高二数学排列组合二项式定理单元测试题
排列组合和二项式定理测试卷及答案(4套)(已上传)

排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。
13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。
三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。
(完整word版)高二数学排列组合二项式定理单元测试题带答案

摆列、组合、二项式定理与概率测试题(理)一、选择题 (本大题共 12 小题,每题5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.)1、如 所示的是 2008 年北京奥运会的会徽,此中的 “中国印 ”的外 是由四个色 构成, 能够用 段在不穿越另两个色 的条件下将此中随意两个色 接起来 (好像架 ),假如用三条 段将 四个色 接起来, 不一样的 接方法共有 ()A. 8 种B. 12 种C. 16 种D. 20 种2、从 6 名志愿者中选出 4 个分别从事翻译、导游、导购、保洁四项不一样的工作,此中甲 乙两名志愿者不可以从事翻译工作,则不一样的选排方法共有( )A . 96 种B .180 种C .240 种D . 280 种3、五种不一样的商品在货架上排成一排,此中a 、b 两种一定排在一同,而c 、d 两种不可以排在一同,则 不一样的选排方法共有( )A . 12 种B . 20 种C . 24 种D . 48 种4、 号 1、 2、 3、4、 5 的五个人分 去坐 号1、 2、 3、 4、 5 的五个座位,此中有且只有两个的 号与座位号一致的坐法是()A . 10 种B. 20 种C. 30 种 D . 60 种 5、 a 、b 、m 整数( m>0),若 a 和 b 被 m 除得的余数同样, 称 a 和 b 模 m 同余 . a ≡b(modm)。
已知 a=1+C 120 +C 202 ·2+C 203 ·22+⋯ +C 2020·219, b ≡a(mod 10) , b 的 能够是()A.2015B.2011C.2008D.20066、在一次足球预选赛中,某小组共有 5 个球队进行双循环赛 (每两队之间赛两场 ),已知胜一场得 3 分,平一场得 1 分,负一场得 0 分.积分多的前两名可出线 (积分相等则要比净胜球数或进球总数 ).赛完后一个队的积分可出现的不一样状况种数为( )A . 22 种B . 23 种C .24 种D . 25 种7、 令 a n 为(1 x)n 1的睁开式中含 xn1的系数, 数列{ 1} 的前 n 和 ()a nn(n 3)n( n 1)n 2nA .B .C .D .22n 1n 18、 若 ( x 1)5 a 0 a 1( x 1) a 2 (x 1)2 ... a 5( x 1)5 , a 0 =()A . 32B . 1C . -1D .-32n9、 二项式 3x 22(n N * ) 睁开式中含有常数项,则n 的最小取值是 ()3xA 5B 6C 7D 810、四周体的 点和各棱中点共 10 个点,在此中取 4 个不共面的点, 不一样的取法共有( )A . 150 种B . 147 种C . 144 种D . 141 种11、两位到北京旅行的外国旅客要与2008 奥运会的祥瑞物福娃(5 个)合影纪念,要求排成一排,两位旅客相邻且不排在两头,则不一样的排法共有( )A . 1440B . 960C . 720D .48012、若 x ∈A 则1∈A ,就称 A 是伙伴关系会合,会合M={ - 1, 0, 1 , 1, 1, 2, 3,4}x32的全部非空子集中,拥有伙伴关系的会合的个数为()A . 15B . 16C . 28D . 25号 123456789101112答案二、填空 (每小 4 分,共 16 分,把答案填在 中横 上)13.四封信投入 3 个不一样的信箱,其不一样的投信方法有 _________种.14、在 ( x 21)( x 2) 7 的睁开式中 x 3 的系数是.15、已知数列 { a n } 的通项公式为 a n2 n 1 1,则 a 1C n 0 + a 2C n 1 + a 3C n3 + a n 1C n n =16、 于随意正整数,定 “n 的双 乘 n!! ”以下: 于 n 是偶数 ,n!!=n ·(n - 2) ·(n - 4) ⋯⋯ 6× 4×2; 于 n 是奇数 , n!!=n ·(n -2) ·(n - 4) ⋯⋯ 5× 3×1.有以下四个命 : ① (2005!!) (2006!!)=2006!· ;②2006!!=2 1003·1003! ;③ 2006!!的个位数是0;④ 2005!!的个位数是 5.正确的命 是 ________.三、解答 (本大 共 6 小 ,前 5 小 每小12 分,最后 1 小 14 分,共 74 分.解答写出必需的文字 明、 明 程或演算步 .)17、某学习小组有8 个同学,从男生中选 2 人,女生中选 1 人参加数学、物理、化学三种比赛,要求每科均有 1 人参加,共有 180 种不一样的选法.那么该小组中男、女同学各有多少人?18、设 m,n∈ Z+,m、n≥1, f(x)=(1 + x) m+ (1+x) n的睁开式中, x 的系数为 19.(1)求 f(x) 睁开式中 x2的系数的最值;(2)关于使 f(x) 中 x2的系数取最小值时的 m、n 的值,求 x7的系数.19、7 位同学站成一排.问:(1) 甲、乙两同学一定相邻的排法共有多少种?(2) 甲、乙和丙三个同学都相邻的排法共有多少种?(3) 甲、乙两同学一定相邻,并且丙不可以站在排头和排尾的排法有多少种?(4) 甲、乙、丙三个同学一定站在一同,此外四个人也一定站在一同的排法有多少种?20、已知(x1)n的睁开式中前三项的系数成等差数列.2 x(Ⅰ)求n 的值;(Ⅱ)求睁开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。
最新-[原创]高二单元测试题:排列组合二项式定理 精品
![最新-[原创]高二单元测试题:排列组合二项式定理 精品](https://img.taocdn.com/s3/m/cf5546ca26fff705cc170a97.png)
高二数学单元检测题 排列组合二项式一、 选择题:(本大题共12小题,每小题5分,共60分)1.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有( )A.280种B.240种C.180种D.96种2.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是 ( )A. 12694C CB.C 16C 299C.C 3100-C 394D.A 3100-A 3943.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为( ) A .42B .36C .30D .12 4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有( )种 A .8B .12C .16D .205.某中学拟于下学年在高一年级开设《矩阵与变换》、《信息安全与密码》、《开关电路与布尔代数》等三门数学选修课程。
在计划任教高一的10名数学教师中,有3人只能任教《矩阵与变换》,有2人只能任教《信息安全与密码》,另有3人只能任教《开关电路与布尔代数》,这三门课都能任教的只有2人。
现要从这10名教师中选出9人,分别担任这三门选修课程的任课教师,且每门课程安排3名教师任教,则不同的安排方案共有:( )A .8种B .12种C .14种D .16种6.已知直线01=-+by ax (a ,b 不全为0)与圆5022=+y x 有公共点,且公共点的横、纵坐标均为整数,那么这样的直线共有( )A .66条B .72条C .74条D .78条7.在某市举行的“市长杯”足球比赛中,由全市的6支中学足球队参加.比赛组委会规定:比赛采取单循环赛制进行,每个队胜一场得3分,平一场得1分,负一场得0分.在今年即将举行的“市长杯”足球比赛中,参加比赛的市第一中学足球队的可能的积分值有( )A.13种B.14种C.15种D.16种8. 如图A 、B 、C 、D 为四个村庄,要修筑三条公路,将这四个村庄连接起来,则不同的修筑方案共有( )A. 8种B. 12种C. 16种D. 20种9. 若一位学生把英语单词“error ”中字母的拼写错了,则可能出现错误的种数是( ) A .20 B .19 C .10 D .910. 同室4人各写一张贺年卡,先集中起来,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 ( )A. 23种B. 11种C. 9种D. 6种 11.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有 ( )A .16种B .18种C .24种D .32种12.若(1+x )n 的展开式中x 2项的系数为a n ,则21a +31a +…+n a 1的值( )A.大于2B.小于2C.等于2D.大于23 二、填空题:(本大题共4小题,每小题4分,共16分)13.体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有_____________种。
高二数学排列组合二项式定理测诫题

排列组合、二项式定理单元测试卷一、选择题(每题5分;计50分)1.从7人中选派5人到10个不同交通岗的5个中参加交通协管工作;则不同的选派方法有( )A 、5551057A A C 种B 、5551057PC A 种 C 、57510C C 种D 、51057A C2.某乒乓球队共有男女队员18人;现从中选出男女队员各一人组成一对双打组合;由于男队员中有两人主攻单打项目;不参与双打组合;这样共有64种组合方式;则此队中男队员的人数有( )A 、10人B 、8人C 、6人D 、12人3.设34)1(6)1(4)1(234-+-+-+-=x x x x S ;则S 等于( )A 、x 4B 、x 4+1C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名);由于时间上的冲突;甲、乙两位同学都不能参加第1期培训;则不同的选派方式有( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个同学在课余时间负责一个计算机房周一至周六的值班工作;每天1人值班;每人值班2天。
如果甲同学不值周一的班;乙同学不值周六的班;则可以排出不同的值班表有( )A 、36种B 、42种C 、50种D 、72种6.(1-2x)7展开式中系数最大的项为( )A 、第4项B 、第5项C 、第7项D 、第8项7.若n xx )13(3+)(*∈N n 展开式中含有常数项;则n 的最小值是( )A 、4B 、3C 、12D 、108.. 一道数学选择题;有四个可供选择的答案;其中有且只有一个答案是正确的;一个学生解答五道这样的数学选择题;每道题都作了选择;问至多有多少种错误情形?( )A.1021B.1022C.1023D.10249.若一个m 、n 均为非负整数的有序数对(m ;n );在做m+n 的加法时;各位均不进位则称(m ;n )为“简单的有序实数对”;m+n 称为有序实数对(m ;n )之值。
计数原理排列组合二项式定理40分钟限时练(四)带答案新教材高中数学

高中数学专题复习《计数原理排列组合二项式定理》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编上海理)组合数C rn(n>r≥1,n、r∈Z)恒等于()A.r+1n+1Cr-1n-1B.(n+1)(r+1)Cr-1n-1C.nr Cr-1n-1D.nrC r-1 n-12.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( A )(A)150种 (B)180种 (C)200种 (D)280种(汇编全国2文)(12)3.某外商计划在4个候选城市投资3个不同的项目, 且在同一个城市投资的项目不超过2个, 则该外商不同的投资方案有A. 16种B.36种C.42种D.60种(汇编湖南理)4.从正方体的八个顶点中任取三个点作为三角形,直角三角形的个数为()A .56B .52C .48D .40(汇编湖南文)5.从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为( )A .56B .52C .48D .40(汇编湖南理)6.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A. C C 61942B. C C 61992C. C C 1003943-D. P P 1003943-(汇编北京春季理)(9)7.为了迎接汇编年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。
如果要实现所有不同的闪烁,那么需要的时间至少是( )A 、 1205秒 B.1200秒 C.1195秒 D.1190秒(汇编广东理数)8.8.C.每次闪烁时间5秒,共5×120=600s ,每两次闪烁之间的间隔为5s ,共5×(120-1)=595s .总共就有600+595=1195s .8.(汇编福建文)已知8)(x a x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28 9.1.将五列车停在5条不同的轨道上,其中a 列车不停在第一道上,b 列车不停在第二道上,那么不同的停车方法共有------------------------------------------------------------------------------( )(A) 120种 (B) 78种 (C) 96种(D) 7210.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有( )A .6种B .9种C .11种D .23种11.用数字1,2,3,4,5可以组成没有重复数字,并且比汇编0大的五位偶数共有( B )A.48个B.36个C.24个D.18个12.设n x x )3(2131+的二项展开式中各项系数之和为t ,其二项式系数之和为h ,若272=+t h ,则其二项展开式中2x 项的系数为A .21 B . 1 C . 2 D . 3第II 卷(非选择题)请点击修改第I I 卷的文字说明 评卷人得分 二、填空题13.在41(3)n x x -的展开式中第5项与第7项的二项式系数相等,则展开式中所有项的系数和为_____.14.若1)(+=x x f ,则(3)f =15.983除以100的余数为 . (用自然数作答)8916.2321(2)x x+-的展开式中的常数项为__________________ 17.某田径队要从6名运动员中选4人参加4╳100m 接力赛,其中甲的冲刺技术好,决定让他跑最后一棒,乙、丙二人的起跑技术欠佳,不能跑第一棒,则不同的出场方法有_________种18.学校分配5名学生到3个不同的岗位实习,每个岗位至少安排1名实习学生,则不同的分配方法共 种.(用数字作答)19.以集合U ={}a b c d ,,,的子集中选出2个不同的子集,需同时满足以下两个条件:(1)a 、b 都要选出;(2)对选出的任意两个子集A 和B ,必有A B B A ⊆⊆或,那么共有 36 种不同的选法。
(完整版)排列组合二项式定理测试及答案

排列、组合和二项式定理测试卷、选择题(本大题共12小题,每小题5分,共60分,每个小题只有一个选项)1•甲班有四个小组,每组成部分10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为( ) 9.已知(xa)8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是()xA . 28B . 38C . 1 或 38D . 1 或 2810 .某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有(3D . C 8 种每4人,每人每天最多值一班,则开幕式当天不同的排班种数为二、填空题(本大题共4小题,每小题4分,共16分)13 .不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一 起,则不同的排法种数共有 ______________________ .14 . (x 2)10(x 2 1)的展开式中x 10的系数为 ___________ .(用数字作答)3 4 511.设(1 x) (1 x) (1 x) L (1 x)50a 0 a 1x L50a 5°x ,则a 3的值是(A . C 50B .C 51C . C ;13D . 2C 5012 .北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班, A . 18 B .72 C.36D3.展开式的第7项是( )282856 A 一6B —一6C一6aaa4.用二项式定理计算9.985,精确到 1的近似值为()D 86( ) .14456-6aD . 990055. 不同的五种商品在货架上排成一排,则不同的排法种数共有(A . 12 种B . _ 2 6. 若(3 x —)n 展开式中含 xA .第8项 其中甲、乙两种必须排在一起,丙、 丁两种不能排在一起,7.从4名男生和同的选法共有 A 140 种 )20种C . 24 种 48种3x 的项是第 3名女生中选出 8项,则展开式中含 C .第10项1 1的项是(xD .第11项4人参加某个座谈会,( B 34种若这4人中必须既有男生又有女生,则不C 35种D 120 种3A . C 11 种124 4 C 14C 12C 8C U C 142CA 80B 84C 852. 6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 C . A . 99000B . 9900299004124 4 C 14 C 12C 8若c n C;C:Cn 1=32,则n= _________ 。
高二数学排列组合与二项式定理测试题

高二数学排列、组合与二项式定理 测试(理科)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若425225+=x x C C ,则x 的值为( )A .4B .7C .4或7D .不存在 2.从5个中国人、4个美国人、3个日本人中各选一人的选法有( )A .12种B .24种C .48种D .60种3.从单词“ctbenjin ”中选取5个不同字母排成一排,含有“en ”(其中“en ”相连且顺序不变)的不同排列共有 ( )A .120个B .480个C .720个D . 840个4.从1、2、3、4、5这五个数字中任取3个组成无重复数字的三位数,当三个数字有2和3时,则2需排在3的前面(不一定相邻),这样的三位数有 ( ) A .9个 B .15个 C .45个 D .51个5.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种6.如图,用5种不同颜色给图中标有1、2、3、4各部分涂色,每部分只涂一种颜色,且相邻两部分涂不同颜色.则不同的涂色方法共有( ) A .160种 B .240种 C .260种 D .360种 7.21(1)n x --展开式中,二项式系数最大的项 ( )A .第n -1项B .第n 项C .第n -1项与第n +1项D .第n 项与第n +1项8.已知()nx 21+的展开式中所有系数之和等于729,那么这个展开式中3x 项的系数是( ) A .56 B .80 C .160 D .1809.由100)233(+x 展开所得的x 的多项式中系数为有理数共有 ( )A .51项B .17项C .16项D .15项10.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A. 36种B. 12种C. 18种D. 48种 11.(1)nax by ++展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则,,a b n 的值可能为A .2,1,5a b n ==-=B .2,1,6a b n =-=-=C .1,2,6a b n =-==D .1,2,5a b n ===12.下面是高考第一批录取的一份志愿表:现有4所重点院校,每所院校有3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不同的填写方法的种数是( )A .3233)(4A ⋅ B .3233)(4C ⋅ C .32334)(C A ⋅ D .32334)(A A ⋅二、填空题(本大题共4小题,每小题4分,共16分)13.设含有8个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,TS 的值为___________.14.3个人坐在一排8个座位上,若每个人的两边都需要有空位,则不同的坐法种数为 .15.5522105)2(x a x a x a a x +⋅⋅⋅+++=-,则=++++420531a a a a a a .16. 在10(12)x - 的展开式中,下列说法正确的序号有___________ ①所有的二项式系数的和是1024; ②二项式系数最大的项是第5项;③展开式中奇数项系数和与偶数项系数和的差为103;④展开式中系数的绝对值最大的项是第7项.三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17. (本小题满分12分)如果三位数abc 满足a >b ,c >b 这个三位数就称为“凹数”,如104、525都是凹数,试求所有三位数中凹数的个数. 18. (本小题满分12分)已知n xx x )1(3+展开式中前三项系数之和为37.(1)求x 的整数次幂的项;(2)求展开式中二项式系数最大的二项式系数. 19.(本小题满分12分)一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球记2分,取出一个白球记1分,从口袋中取5个球,使总分不小于7分的取法有多少种? 20.(本小题满分12分) 在nx )21(+的展开式中,前三项的系数和为201(1) 求展开式中第几项的二项式系数最大? (2) 求展开式中第几项的系数最大? 21.(本小题满分12分)4个男同学,3个女同学站成一排,下列情况各有多少种不同排法: (1) 3个女同学必须排在一起; (2) 同学甲和同学乙之间恰好有3人;(3) 女同学从左往右按从高到低排(3个女同学身高互不相等). 22.(本小题满分14分)规定!)1()1(m m x x x C mx +--=Λ,其中x ∈R ,m 是正整数,且10=x C ,这是组合数mn C (n 、m 是正整数,且m ≤n )的一种推广. (1) 求315-C 的值;(2) 设x >0,当x 为何值时,213)(x xC C 取得最小值?(3) 组合数的两个性质;①m n n m n C C -=. ②mn m n m n C C C 11+-=+.是否都能推广到mx C (x ∈R ,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.参考答案一. 选择题:CDBDB CDCAA DD 二. 填空题13.732 14. 120 15. 122121- 16. (1) (3) 三.解答题:17. 解: 分9类: b=0时, 有9×9=81个; b=1时, 有8×8=64个;b=2时,有7×7=49个;b=3时,有6×6=36个,b=4时,有25个……;故1+4+9+16+25+36+49+64+81=285个.18.解:由已知37210=++n n n C C C ,8=∴n 或9-=n (舍去).(1)r r rrrr xC xx x C T 6111283881)1()(--+==,r ∴ 必为6的倍数,且0,80=∴≤≤r r 或6. x ∴ 的整数次幂的项为x T x T 28,7121==.(2)由8=n知展开式共9项,最大的项式系数为5658=C .19. 解:设取x 个红球,y 个白球,于是:572{=+≥+y x y x ,其中6040{≤≤≤≤y x , 14{23{32{======∴y x y x y x 或或 因此所求的取法种数是:164426343624C C C C C C ++=186(种)20.解:(1)由21421n n C C ++=201,得10=n …………………………………………(3分)∴展开式中第6项的二项式系数最大.……………………………………………………(4分)(2)⎩⎨⎧⋅≥⋅⋅≥⋅--++1110101110102222r r r r r r r r C C C C ……(8分) 解得322319≤≤r …………… (10分) ∴7=r ∴展开式中第8项的系数最大.………………………………………………………(12分) 21.解:(1)720 (2)720 (3)840 ……………………………………每小题4分22.解:(1)680!3)17)(16)(15(315-=---=-C . (4分) (2))32(616)2)(1()(2213-+=--=xx x x x x C C x x . (6分) ∵ x > 0 , 222≥+xx .当且仅当2=x 时,等号成立. ∴ 当2=x 时,213)(x xC C 取得最小值. (8分)(3)性质①不能推广,例如当2=x 时,12C 有定义,但122-C 无意义; (10分)性质②能推广,它的推广形式是m x m x m x C C C 11+-=+,x ∈R , m 是正整数. (12分)事实上,当m =1时,有11011+=+=+x x x C x C C . 当m ≥2时.)!1()2()1(!)1()1(1----++--=+-m m x x x m m x x x C C m xm xΛΛ⎥⎦⎤⎢⎣⎡++--+--=11)!1()2()1(mm x m m x x x Λ!)1)(2()1(m x m x x x ++--=Λmx C 1+=.(14分)。
高二数学排列组合二项式定理单元测试题(带答案).doc

排列、组合、二项式定理与概率测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( )A. 8种B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )A .12种B .20种C .24种D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (modm )。
已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为 ( )A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A 5B 6C 7D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种 11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上)13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a +Λ+33n C a +nn n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时,n!!=n·(n -2)·(n -4)……6×4×2;对于n 是奇数时,n!!=n·(n -2)·(n -4)……5×3×1. 现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知()2nxx的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。
高二数学单元测试(排列、组合二项式定理)

高 二 数 学 单 元 测 试( 排列、组合二项式定理 )班级 学号 姓名一、选择题:(每小题4分,共48分)1. N n ∈,则)100()21)(20(n n n -⋅⋅⋅--等于 ( )A 、n n A --20100B 、80100n A -C 、81100n A -D 、8120n A -2. 某班上午要上语文、数学、体育、外语4门课,又体育老师因故不能上第1节和第4节,则不同排方案的种数有 ( )A 、10B 、12C 、20D 、243. 若集合}3,2,1{=A ,}6,5,4,1{=B ,从这两个集合中各取一个元素作为直角坐标系中点的坐标,能确定的不同点的个数是 ( )A 、11B 、12C 、23D 、244. 在83)12(xx - 的展开式中常数项是 ( ) A 、28- B 、 7- C 、 7 D 、285. 用5种不同的颜色给如右图标有D C B A ,,,的各部分涂色, 每部分只涂一种颜色,且相邻两部分不同颜色,则不同的涂色方法共有A 、160种B 、240种C 、260种D 、360种 ( )6. E D C B A ,,,,五人并排站成一排,如果B 必须站在A 的右边(B A ,可不相邻),那么不的排法共有 ( )A 、24种B 、60种C 、90种D 、120种7. 若n xx )2(2+的展开式中第5项的系数与第3项的系数之比是3:56,则展开式中的常数项是 ( )A 、0B 、45C 、90D 、1808. 2100242322A A A A +⋅⋅⋅+++ 的值为 ( )A 、31012CB 、31002C C 、3101AD 、3100A9. 设50503322105043)1()1()1(x a x a x a x a a x x x +⋅⋅⋅++++=++⋅⋅⋅++++,则3a 等于 ( )A 、351CB 、451C C 、350CD 、450C10.若直线方程0=+By Ax 的系数A 和B 可以从7,6,3,2,1,0这6个数字中取两个不同的值,则这些方程表示的不同直线条数是 ( )A 、225+AB 、826-AC 、1226-AD 、1026-A11.)1()13)(12)(1(+⋅⋅⋅+++nx x x x 展开式中x 的一次项系数为 ( )A 、 1-n n CB 、2nC C 、21+n CD 、2121+n C 12.有5张卡片的正反面分别写有0与1,2与3,4与5,6与7,8与9,将其中任3张并排组3位数,可组成不重复的3位数的个数为 ( )A 、 480B 、432C 、48D 、192二、填空题:(每小题4分,共16分)13.关于x 的方程5516162--=x x x C C 的解为 14.3名驾驶员和6名空中小姐分别上3架不同型号的旅游直升机,每机1名驾驶员及2名空中小姐,则上机方法共有 种(用数字作答)。
排列组合二项式定理综合测试(含详细解答)

排列、组合和二项式定理单元综合测试一、选择题(每小题5分,共60分)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .362.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 ( )A .300B .216C .180D .1623.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为 ( )A .60B .48C .36D .244.某小组共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,则不同的抽取方法有 ( )A .40种B .70种C .80种D .240种5.若能被整除,则的值可能为(122n nn n n C x C x C x +++ 7,x n )A .B .4,3x n ==4,4x n ==C . D .5,4x n ==6,5x n ==6.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .AB .A ·A 412212212C .C ·CD .C 2122124127.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( )A .288个B .240个C .144个D .126个8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .4809.在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块广告牌的底色不都为红色,则不同的配色方案共有 ( )A .55种B .56种C .46种D .45种10.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是 ( )A .18B .26C .29D .5811.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为 ( )A .27B .36C .39D .4812.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A 、B 、C 、D 、E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B 、C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D 、E 两地可随意安排在其余两天送达.则安排这四天送达五个受灾地点的不同运送顺序的种数为 ( )A .72B .18C .36D .24二、填空题(每小题4分,共16分)13.沿海某市区对口支援贫困山区教育,需从本区3所重点中学抽调5名教师分别到山区5所学校任教,每校1人;每所重点中学至少抽调1人,则共有__________种不同的支教方案.14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.15.(4x 2-4x +1)5的展开式中,x 2的系数为__________.(用数字作答)16.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为__.三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C +C ;5-n n 9-n n +1(2)解不等式:-<.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?19.(12分)若(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99.20.(12分)已知(-)n 的展开式的各项系数之和等于(4-)5的展开式中的3a 3b 常数项,求:(1)(-)n 展开式的二项式系数和;3a (2)(-)n 的展开式中a -1项的二项式系数.3a 21.(12分)(1)求证:kC =nC ;k nk -1n (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C lg a 2+C lg a 3-…+(-1)n C lg a n +1.1n 2n n详细解答:1.答案解析:用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序C 24C 有 种,而甲乙被分在同一个班的有种,所以种数是.33A 33A 23343330C A A -=2.答案 解析:分类讨论思想:第一类:从1,2,3,4,5中任取两个奇数和两个偶数,C 组成没有重复数字的四位数的个数为;第二类:取0,此时2和4只能取243472C A =一个,0还有可能排在首位,组成没有重复数字的四位数的个数为.共有180个数.21433243[]108C C A A -=3.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A ·A =12种(先把除甲、乙、丙外的两个人排好,有A 种232方法,再把甲、乙、丙插入其中,有A 种方法,因此此类方法有A ·A =12种);另一类是乙、323丙相邻但不与甲相邻,此类方法有A ·A ·A =24种方法(先把除甲、乙、丙外的两人排好,2322有A 种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法2有A ·A ·A =24种).综上所述,满足题意的方法种数共有12+24=36,选C.2322答案:C4.解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法共有C C =40种,选A.3612答案:A 5.答案解析:,当时,C 122(1)1nnnn n n C x C x C x x +++=+- 5,4x n ==能被7整除.4(1)1613537n x +-=-=⨯6答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C ,则由这四点确定412的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C .故选D.4127.解析:个位是0的有C ·A =96个;1434个位是2的有C ·A =72个;1334个位是4的有C ·A =72个;1334所以共有96+72+72=240个.答案:B 8答案:C解析:若取出的球的标号为1,2,3,4,则共有C C C C A =384种不同的排法;若取出121212124的球的标号为1,1,4,4,则共有A =24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 4=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是4384+24+24=432,故应选C.9解析:C +C +C +C +C =55.0818273645答案:A10.解析:若把两人都安排在前排,则有A =6种方法,若把两人都安排在后排,则有23A =12种方法,若两人前排一个,后排一个,则有4×5×2=40种方法,因此共有58种方法,24故正确答案是D.答案:D11解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C =3个;13当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C C =9个;1313当“可连数”为三位数时:有C C C =36个;131413故共有:3+9+36=48个,故选D.答案:D12解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 种方法;第二步是12在余下的3天中任选1天,安排送达物资到受灾地点B 、C ,有A A 种方法;第三步是在余132下的2天中安排送达物资到受灾地点D 、E ,有A 种方法.由分步计数原理得不同的运送顺2序共有A ·(A A )·A =24种,故选D.121322答案:D二、填空题(每小题4分,共16分)13.解析:5名重点中学教师到山区5所学校有A 种,而3所重点中学的抽调方法种5数可由列举法一一列出为6种.故共有6A =720种不同的支教方案.5答案:72014.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A 个:4(2)万位取2或3,在余下的四个不同的位置中选两个位置放数字0与3或2时有2A 个,故24总共有A +2A =48.424答案:4815.答案:18016.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①,令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1∴(1+m )6-1=63 ∴(1+m )6=64∴1+m =±2 ∴m =1或m =-3.答案:1或-3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.解:利用组合数定义与公式求解.(1)由组合数定义知:解得4≤n ≤5.∵n ∈N *,∴n =4或5.当n =4时,原式=C +C =5;145当n =5时,原式=C +C =16.0546(2)由组合数公式,原不等式可化为-<,3!(n -3)!n !4!(n -4)!n !2×5!(n -5)!n !不等式两边约去,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解3!(n -5)!n !得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A ·A =48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,1816不同的三位数有A A A =8×8×6=384个.综上,共可组成不重复的三位数48+384=432181816个.解法2:(间接法)任取3张卡片共有C ·C ·C ·C ·A 种排法,其中0在百位不能构成三351212123位数,这样的排法有C ·C ·C ·A 种,故符合条件的三位数共有C ·C ·C ·C ·A -C ·C ·C 24121223512121232412·A =432个.12219.解:令x -1=t ,则x =t +1,于是已知恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t100,又令f (t )=(2t +3)100,则a 1+a 3+a 5+…+a 99=[f (1)-f (-1)]12=[(2+3)100-(-2+3)100]=(5100-1).121220.解:依题意,令a =1,得(-)n 展开式中各项系数和为(3-1)n =2n ,(4-3a 3b )5展开式中的通项为T r +1=C (4)5-r (-)r =(-1)r C 45-r 5-b .r 53b r 5r 210-5r6若T r +1为常数项,则=0,即r =2,10-5r6故常数项为T 3=(-1)2C ·43·5-1=27,25于是有2n =27,得n =7.(1)(-)n 展开式的二项式系数和为3a 2n =27=128.(2)(-)7的通项为3a T ′r +1=C ()7-r ·(-)r =C (-1)r ·37-r ·a ,r 73a r 75r -216令=-1,得r =3,5r -216∴所求a -1项的二项式系数为C =35.3721.解:(1)∵左式=k ·=n !k !(n -k )!n ·(n -1)!(k -1)!(n -k )!=n ·=nC =右式,(n -1)!(k -1)![(n -1)-(k -1)]!k -1n∴kC =nC .k nk -1n (2)由已知:a n =a 1q n -1,∴A =lg a 1-C (lg a 1+lg q )+C (lg a 1+2lg q )-C (lg a 1+3lg q )+…+(-1)n C (lg a 1+n lg q )1n 2n 3n n =lg a 1[1-C +C -…+(-1)n C ]-lg q [C -2C +3C -…+(-1)n -1C ·n ]1n 2n n 1n 2n 3n n =lg a 1·(1-1)n -lg q [nC -nC +nC -…+(-1)n -1·nC ]0n -11n -12n -1n -1=0-n lg q [C -C +C -…+(-1)n -1·C ]0n -11n -12n -1n -1=-n lg q (1-1)n -1=0.22.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同.所以S (3)=3×2=6(种)……………3分如图2,S (4)=3×2×2×2-S (3)=18(种) ……………………………6分 (2)如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i=2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色. ………………………………8分于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为种.另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样)3)((≥n n S 的种法相当于对n -1部分符合要求的种法,记为.)1(-n S 共有3×2n -1种种法. ………………………………10分这样就有.即,123)1()(-⨯=-+n n S n S ]2)1([2)(1----=-n nn S n S 则数列是首项为公比为-1的等比数列.)3}(2)({≥-n n S n32)3(-S 则).3()1](2)3([2)(33≥--=--n S n S n n由⑴知:,∴.6)3(=S 3()2(68)(1)nn S n --=--∴.………………………………13分3()22(1)nn S n -=-⋅-答:符合要求的不同种法有…………………14分).3()1(223≥-⋅--n n n种。
高二数学排列组合二项式定理测试题.doc

排列组合、二项式定理、概率单元测试卷 (时间:100分钟)一、选择题(每小题有四个选项,只有一个是正确的,共40分)1.某公司员工义务献血,在体检合格的人中,O 型血的有10人,A 型血的有5人,B 型血的有8人,AB 型血的有3人,从四种血型的人中各选1人去献血,不同的选法种数为( D )A 、26B 、300C 、600D 、1200 2.n ∈N *,则(20-n )(21-n)……(100-n)等于( C )A .80100n A -B .nn A --20100C .81100n A - D .8120n A -3、设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应 (D ) A 、从东边上山 B 、从西边上山 C 、从南西上山 D 、从北边上山4、在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是 ( C ) A 、-5 B 、 5 C 、10 D 、-105、有4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有 ( A ) A 、2880B 、3080C 、3200D 、36006.若()4234012341+=++++x a a x a x a x a x ,则1234+++a a a a 的值为 ( B )A .0B .15C .16D .177.从3名男生和2名女生中选出3名代表去参加辩论比赛,则所选出的3名代表中至少有1名女生的选法共有 ( A ) A .9种B .10种C .12种D .20种8.三张卡片的正反面上分别写有数字0与2,3与4,5与6,把这三张卡片拼在一起表示一个三位数,则三位数的个数为 ( B) A . 36 B .40C .44D .489、12展开式中含x 的正整数次幂的项共有 ( C )(A )1项 (B )2项 (C )3项 (D )4项10、从6人中选4人分别去北京,上海,广州,重庆四个城市游览,每人只去一个城市游览,但甲,乙两人都不去北京,则不同的选择方案有 ( B ) A 、300种 B 、240种 C 、144种 D 、96种二、填空题(每小题4分,共20分)11、在10)(a x -的展开式中,7x 的系数是15,则实数a = -0.5 ;12、310(1)(1)x x -+的展开式中,5x 的系数是 207 ;(用数字作答)13、3名老师带领6名学生平均分成三个小组到三个工厂进行社会调查,每小组有1名老师和2名学生组成,不同的分配方法有 540 种。
排列组合二项式定理测试题汇编

1.3 二项式定理 (1)班级. 姓名1.(2 x3 1 ) 7 的展开式中常数项是()xA.14B. — 14C.42D. — 422.若3n C n13n 1 C32 3n 2 ( 1)n 1 C n n 1 3 ( 1)n 512, 则 nA.7B.8C.9D.103.( 2 3 3)100 的展开式中,无理数项的个数是()A. 84 B . 85 C .86 D.874. C101 C102 C103 C1010的值为()A. 1025 B .1024 C . 1023 D . 10225.( x 3 y)n展开式中第 5 项的二项式系数与第 12 项的二项式系数相等,展开式共有()A.15 项B.16 项C.17 项D.18 项1 n6. 3x2 的展开式中含有常数项,则正整数n 的最小值为()2x 3A. 4 B .5 C . 6 D . 1157. 1 2x的第六项的系数是8.若在(1ax) 5的展开式中x3的系数是—80,则a=9. 已知axx 29的展开式中, x3的系数为9,求常数 a 的值.4n1的第 5 项的二项式系数与第 3 项的二项式系数的比是 14:3,求展开式中的常数项 .10. 若x3x 21. 3 二项式定理 (2)班级 .姓名1. (1 x) 7 展开式中,系数最大的项是()A .第 3项B .第4项 C.第 5项D . 第4项或第 5项n2. x3已 知展 开 式 中 , 各 项 系 数 的 和 与 其 各 项 二 项 式 系 数 的 和 之 比 为 64 , 则 n 等 于3x()A . 4B .5C .6D .71n3. 在x 的展开式中,如果第32 项的系数与第72 项的系数相等,则展开式的中间一项可用组合数表示为x()A. C10452B. C10352C. C10252D. C102514.若多项式x2 x10 a0 a1 ( x 1) a9 ( x 1)9 a10( x 1)10 ,则 a9A . 9B .10C .-9D .-10 ()5. (1 x) 10 a0 a1 x a2 x 2 a10 x 10,则 a1 a3 a5 a7 a9A. 512 B . 1024 C . 1024 D.512 ()6. 若 2 x 10 a a x a x2 a x10,则 a0 a2 a4 a10 _____________0 1 2 10n7. x31 展开式中,只有第 6 项的系数最大,展开式中的常数项是________x28.求( 2x-1 )5的展开式中( 1)各项系数之和;( 2)各项的二项式系数之和;( 3)偶数项的二项式系数之和;(4)各项系数的绝对值之和;(5)奇次项系数之和9. 求1x1x 2 1 x31x 15展开式中含x3的系数。
高二数学排列组合与二项式定理试题答案及解析

高二数学排列组合与二项式定理试题答案及解析1.的二项展开式中,项的系数是()A.45B.90C.135D.270【答案】C【解析】的二项展开式中,,令r=4得,项的系数是=135,选C。
【考点】二项展开式的通项公式点评:简单题,二项式展开式的通项公式是,。
2.设,则的值为【答案】-2.【解析】根据题意,由于,则令x=-1,则可知等式左边为-2,故可知=-2,因此答案为-2.【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
3.已知二项式的展开式中第四项为常数项,则等于A.9B.6C.5D.3【答案】C【解析】根据题意,由于二项式的展开式中第四项为常数项,那么其通项公式为,故答案为5,选C.【考点】二项式定理点评:主要是考查了二项式定理中展开式的通项公式的运用,属于基础题。
4.已知,则 .【答案】66【解析】根据题意,由于,故可知,故可知答案为66.【考点】组合数公式点评:主要是考查了组合数性质的运用,属于基础题。
5.已知离散型随机变量的分布列如下表.若,,则,.【答案】【解析】由分布列性质可得,【考点】分布列期望方差点评:在分布列中各概率之和为1,借助于分布列结合期望方差公式可计算这两个量6.已知()能被整除,则实数的值为【答案】【解析】根据题意,由于,根据二项式定理展开式可知,那么由于()能被整除,且被11除的余数为2,那么可知2+a能被11整除,可知a==9,故答案为9.【考点】二项式定理的运用点评:主要是考查了二项式定理来解决整除问题的运用,属于基础题。
7. ( -)6的二项展开式中的常数项为_____.(用数字作答)【答案】-160【解析】由二项式定理得通项得,,取得常数项。
故选D。
【考点】二项式定理点评:在两项式定理中,通项是最重要的知识点,解决此类题目,必然用到它。
8. 4名同学到某景点旅游,该景点有4条路线可供游览,其中恰有1条路线没有被这4个同学中的任何1人游览的情况有A.36种B.72种C.81种D.144种【答案】D【解析】由题意可知4人选择了4条线路中的3条,不同的游览情况共有种【考点】排列组合点评:求解本题按照先分组后分配的思路求解9.已知,则二项式展开式中的系数为_________.【答案】10【解析】,展开的通项为,令,系数为【考点】定积分与二项式定理点评:定积分,其中,二项式的展开式第项是10.若N,且则()A.81B.16C. 8D.1【答案】A【解析】根据题意,由于,可知n=4,那么当x=-1时可知等式左边为 ,那么右边表示的为81,故答案为81,选A 【考点】二项式定理点评:主要是考查了二项式定理以及系数和的求解,属于基础题。
排列组合及二项式定理试题和答案

排列组合、二项式定理一、选择题:1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为A.120 B.324 C.720D.12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是A.40 B.74 C.84D.2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有A.18个 B.15个 C.12个 D.9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是A.512 B.968 C.1013D.10245.如果的展开式中所有奇数项的系数和等于512,则展开式的中间项是A.B.C.D.6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是A.36 B.32 C.24D.207.若n是奇数,则被9除的余数是A.0 B.2 C.7D.88.现有一个碱基A,2个碱基C,3个碱基G,由这6个碱基组成的不同的碱基序列有A.20个 B.60个 C.120个 D.90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为A.504 B.210 C.336D.12010.在的展开式中,x3的系数等于A.B.C.D.11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是A.2男6女 B.3男5女 C.5男3女 D.6男2女12.若x∈R,n∈N+,定义=x(x+1)(x+2)…(x+n-1),例如=(-5)(-4)(-3)(-2)(-1)=-120,则函数的奇偶性为A.是偶函数而不是奇函数 B.是奇函数而不是偶函数C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数13.由等式定义映射则f(4,3,2,1)等于A.(1,2,3,4) B.(0,3,4,0)C.(-1,0,2,-2) D.(0,-3,4,-1)14.已知集合A={1,2,3},B={4,5,6},从A到B的映射f(x),B中有且仅有2个元素有原象,则这样的映射个数为A.8 B.9 C.24D.2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有A.24种 B.36种 C.60种 D.66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为A.8 B.9 C.10D.1117.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有A.36种 B.42种 C.50种 D.72种18.若的值为A.0 B.2 C.-1 D.1答题卡二、填空题:19.某电子器件的电路中,在A,B之间有C,D,E,F四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A,B间电路不通,则焊点脱落的不同情况有种.20.设f(x)=x5-5x4+10x3-10x2+5x+1,则f(x)的反函数f-1(x)=.21.正整数a1a2…an…a2n-2a2n-1称为凹数,如果a1>a2>…an,且a2n-1>a2n-2>…>an,其中ai(i=1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a1a2a3(a1≠a3)共有个(用数字作答).22.如果a1(x-1)4+a2(x-1)3+a3(x-1)2+a4(x-1)+a5=x4,那么a2-a3+a4 .23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知()n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:第十一单元排列组合、二项式定理参考答案一、选择题(每小题5分,共90分):提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:3.C4.B 分8类:5.B中间项为6.D 按首位数字的奇偶性分两类:7.C 原式=(7+1)n-1=(9-1)2-1=9k-2=9k’+7(k和k’均为正整数).8.B 分三步:9.A10.B 原式=11.B 设有男生x人,则,检验知B正确.12.A13.D 比较等式两边x3的系数,得4=4+b1,则b1=0,故排除A,C;再比较等式两边的常数项,有1=1+b1+b2+b3+b4,∴b1+b2+b3+b4=0.14.D15.B 先排甲、乙外的3人,有种排法,再插入甲、乙两人,有种方法,又甲排乙的左边和甲排乙的右边各占,故所求不同和站法有16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周六的排法,共有18.D 设f(x)=()10,则(a0+a2+…+a10)2-(a1+a3+…+a9)2=(a0+a1+…+a10)(a0-a1+a2-…-a9+a10)=f(1)f(-1)=()10()10=1。
选修23排列组合二项式定理概率单元测试卷

摆列组合、二项式定理、概率单元测试卷一、选择题(每题 5 分,计 60 分)1.从 7 人中选派 5 人到 10 个不一样交通岗的 5 此中参加交通协管工作,则不一样的选派方法有()A 、 C 75 A 105 A 55种 B 、 A 75 C 105 P 55 种 C 、 C 105 C 75 种 D 、 C 75 A 1052.某乒乓球队共有男女队员18 人,现从中选出男女队员各一人构成一对双打组合,因为男队员中有两人主攻单打项目,不参加双打组合,这样共有64 种组合方式,则此队中男队员的人数有( )A 、10人B、8 人C、6人D、12人3.设S ( x 1) 4 4(x 1)3 6(x 1) 2 4x 3 ,则 S 等于()A 、x 4B、x 4+1C、(x-2) 4D、x 4+44.学校要选派 4 名喜好拍照的同学中的 3 名参加校外拍照小组的 3 期培训(每期只派 1 名),因为时间上的冲突,甲、乙两位同学都不可以参加第 1 期培训,则不一样的选派方式有()A 、6种B 、8种C、10种D、12种5.甲、乙、丙三个同学在课余时间负责一个计算机房周一至周六的值班工作,每日1 人值班,每人值班2 天。
假如甲同学不值周一的班,乙同学不值周六的班,则可以排出不一样的值班表有()A 、36 种B 、42 种 C、50种D 、72 种6.现有甲、乙两骰子,从 1 点到 6 点出现的概率都是 1/6 ,掷甲、乙两颗骰子,设分别出现的点数为a 、b 时,则满足 a| b 2 2a | 10 的概率为()aA 、1 B、1C1 D118 12、、967.(1-2x)7睁开式中系数最大的项为()A 、第 4项B 、第5项C、第7项D 、第 8项8.在一次足球赛中,某小组共有 5 个球队进行双循环赛(每两队之间赛两场) ,已知胜一场得 3 分,平一场得 1 分,负一场得 0 分。
积分多的前两名可出线(积分相等则要比净胜球数或进球总数) ,赛完后,一个队的积分可出现的不一样状况种数为()A 、22B、 23C 、24D 、259.若 ( 3x1)n (nN ) 睁开式中含有常数项,则n 的最小值是( )3xA 、4B 、3C、12 D 、1010..n ∈N, A=(7 +2)2n+1,B A 的小数部分,AB的是 ( )A.72n+1B.2 2n+1C.32n+1D.52n+111.若一个 m、n 均非整数的有序数(m,n),在做 m+n的加法,各位均不位称(m,n)“ 的有序数”,m+n称有序数(m,n)之。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列、组合、二项式定理与概率测试题
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,
可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( ) A. 8种 B. 12种 C. 16种 D. 20种
2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )
A .96种
B .180种
C .240种
D .280种
3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )
A .12种
B .20种
C .24种
D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )
A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (mod
m )。
已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( )
6、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种
7、令1
)
1(++n n x a 为的展开式中含1
-n x
项的系数,则数列}1
{
n
a 的前n 项和为 ( )
A .
2)
3(+n n B .
2)
1(+n n C .
1+n n D .
1
2+n n
8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )
A .32
B .1
C .-1
D .-32
9、二项式2
3n
x ⎛
⎝
*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )
A 5
B 6
C 7
D 8
10、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )
A .150种
B .147种
C .144种
D .141种
11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成
一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x∈A 则
x 1∈A,就称A 是伙伴关系集合,集合M={-1,0,31,2
1
,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )
A .15
B .16
C .28
D .25
二、填空题(每小题4分,共16分,把答案填在题中横线上) 13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .
15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a +Λ+33n C a +n
n n C a 1+=
16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时, n!!=n·(n-2)·(n-4)……6×4×2;对于n 是奇数时,n!!=n·(n-2)·(n-4)……5×3×1.
现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.
三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)
17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?
18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.
(1)求f(x)展开式中x2的系数的最值;
(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.
19、7位同学站成一排.问:
(1)甲、乙两同学必须相邻的排法共有多少种?
(2)甲、乙和丙三个同学都相邻的排法共有多少种?
(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?
(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?
20、已知(
n
x的展开式中前三项的系数成等差数列.
(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.
21、由0,1,2,3,4,5这六个数字。
(1)能组成多少个无重复数字的四位数?(2)能组成多少个无重复数字的四位偶数?(3)组成无重复数字的四位数中比4032大的数有多少个?
22、规定=x(x-1)…(x-m+1),其中x∈R,m为正整数,且=1,这是排列数(n,m是正整数,且m≤n)的一种推广.
(1)求的值;
(2)排列数的两个性质:①,②.(其中m,n是正整数)是否都能推广到(x∈R,m 是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由.
参考答案
1、C
2、C
3、C
4、B
5、 B
6、C
7、 D
8、 A
9、 C 10、D 11、B 12、A 具有伙伴关系的元素组有-1,1,
21、2,3
1
、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,个数为C 1
4+ C 2
4+ C 3
4+ C 4
4=15, 选A .
13、34 14、1008 15、n n 32 16、①②③④ 点拨:(2005!!)×(2006!!)
17、解: 设男生有x 人,则女生有8-x 人,依题意,, ∴(8-x)·6=180,x 3-9x 2+8x +60=0,
x 3-5x 2-(4x 2-20x)-(12x -60)=0, (x -5)(x 2-4x -12)=0,
∴x 1=5,x 2=6,x 3=-2(舍去). ∴男生5人,女生3人;或男生6人,女生2人. 18、解: =19,即m +n=19.∴m=19-n
(1)设x 2的系数为T==n 2-19n +171 =(n -)2+171-.
∵n ∈Z +,n ≥1, ∴当n=1或n=18时,T max =153,当n=9或10时,T min =81; (2)对于使f(x)中x 2的系数取最小值时的m 、n 的值, 即f(x)=(1+x)9+(1+x)10 从而x 7的系数为.
19、 (1)先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有种方法;再将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有种.
(2)方法同上,一共有种.
(3)将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有种方法.
(4)将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素时.一共有2个元素,∴一共有排法种数: (种).
20、解:(Ⅰ)由题设,得 02
111C C 2C 42
n n n
+⨯=⨯⨯, 即2980n n -+=,解得n =8,n =1(舍去).
(Ⅱ)设第r +1的系数最大,则1881188111C C 22
11C C .22r
r r r r r r r ++--⎧⎪⎪⎨⎪⎪⎩≥,≥ 即1182(1)11.291
r r r ⎧⎪-+⎪⎨⎪⎪-⎩≥,≥ 解得r =2或r
=3.所以系数最大的项为5
37T x =,9
2
47T x =.
21、解:(1)1355300A A =g (2)31125244156A A A A +=(3) 3121
54431112A A A A +++=
22、(1) =(-15)(-16)(-17)=-4080; (2)性质①、②均可推广,推广的形式分别是: ①,②(x ∈R ,m ∈N +)
事实上,在①中,当m=1时,左边==x ,右边==x ,等式成立;
当m≥2时,左边=x(x -1)(x -2)…(x-m +1) =x[(x -1)(x -2)…((x-1)-(m -1)+1)]= 因此,①成立; 在②中,m=1时,左边==右边,等式成立; 当m≥2时,左边
=x(x -1)(x -2)…(x-m +1)+mx(x -1)(x -2)…(x-m +2)
=x(x -1)(x -2)…(x-m +2)[(x -m +1)+m] =(x +1)x(x -1)(x -2)…[(x+1)-m +1]
==右边, 因此②(x ∈R ,m ∈N +)成立.。