量 数据和信息需要传递和处理,数字信号处理 就是研究用数学的手段,正确快速地处理数 字信号,提取各类信息的一门学科.
一、数字信号处理
1、信号 • 数字信号处理的研究对象为信号。 • 所谓信号就是信息传递的载体。 • 信号是随时间、空间或其它独立变量变化的物理量,为了便 于处理,通常都使用传感器把这些真实世界的物理信号----->电信号,经处理的电信号--->传感器--->真实世界的物理 信号。 • 例如:现实生活中最常见的传感器是话筒、扬声器 话筒(将声压变化)--->电压信号-->空气压力信号(扬声器) • 数学上,我们用一个一元或多元函数来表示信号,如 s1 (t ) 5t 这是一个时间轴上的一维信号。
用通用的可编程的数字信号处理器实现法—是目前 重要的数字信号处理实现方法,它即有硬件实现法 实时的优点,又具有软件实现的灵活性优点。
五、本课程教学内容
• 作为本课程,因受到各种条件的制约,只能向大家介 绍数字信号处理的基础理论和基本知识。具体内容见 课本的第一章~第三章。
第一章:我们主要介绍离散时间信号和系统的基本概念以及 傅利叶变换Z变换,它们是分析离散信号与系统的 基本数学工具。 第二章:我们讲解信号的离散傅利叶变换(DFT)和DFT的快速 算法(FFT),内容涉及课本第二章的1~5节。 第三章:介绍无限冲激响应(IIR)数字滤波器和有限冲激响 应(FIR)的设计方法,其中我们只介绍通过变换公 式逼近的经典设计方法。
第一章 离散时间信号、系统和Z变换
1-1 引言
x(t ) s(t ) n(t )
胡广书-数字信号处理-第1章-1

k
)
1 0
nk nk
如何
表达
p(n)
(n k)
k
单位冲激信号(Drac 函数)
(t)dt 1
(t) 0, t 0
x(t) (t )dt x( )
脉冲串: p(n) (n k)
k
或写为 p(n) ={… , 1 , 1 , 1 , …}
冲激串: p(t) (t kTs ) k
第1章 离散时间信号与离散时间系统基础
一、 常用的离散时间信号; 二、信号的分类; 三、噪声; 四、信号空间; 五、离散时间系统; 六、 LSI系统输入、输出关系; 七、 LSI系统的频率响应; 八、确定性信号的相关函数
1.1 常用的离散时间信号
(Kronecker 函数)
(n)
1 0
n0 n0
(n
1.3 噪声(Noise)
(一)噪声的种类:
1.白噪声:
White Noise
频谱为一直线;
自相关函数为 函数
各点之间互不相关
白噪声是信号处理中最常用的噪声模型!
histogram of u(n) u(n)
1 0.8 0.6 0.4 0.2
0 0
1500
1000
500
0 0
均匀分布白噪声
20
40
60
80
100
(a) n=1--- 100
0.2
0.4
0.6
0.8
1
(b) bins of x axis
直方图
高斯分布白噪声
u(n) histogram of u(n)
1.5 1
0.5 0
-0.5 -1 0 x 104 5 4 3 2 1 0 -1.5
(完整版)数字信号处理-原理实现及应用(高西全—第3版)第1章时域离散信号和系统

·1·第1章 时域离散信号和系统1.1 引 言本章内容是全书的基础。
学生从学习模拟信号分析与处理到学习数字信号处理,要建立许多新的概念,数字信号和数字系统与原来的模拟信号和模拟系统不同,尤其是处理方法上有本质的区别。
模拟系统用许多模拟器件完成,数字系统用运算方法完成。
如果对本章中关于数字信号与系统的若干基本概念不清楚,那么在学习数字滤波器时,会感到不好掌握,因此学好本章是很重要的。
1.2 本章学习要点(1) 关于信号● 模拟信号、时域离散信号、数字信号三者之间的区别。
● 如何由模拟信号产生时域离散信号。
● 常用的时域离散信号。
● 如何判断信号是周期性的,其周期如何计算。
(2) 关于系统● 什么是系统的线性、时不变性,以及因果性、稳定性;如何判断。
● 线性、时不变系统输入和输出之间的关系;求解线性卷积的图解法、列表法、解析法,以及用MA TLAB 工具箱函数求解。
● 线性常系数差分方程的递推解法。
● 用MA TLAB 求解差分方程。
● 什么是滑动平均滤波器,它的单位脉冲响应是什么。
1.3 习题与上机题解答1.1 用单位脉冲序列及其加权和表示图P1.1所示的序列。
解:()(2)(1)2()(1)2(2)3(3)(4)2(6)x n n n n n n n n n δδδδδδδδ=+-+++-+-+-+-+-1.2 给定信号24,4≤≤1()4,0≤≤40,n n x n n +--⎧⎪=⎨⎪⎩其他(1) 画出x (n )的波形,标上各序列值;(2) 试用延迟的单位脉冲序列及其加权和表示x (n )序列; (3) 令1()2(2)x n x n =-,画出1()x n 的波形; (4) 令2()(2)x n x n =-,画出2()x n 的波形。
·2·解:(1) 画出x (n )的波形,如图S1.2.1所示。
图P1.1 图S1.2.1(2) ()4(4)2(3)2(1)4()4(1)4(2)4(3)4(4)x n n n n n n n n n δδδδδδδδ=+-+++++-+-+-+--。
第一章 简述DSP

第1章认识DSP数字信号处理技术(Digital Signal Processing简称DSP)在日常生活中正发挥着越来越重要的作用,现代数学领域、网络理论、信号与系统、控制理论、通信理论、故障诊断等领域无一例外的都需要数字信号处理作为基础工具。
其技术已经广泛应用于多媒体信号处理、通信、工业控制、雷达、天气预报等领域,也正是有了数字信号处理器技术才使得诸多领域取得了革命性的变化,数字信号处理技术本身拥有两成含义:一方面指的完成数字信号处理工作的处理器器件,另一方面指专门针对数字信号处理而设计实现的特殊算法和结构。
数字信号处理器技术的学习在嵌入式领域也占了相当大的比重,但由于其放大而复杂的硬件结构和灵活多变的软件设计方法,数字信号处理的学习往往对于初学者来说是无从下手的,到底应该怎样去学习DSP呢?这本书正是为了解决这个问题而诞生的,作为开头序章,在本章当中先来了解一下DSP的一些基础知识,了解DSP的基本概念,现在就让为我们来认识一下到底什么是DSP!1.1 DSP基础知识数字信号处理器(DSP)由最初的作为玩具上面的一个控制芯片,经过二三十年的发展,已经成为了数字化信息时代的核心引擎,广发用于家电、航空航天、控制、生物工程以及军事等许许多多需要实时实现的领域当中。
在全球的半导体市场中,未来三年DSP将保持着最高的增长率。
据美国权威机构SIA 2006年6月的预测,从2006年~2008年,半导体平均年增长率为10%,而DSP的平均年增长率则近20%。
2007年DSP市场规模将首次超过100亿美元,创新的应用前景非常广阔。
事实上我们生活在一个模拟的世界,这个世界充满了颜色、影像、声音等和各种可以由线路或通过空气传输的信号。
数字技术提供这些真实世界现象与数字信号处理的接口。
数字服务者所提供的每一件事情都是以模拟数字转换A/D开始而以数字模拟转换D/A为结束,而其中所进行的就是各种各样复杂的数字运算处理。
数字信号处理—原理、实现及应用(第4版)第1章 时域离散信号和系统 学习要点及习题答案

·1·第1章 时域离散信号和系统1.1 引 言本章内容是全书的基础。
学生从学习模拟信号分析与处理到学习数字信号处理,要建立许多新的概念,数字信号和数字系统与原来的模拟信号和模拟系统不同,尤其是处理方法上有本质的区别。
模拟系统用许多模拟器件完成,数字系统用运算方法完成。
如果对本章中关于数字信号与系统的若干基本概念不清楚,那么在学习数字滤波器时,会感到不好掌握,因此学好本章是很重要的。
1.2 本章学习要点(1) 关于信号● 模拟信号、时域离散信号、数字信号三者之间的区别。
● 如何由模拟信号产生时域离散信号。
● 常用的时域离散信号。
● 如何判断信号是周期性的,其周期如何计算。
(2) 关于系统● 什么是系统的线性、时不变性,以及因果性、稳定性;如何判断。
● 线性、时不变系统输入和输出之间的关系;求解线性卷积的图解法、列表法、解析法,以及用MA TLAB 工具箱函数求解。
● 线性常系数差分方程的递推解法。
● 用MA TLAB 求解差分方程。
● 什么是滑动平均滤波器,它的单位脉冲响应是什么。
1.3 习题与上机题解答1.1 用单位脉冲序列及其加权和表示图P1.1所示的序列。
解:()(2)(1)2()(1)2(2)3(3)(4)2(6)x n n n n n n n n n δδδδδδδδ=+-+++-+-+-+-+-1.2 给定信号24,4≤≤1()4,0≤≤40,n n x n n +--⎧⎪=⎨⎪⎩其他 (1) 画出x (n )的波形,标上各序列值;(2) 试用延迟的单位脉冲序列及其加权和表示x (n )序列; (3) 令1()2(2)x n x n =-,画出1()x n 的波形; (4) 令2()(2)x n x n =-,画出2()x n 的波形。
·2·解:(1) 画出x (n )的波形,如图S1.2.1所示。
图P1.1 图S1.2.1(2) ()4(4)2(3)2(1)4()4(1)4(2)4(3)4(4)x n n n n n n n n n δδδδδδδδ=+-+++++-+-+-+--。
数字信号处理(第三版)第1章习题答案

n
0
s(n) am am am am 1
m
mn
mn
m0
1 an 1
1
1 a1 1 a
1 an 1 an a 1 1 a 1 a
第 1 章 时域离散信号和时域离散系统
(2) n>0 时,
s(n)
0
am am
1
m
m0
1 a
最后得到
s(n) 1 [anu(n) u(n 1)] 1 a
第 1 章 时域离散信号和时域离散系统
1.1.1
(1) 信号: 模拟信号、 时域离散信号、 数字信号三 者之间的区别; 常用的时域离散信号; 如何判断信号是周期 性的, 其周期如何计算等。
(2) 系统: 什么是系统的线性、 时不变性以及因果 性、 稳定性; 线性、 时不变系统输入和输出之 间的关系; 求解线性卷积的图解法(列表法)、 解析法, 以及用MATLAB工具箱函数求解; 线性常系数差分方程的递
题1图
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
第 1 章 时域离散信号和时域离散系统
解线性卷积也可用Z变换法, 以及离散傅里叶变换求解, 这是后面几章的内容。 下面通过例题说明。
设x(n)=R4(n), h(n)=R4(n), 求y(n)=x(n)*h(n) 该题是两个短序列的线性卷积, 可以用图解法(列表法) 或者解析法求解。 表1.2.1给出了图解法(列表法), 用公 式可表示为
《DSP原理及应用》电子教案第1章 绪论

图1 DSP芯片的应用
(1)信号处理 (2)通信 (3)语音 (4)图形/图像 (5)军事 (6)仪器仪表 (7)自动控制 (8)医疗 (9)家用电器
返回本节
(1)在通用的微机上用软件实现。 (2)利用特殊用途的DSP芯片来实现。 (3)利用专门用于信号处理的通用DSP芯片来实 现。 (4)用FPGA/CPLD用户可编程器件来实现。
返回本节
1.1.3 数字信号处理的特点
与模拟系统( ASP)相比,数字系统具有如下特 点: (1)精度高 (2)可靠性高 (3)灵活性大 (4)易于大规模集成 (5)可获得高性能指标
返回本节
1.2.2 TMS320 DSP系列
通用DSP芯片的代表性产品包括TI公司的TMS320系列、 AD 公司 ADSP21xx 系列、 MOTOROLA 公司的 DSP56xx 系 列 和 DSP96xx 系 列 、 AT&T 公 司 的 DSP16/16A 和 DSP32/32C等单片器件。 TI的三大主力DSP产品系列为C2000系列主要用于数字控 制系统; C5000(C54x、C55x)系列主要用于低功耗、 便携的无线通信终端产品;C6000系列主要用于高性能复 杂的通信系统。 C5000 系列中的 TMS320C54x 系列 DSP 芯片被广泛应用于通信和个人消费电子领域。
返回本节
1.2.3 DSP芯片的主要特点
1.哈佛结构 2.多总线结构 3.指令系统的流水线操作 4.专用的硬件乘法器 5.特殊的DSP指令 6.快速的指令周期 7.硬件配置强
时钟 取指 译码 取操作数 执行 N N-1 N-2 N-3 N+1 N N-1 N-2 N+2 N+1 N N-1 N+3 N+2 N+1 N
《数字信号处理题解及电子课件》第1章_离散时间信号与离散时间系统_2

(控制系统)
Communication (通信)
System Identification (系统辨识)
Statistics
(统计)
Neural Network
(神经网络)
例:
z=peaks; surf(z);
与本章内容有关的MATLAM文件
1. rand.m 用来产生均值为0.5、幅度在 0~1之间均匀分布的伪白噪声: u=rand(N)
sin c(t) 0
t k
sin c(t) t为其它
对离散信号,相应的sinc函数定义为:
sin c() sin(N) sin()
4. conv.m 用来实现两个离散序列的线 性卷积。其调用格式是:y=conv(x,h)
5. xcorr: 其互相关和自相关。格式是: (1)rxy=xcorr(x,y) : 求 x,y 的 互 相 关 ; (2)rx=xcorr(x,M,’flag’):求x的自相关,M: rx的单边长度,总长度为2M+1;‘flag’是定 标标志,若 flag=biased, 则表示是“有偏” 估计,需将rx(m)都除以N,若flag=unbiased, 则表示是“无偏”估计,需将rx(m)都除以 (N-abs(m));若’flag’缺省,则rx不定标。 M和‘flag’同样适用于求互相关。
而: y(n k) (n k)x(n k)
所以: y(n k) T[x(n k)]
本系统不具备移不变性!
另外,系统 是因果的,但不是稳定的
例2: y(n) ay(n 1) x(n)
本系统是线性系统、移不变系
统、因果系统,如果 a 1
则该系统是稳定的。
例3: y(n) Ax(n) B
一章信号处理初步

测试的基本任务是获取有用的信息。测试信号中既含有有用信息,也 含有大量干扰噪声。 信号处理的任务——对信号施加适当的加工变换,滤除干扰噪声,提取有 用信息。 信号分析——研究信号的构成和特征值; 信号处理——信号经过必要的加工变换,以期获得有用信息的过程。 信号分析对信号本身的结构没有影响,而信号处理则有可能改变信号本身 的结构。 模拟信号处理系统、数字信号处理系统来实现模拟信号处理,系统由实现 模拟运算功能的电路组成。 数字信号处理系统由微型计算机和相关软件组成。信号处理内容很丰富, 但本章只能介绍其中的二、三个问题。
(f1+f2)/2=fs/2 这也就是称fs/2为折叠频率的由来。
不产生混叠的条件:
a)模拟信号x(t)为带限信号
b)
1
fs
Ts
2 fh
奈魁斯特采样定理 通常fs=(3—4)fc
量化方法:截尾、舍入
截尾——将二进制数的多余位舍掉。
当ρxy接近于零,则可认为x、y两变量之间完全无关,但仍 可能存在着某种非线性的相关关系甚至函数关系。
二、信号的自相关函数
x
(
)
lim
T
1 T
T 0
[ x(t )
ux ][x(t
2 x
)
ux
]dt
将分子展开并注意到
lim
T
1 T
T 0
x(t)dt
ux
lim
与原周期信号的幅值有关,而丢失了原信号的相位信 息。
Rx (
kT )
lim
T
1 T
T 0
x(t ) x(t
数字信号处理教案(22讲) (1)精选全文完整版

进一步深入理解连续傅立叶变换、序列的傅立叶变换、离散傅立叶级数、离散傅立叶变换之间的关系;
进一步深入理解傅立叶变换、拉普拉斯变换、Z变换之间的关系。
授课类型(请打√):理论课√ 讨论课□ 实验课□ 练习课□ 其他□
教学方式(请打√):讲授√ 讨论□ 指导□ 其他□
教学资源(请打√):多媒体√ 模型□ 实物□ 挂图□ 音像□ 其他□
作业布置(讨论、思考题、书面作业):
习题一(P26):5(4、5、6)、6(2)、8(2、3)、12
参考资料(含参考书、文献等):
熟悉序列的概念和表示方法;掌握序列的基本运算;掌握常用的时域离散信号;
理解序列的基本性质。
教学内容(包括基本内容、重点内容和难点):
基本内容:数字信号处理的概念、特点和应用;该课程的学习任务和学习方法;
序列的基本概念;序列的基本运算;典型序列;序列的基本性质;
重点:数字信号处理的特点和应用;
序列的基本运算和基本性质。
分析并推导序列的傅立叶变换的计算公式。
分析序列傅立叶变换的基本性质,为学习离散傅立叶变换打基础。
其中:复习10分钟,授新课83分钟,安排讨论5分钟,布置作业2分钟
授课类型(请打√):理论课√ 讨论课□ 实验课□ 练习课□ 其他□
教学方式(请打√):讲授√ 讨论□ 指导□ 其他□
教学资源(请打√):多媒体√ 模型□ 实物□ 挂图□ 音像□ 其他□
作业布置(讨论、思考题、书面作业):
习题二(P63):1(2、3、6、7)、2、4
参考资料(含参考书、文献等):
[1]Signals & Systems (Second Edition)PDF格式
配套课件 数字信号处理(第四版)--高西全

显然, 软件实现灵活,只要改变程序中的有关参数,例如只要改变图 0.0.1(b)中的参数a,数字滤波器可能就是低通、带通或高通滤波器,但是运算 速度慢,一般达不到实时处理,因此,这种方法适合于算法研究和仿真。硬 件实现运算速度快,可以达到实时处理要求, 但是不灵活。
用单片机实现的方法属于软硬结合实现,现在单片机发展很快,功能也很 强,配以数字信号处理软件,既灵活, 速度又比软件方法快,这种方法适用于 数字控制等。采用专用的数字信号处理芯片(DSP芯片)是目前发展最快、应用最 广的一种方法。因为DSP芯片比通用单片机有更为突出的优点,它结合了数字 信号处理的特点,内部配有乘法器和累加器,结构上采用了流水线工作方式以 及并行结构、 多总线,且配有适合数字信号处理的指令,是一类可实现高速运 算的微处理器。 DSP芯片已由最初的8位发展为16位、 32位,且性能优良的高 速DSP不断面市,价格也在不断下降。可以说, 用DSP芯片实现数字信号处理, 正在变成或已经变成工程技术领域中的主要实现方法。
4. 数字信号处理涉及的理论、 实现技术与应用
正是由于以上的优点,数字信号处理的理论和技术一出现就受到人们的极 大关注,发展非常迅速。 国际上一般把1965年作为数字信号处理这一门新学 科的开端,40多年以来,这门学科基本上形成了自己一套完整的理论体系,其 中也包括各种快速的和优良的算法。而且随着各种电子技术及计算机技术的飞 速发展,数字信号处理的理论和技术还在不断丰富和完善,新的理论和新技术 层出不穷。可以说,数字信号处理是发展最快、 应用最广泛、成效最显著的 新学科之一,目前已广泛地应用在语音、雷达、声纳、地震、图像、通信、控 制、生物医学、遥感遥测、地质勘探、航空航天、故障检测、自动化仪表等领 域。
数字部件具有高度的规范性,对电路参数要求不严, 容易大规模集成 和大规模生产,价格不断降低,这也是DSP芯片和超大规模可编程器件发展 迅速的主要因素之一。由于采用了大规模集成电路,数字系统体积小、重 量轻、可靠性强。
精品文档-数字信号处理(吴瑛)-第1章

第1章 离散时间信号和系统的时域分析 图1.2.6 实指数序列的4种波形
第1章 离散时间信号和系统的时域分析 5. 正弦序列
设模拟信号是一个正弦信号,即xa (t)=A sin (Ω0t+θ), 对它以等间隔T进行采样,得到离散时间信号x(n):
x(n)=xa(nT)=A sin(Ω0Tn+θ)=Asin (ω0n+θ)
设x(n)为非周期序列,以周期L对x(n)作无限次移位相加,
即可得周期序列
~x (n)
~x (n) x(n iL)
4
4
可所得以N8=T8=kT0,,因也此即最8个小采周样期周N=期8,正k好=1是。原因模为拟信0号的π4一 个0周T 期2,Tπ0T ,
如图1.2.8(a)
第1章 离散时间信号和系统的时域分析
图1.2.8 (a) x(n)=sin(πn/4);(b) x(n)=sin(3πn/8)
第1章 离散时间信号和系统的时域分析
u(n) (n i)
i0
也可以用u(n)表示δ(n): δ(n)=u(n)-u(n-1)
(1.2.4) (1.2.5)
第1章 离散时间信号和系统的时域分析
3. 矩形序列 矩形序列用RN(n)
RN
(n)
1,
0,
0 n N 1 n 0,n N
(1.2.6)
第1章 离散时间信号和系统的时域分析 图1.2.5 矩形序列
第1章 离散时间信号和系统的时域分析
【例1.2.1】 8≤n≤8
解 n=-8:8;
用Matlab语言表示x(n)=sin(0.625πn),-
%
n∈[-8,8]
x=sin(2*pi*n*0.0625); % 计算序列向量x(n)的17 figure; subplot(1,2,1),stem(n,x,′.′); xlabel(′n′); ylabel(′x(n)′); subplot(1,2,2),plot(n,x); xlabel(′n′); ylabel(′x(n)′);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 FIR 滤波器的优点
1 可以在幅度特性随意设计的同时,保证精确、严格的 线性相位;
2 由于FIR滤波器的单位脉冲响应 h(n)是有限长序列,因 此FIR滤波器没有不稳定的问题;
3 由于FIR滤波器一般为非递归结构,因此在有限精度运 算下, 不会出现 递归型结构中的极限震荡等 不稳定现 象,误差较小;
Processing Systems 》,电子工业出版社
1 数字信号处理基础
1.1 引言
傅里叶变换(FT)是一种将信号从时域变换到频域的变换 形式。它在声学、电信、电力系统、信号处理等领域有广泛的 应用。希望在计算机上实现信号的频谱分析或其它工作,而计 算机要求信号在时域和频域都是离散的,且都是有限长的。傅 里叶变换(FT)仅能处理连续信号,DFT就是应这种需要而诞 生的。它是傅里叶变换在离散域的表示形式。DFT的运算量是 非常大的。在1965年首次提出快速傅里叶变换算法FFT之前, 其应用领域一直难以拓展,是FFT的提出使DFT的实现变得接近 实时,DFT的应用领域也得以迅速拓展。除了一些速度要求非 常高的场合之外,FFT算法基本上可以满足工业应用的要求。 由于数字信号处理的其它运算都可以由DFT来实现,因此FFT算 法是数字信号处理的重要基石。
1.3 FIR 滤波器 1.3.1 基本原理
FIR滤波器的差分方程为:
N ?1
y(n) ? ? h(n)x(n ? k ) k?0
式中,x(n)输入序列,y(n)为输出序列,h(n) 为滤波器系数,N是滤波器的阶数。对此式进行Z变换, 整理后可得FIR滤波器的传递函数:
? H ( z ) ?
Y (z)
Xi h0
hN-1
D
D
…...
D
FIR的转置型结构
为此,将这种结构加以改良,构成另一种处理结 构。这个结构是将一个N个数的加法器变成为N个分散 的两位数加法器,由于各个加法器之间通过寄存器相 互隔离。如果将这个加法器同原来乘法器相互结合在 一起,则运算结果等于在原来乘法器基础上被乘数多
增加一位而已,不影响原来乘法器的快速算法实现。
图1.2.1 基2时间抽取(DIT)FFT算法
图1.2. 2 基2频率抽取(DIF)FFT算法
1.2.2 其它FFT算法及应用
1、基4、基8的FFT算法、混合基算法等; 2、采用窗函数进行FFT的加权处理; 3、实序列的FFT运算(频谱):
①用一个N点复数FFT运算两个N点实序列 FFT ②一个N点复数FFT运算2N点实序列FFT 4、WFTA 、ZFFT、CZT等; 5、快速相关、快速卷积、重叠相加(保留)法等等; 6、DFT/FFT等效成窄带滤波器组。 基本概念:连续时间信号、离散时间信号、数字信号、 频谱泄漏、频谱宽度等。
电子工程与光电技术学院
实时数字信号处理系统 的设计与实现
目录
?数字信号处理基础 ?实时数字信号处理概述 ?高速实时数据采集技术 ?高速实时周边器件和 MEM ?高速实时数据通信 ?硬件设计 ?可编程器件与数字信号处理器 ?折衷设计 ?DSP技术及实《Real-Time Signal Processing: Design and Implementation of Signal
? FPGA开发工具: AccelDSP? (基于高级 MATLAB 语言 的工具)用于设计针对 Xilinx FPGA 的 DSP 块,可生成定 点 C++模型或由 MATLAB 算法得到 System Generator 块。 下面简介DFT、FFT和数字滤波器的相关知识。
1.2 DFT/FFT 的基本原理
其中,W为旋转因子。 由此公式不难发现,求出一点 X(k)需要 N次复数乘
法、 N—l次复数加法。 N点X(k)需要 N2次复数乘法、 N (N-1)次复数加法。 当 N很大时,计算量非常可观。如 1024点复数 DFT需要进行 1048576次复数乘法运算。即使 在计算速度飞速发展的今天,这在实时运算场合也是无法 容忍的。利用旋转因子的对称性和周期性,发明了 FFT算法, 把复数乘法 的运算量降低到了 N/2lgN次。1024点复数序列 FFT仅需做5120次复数乘法运算,其工作量仅为 DFT的4.8 %。
? 数字滤波器:经典数字滤波器和现代数字滤波器。
? 经典滤波器: FIR,IIR等处理有用信号与噪声处在不同频 带的系统。
? 现代滤波器:维纳滤波器、卡尔曼滤波器、线性预测器、 自适应滤波器等处理有用信号和噪声处在同一频带的数据 处理场合。
? DSP开发系统:对C语言的支持能力越来越强,可以将 C, C++ ,甚至部分 MATLAB 语言的算法直接移植到 DSP芯片 上运行(如Matlab Link for CCS Development Tools )。
?
N ?1
h(k )z ? k
X (z) k?0
D Xi
h0
D
…...
D
hN-1
FIR的一般结构
在一般结构中,除了需要有N个乘法器外,还需 要有一个N个相加的加法器,从运算效果来说,等效于 在原来乘法器的基础上增加一个[N 位×(X位+h位)] 的乘法器,当乘法器数目比较多时,增加的加法器运 算量比乘法器运算量还要大,这不利于提高器件运算 速度。
数字信号处理的重要基石:FFT、数字滤波 数字滤波器优点: ? 可满足对幅度和相位特性的严格要求,精确度高; ? 没有电压、温度漂移及噪声等问题,不受环境影响,
稳定性好; ? 具有高度的可编程性,灵活性非常好。 数字滤波器应用领域:
雷达、语音处理、图像处理、模式识别、频谱分析、 医学仪器等等。 根据不同的标准,数字滤波器可以进行多种不同的分类。
1.2.1 常用FFT算法
六十年代提出时间抽取 FFT算法以来,有关 FFT 的算法不断涌现。不过常用的算法还是基 2时间抽取、 基2频率抽取、基 4时间抽取和频率抽取以及分裂基算 法。近年来,由于微电子技术的发展,硬件的快速发 展使人们暂时忽略了软件或算法的改进。总的来说, 由于上述算法比较简单,是最常用的FFT算法。