高中数学竞赛讲义_整数问题
竞赛讲义——整数的整除性

整数的整除性整数的整除性问题,是数论中的最基本问题,也是国内外数学竞赛中最常出现的内容之一.由于整数性质的论证是具体、严格、富有技巧,它既容易使学生接受,又是培养学生逻辑思维和推理能力的一个有效课题,因此,了解一些整数的性质和整除性问题的解法是很有必要的.1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义设a,b是整数,b≠0.如果有一个整数q,使得a=bq,那么称a能被b整除,或称b整除a,并记作b|a.如果不存在这样的整数q,使得a=bq,则称a不能被b整除,或称b不整除a,记作b a.关于整数的整除,有如下一些基本性质:性质1 若b|a,c|b,则c|a.性质2 若c|a,c|b,则c|(a±b).性质3 若c|a,c b,则c(a±b).性质4 若b|a,d|c,则bd|ac.性质5 若a=b+c,且m|a,m|b,则m|c.性质6 若b|a,c|a,则[b,c]|a(此处[b,c]为b,c的最小公倍数).特别地,当(b,c)=1时,bc|a(此处(b,c)为b,c的最大公约数).性质7 若c|ab,且(c,a)=1,则c|b.特别地,若p是质数,且p|ab,则p|a或p|b.性质8 若a≠b,n是自然数,则(a-b)|(a n-b n).性质9 若a≠-b,n是正偶数,则(a+b)|(a n-b n).性质10 若a≠-b,n是正奇数,则(a+b)|(a n+b n).2.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法.下面举例说明.例1. 证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以,12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24 [(2n-1)2+(2n+1)2+(2n+3)2].例2. 若x,y为整数,且2x+3y,9x+5y之一能被17整除,那么另一个也能被17整除.证设u=2x+3y,v=9x+5y.若17|u,从上面两式中消去y,得3v-5u=17x.①所以 17|3v.因为(17,3)=1,所以17|v,即17|9x+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2x+3y.例3.若2121,,,p qp qq p--都是整数,并且p>1,q>1.求pq的值.解若p=q,则不是整数,所以p≠q.不妨设p<q,于是是整数,所以p只能为3,从而q=5.所以pq=3×5=15.例4. 试求出两两互质的不同的三个自然数x,y,z,使得其中任意两个的和能被第三个数整除.分析题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.最小的一个:y|(y+2x),所以y|2x,于是数两两互质,所以x=1.所求的三个数为1,2,3.例5. 设n是奇数,求证: 60|6n-3n-2n-1.分析因为60=22×3×5,22,3,5是两两互质的,所以由性质6,只需证明22,3,5能被6n-3n-2n-1整除即可.对于幂的形式,我们常常利用性质8~性质10,其本质是因式分解.证 60=22×3×5.由于n是奇数,利用性质8和性质10,有22|6n-2n,22|3n+1,所以22|6n-2n-3n-1, 3|6n-3n, 3|2n+1,所以3|6n-3n-2n-1,5|6n-1,5|3n+2n,所以5|6n-1-3n-2n.由于22,3,5两两互质,所以60|6n-3n-2n-1.我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k表示,奇数常用2k+1表示,其实这就是按模2分类.又如,一个整数a被3除时,余数只能是0,1,2这三种可能,因此,全体整数可以分为3k,3k+1,3k+2这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.例6. 若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k+4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例7. 求证:3n+1(n为正整数)能被2或22整除,但不能被2的更高次幂整除.证按模2分类.若n=2k为偶数,k为正整数,则3n+1=32k+1=(3k)2+1.由3k是奇数,(3k)2是奇数的平方,奇数的平方除以8余1,故可设(3k)2=8x +1,于是3n+1=8x+2=2(4x+1).4x+1是奇数,不含有2的因数,所以3n+1能被2整除,但不能被2的更高次幂整除.若n=2k+1为奇数,k为非负整数,则3n+1=32k+1+1=3·(3k)2+1=3(8x+1)+1=4(6x+1).由于6x+1是奇数,所以此时3n+1能被22整除,但不能被2的更高次幂整除.在解决有些整除性问题时,直接证明较为困难,可以用反证法来证.例8. 已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.证用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾.(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a,b都是3的倍数.例9. 设p是质数,证明:满足a2=pb2的正整数a,b不存在.证用反证法.假定存在正整数a,b,使得a2=pb2令(a,b)=d,a=a1d,b=b1d,则(a1,b1)=1.所以与(a1,b1)=1矛盾.练习三1.求证:对任意自然数n,2×7n+1能被3整除.2.证明:当a是奇数时,a(a2-1)能被24整除.3.已知整数x,y,使得7|(13x+8y),求证: 7|(9x+5y).4.设p是大于3的质数,求证:24|(p2-1).5.求证:对任意自然数n,n(n-1)(2n-1)能被6整除.6.求证:三个连续自然数的立方和能被9整除.7.已知a,b,c,d为整数,ab+cd能被a-c整除,求证:ad+bc也能被a-c整除.。
高中数学竞赛讲义十八

高中数学竞赛讲义十八──组合一、方法与例题1.抽屉原理。
例 1 设整数n≥4,a1,a2,…,a n是区间(0,2n)内n个不同的整数,证明:存在集合{a1,a2,…,a n}的一个子集,它的所有元素之和能被2n整除。
[证明] (1)若n{a1,a2,…,a n},则n个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。
由抽屉原理知其中必存在两个数a i,a j(i≠j)属于同一集合,从而a i+a j=2n被2n整除;(2)若n∈{a1,a2,…,a n},不妨设a n=n,从a1,a2,…,a n-1(n-1≥3)中任意取3个数a i, a j, a k(a i,<a j< a k),则a j-a i与a k-a i中至少有一个不被n整除,否则a k-a i=(a k-a j)+(a j-a i)≥2n,这与a k∈(0,2n)矛盾,故a1,a2,…,a n-1中必有两个数之差不被n整除;不妨设a1与a2之差(a2-a1>0)不被n整除,考虑n个数a1,a2,a1+a2,a1+a2+a3,…,a1+a2+…+a n-1。
ⅰ)若这n个数中有一个被n整除,设此数等于k n,若k为偶数,则结论成立;若k 为奇数,则加上a n=n知结论成立。
ⅱ)若这n个数中没有一个被n整除,则它们除以n的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n的余数相同,它们之差被n整除,而a2-a1不被n整除,故这个差必为a i, a j, a k-1中若干个数之和,同ⅰ)可知结论成立。
2.极端原理。
例2 在n×n的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n。
证明:表中所有数之和不小于。
[证明] 计算各行的和、各列的和,这2n个和中必有最小的,不妨设第m行的和最小,记和为k,则该行中至少有n-k个0,这n-k个0所在的各列的和都不小于n-k,从而这n-k 列的数的总和不小于(n-k)2,其余各列的数的总和不小于k2,从而表中所有数的总和不小于(n-k)2+k2≥3.不变量原理。
第9讲 竞赛中整数性质的运用

第9讲 竞赛中整数性质的运用【知识梳理】1、完全平方数的末位数若a 是整数,则称2a 为完全平方数。
定理1:完全平方数的末位数只能是0,1,4,5,6,9。
推论:凡末位数是2,3,7,8的自然数一定不是完全平方数。
定理2:奇数的平方的十位数字必是偶数。
推论:十位数字是奇数的完全平方数一定是偶数。
定理3:连续的10个自然数的平方和的末位数都是5。
2、连续自然数乘积的末位数定理4:两个连续自然数乘积的末位数只能是0,2,6;3个连续自然数乘积的末位数只能是0,4,6;4个连续自然数乘积的末位数只能是0,4;5个或5个以上连续自然数乘积的末位数都是0。
3、末位数的运算性质定理5:两个自然数和的末位数等于这两个自然数末位数和的末位数;两个自然数乘积的末位数等于这两个自然数末位数乘积的末位数,即 )]()([)(b P a p P b a P +=+,)]()([)(b P a P P b a P ⋅=⋅,其中a 和b 都是自然数利用末位数的性质,可以使一些看上去很困难的问题得以顺利解决。
4、数的整除的判定法则(1)末两位数能被4(或25)整除的整数能被4(或25)整除。
(2)末三位数能被8(或125)整除的整数能被8(或125)整除。
(3)一个整数的奇数位数字和与偶数位数字和的差能被11整除,则这个数能被11整除。
(4)奇位千进位的总和与偶位千进位的总和之差能被7或11或13整除,则这个数能同时被7,11,13整除。
5、带余除法两个整数的和、差、积仍是整数,即整数中加、减、乘运算是封闭的,但用一非零整数去除另一整数,所得的商未必是整数。
一般地,a 、b 为两个整数,0≠b 则存在惟一的整数对q 和r ,使得a =bq +r 。
这里||0b r ≤≤,特别是当0=r ,则称a b |当0≠r ,则称b 不整除 a ,q 称为a 被b 除时所得的不完全商;r 称为a 被b 除时所得的余数。
【例题精讲】◆例1:求19951994的末位数。
数学竞赛中的数论问题(学生版)第一讲

数学竞赛中的数论问题引言数论的认识:数论是关于数的学问,主要研究整数,重点对象是正整数,对中学生可以说,数论是研究正整数的一个数学分支.什么是正整数呢?人们借助于“集合”和“后继”关系给正整数(当时也即自然数)作过本质的描述,正整数1,2,3,…是这样一个集合N +:(1)有一个最小的数1.(2)每一个数a 的后面都有且只有一个后继数/a ;除1之外,每一个数的都是且只是一个数的后继数.这个结构很像数学归纳法,事实上,有这样的归纳公理:(3)对N +的子集M ,若1M ∈,且当a M ∈时,有后继数/a M ∈,则M N +=. 就是这么一个简单的数集,里面却有无穷无尽的奥秘,有的奥秘甚至使得人们怀疑:人类的智慧还没有成熟到解决它的程度.比如,哥德巴赫猜想:1742年6月7日,普鲁士派往俄国的一位公使哥德巴赫写信给欧拉,提出“任何偶数,由4开始,都可以表示为两个素数和的形式,任何奇数,由7开始,都可以表示为三个素数的和”.后者是前者的推论,也可独立证明(已解决).“表示为两个素数和的形式”就是著名的哥德巴赫猜想,简称1+1.欧拉认为这是对的,但证不出来.1900年希尔伯特将其归入23个问题中的第8个问题.1966年陈景润证得:一个素数+素数⨯素数(1+2),至今仍无人超越.●陈景润的数学教师沈元很重视利用名人、名言、名事去激励学生,他曾多次在开讲时,说过这样的话:“自然科学的皇后是数学,数学的皇冠是数论,哥德巴赫猜想则是皇冠上的明珠.……”陈景润就是由此而受到了启示和激励,展开了艰苦卓绝的终生奋斗和灿烂辉煌的奋斗终生,离摘取“皇冠上的明珠”仅一步之遥.●数论题涉及的知识不是很多,但用不多的知识来解决问题往往就需要较强的能力和精明多的技巧,有人说:用以发现数学人才,在初等数学中再也没有比数论教材更好的课程了.任何学生如能把当今一本数论教材中的练习做出,就应当受到鼓励,劝他(她)将来去从事数学方面的工作(U .Dudley 《数论基础》前言).下面,是一个有趣的故事.当代最高产的数学家厄尔多斯听说一个叫波萨(匈牙利,1948)的小男孩很聪明,就问了他一个问题加以考察(1959):如果你手头上有1n +个正整数,这些正整数小于或等于2n ,那么你一定有一对整数是互素的,你知道这是什么原因吗?不到12岁的波萨只用了1分半钟,就给出了问题的解答.他将1~2n 分成(1,2),(3,4),…,(21,2n n -)共n 个抽屉,手头的1n +个正整数一定有两个属于同一抽屉,这两个数是相邻的正整数,必定互素.通过这个问题,厄尔多斯认定波萨是个难得的英才,就精心加以培养,不到两年,14岁的波萨就发表了图论中“波萨定理”.●重视数学能力的数学竞赛,已经广泛采用数论题目,是数学竞赛四大支柱之一,四大支柱是:代数,几何,初等数论,组合初步(俗称代数题、几何题、算术题和智力题).高中竞赛加试四道题正好是四大模块各一题,分别是几何题、代数题、数论题、组合题,一试中也会有数论题.数论受到数学竞赛的青睐可能还有一个技术上的原因,就是它能方便地提供从小学到大学各个层面的、新鲜而有趣的题目.数论题的主要类型:在初中竞赛大纲中,数论的内容列有:十进制整数及表示方法;整除性,被2、3、4、5、8、9、11等数整除的判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算; 简单的一次不定方程.在高中竞赛大纲中,数论的内容列有:同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x ],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*.根据已出现的试题统计,中学数学竞赛中的数论问题的主要有8个重点类型:(1)奇数与偶数(奇偶分析法、01法);(2)约数与倍数、素数与合数;(3)平方数;(4)整除;(5)同余;(6)不定方程;(7)数论函数、[]x 高斯函数、()n ϕ欧拉函数;(8)进位制(十进制、二进制).下面,我们首先介绍数论题的基本内容(10个定义、18条定理),然后,对数学竞赛中的数论问题作分类讲解.第一讲 数论题的基本内容中学数学竞赛中的数论问题涉及的数论内容主要有10个定义、18条定理.首先约定,本文中的字母均表示整数.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b 是a 的约数.(,q r 的存在性由定理1证明)定义2 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .()12,,,n a a a 中的i a 没有顺序,最大公约数也称最大公因数.简单性质:()()1212,,,,,,n n a a a a a a = .一个功能:可以把对整数的研究转化为对非负整数的研究.定义3 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .简单性质:如果k 是正整数,a b 的公倍数,则存在正整数m 使[],k ma b = 证明:定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(也称互质).定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(也称质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理1 若,a b 是两个整数,0b >,则存在两个实数,q r ,使()0a qb r r b =+≤<,并且,q r 是唯一性.证明1:注:如果取消0r b ≤<,当0r <或r b >,不保证唯一.经典方法:紧扣定义,构造法证存在性,反证法证唯一性.证明2:证明3:定理 2 设,,a b c 是三个不全为0的整数,满足a qb c =+,其中q 也为整数,则()(),,a b b c =.证明:注:这是辗转相除法求最大公约数的理论基础.经典方法:要证明A B =,只需证A B ⊆且B A ⊆.定理3 对任意的正整数,a b ,有()[],,a b a b ab ⋅=.证明:定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +;(2)00ax by +(),a b =.证明:推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用)定理5 互素的简单性质:(1)()1,1a =.(2)(),11n n +=.(3)()21,211n n -+=.(4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 证明:推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =.(5)若(),1a b =,则存在整数,s t ,使1as bt +=.(定理4推论)(6)若()(),1,,1a b a c ==,则(),1a bc =.证明:(7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=.证明:(8)若(),1a b =,则(),1m n a b =,其中,m n 为正整数. 证明:定理6 设a 是大于1的整数,则a 的除1之外的最小的正约数q 必是素数,且当a 是合数时,q ≤证明:定理7 素数有无穷多个,2是唯一的偶素数.证明:注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)定理8(整除的性质)整数,,a b c 通常指非零整数(1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明:(3)若a b c d +=+,且|,|,|e a e b e c ,则|e d .(4)若c b ,b a ,则c a .证明:(5)若c a ,则bc ab .(6)若c a ,c b ,则对任意整数,m n ,有c ma nb +.证明:(7)若(),1a b =,且a bc ,则a c .证明:注意 不能由a bc 且|a b /得出a c .如649⨯,但6|4/且6|9/.(8)若(),1a b =,且,a c b c ,则ab c .证明:注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30.(9)若a 为素数,且a bc ,则a b 或a c .证明:注意 没有a 为素数,不能由a bc 推出a b 或a c .如649⨯,但6|4/且6|9/. 定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m >(1)若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡;证明: (2)若(m o d )a b m ≡且(mod )c d m ≡,则(m o d )a c b d m +≡+且(mod )ac bd m ≡.证明:(3)若(m o d )a b m ≡,则对任意的正整数n 有(mod )n na b m =且(mod )an bn mn ≡. (4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明:定理10 设,a b 为整数,n 为正整数,(1)若a b ≠,则()()n n a b a b --. ()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++ .(2)若a b ≠-,则()()2121n n a b a b --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+ .(3)若a b ≠-,则()()22n n a b a b +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+- .定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++ , 则称数12m a a a 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++ ,109,0i a a ≤≤>(10进制)12121222m m m m n a a a a ---=++++ .101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212k k n p p p ααα= ,其中12k p p p <<< 为素数,12,,,k ααα 为正整数. (分解唯一性) 证明1:证明2:定理13 若正整数n 的素数分解式为 1212k k n p p p ααα= 则n 的正约数的个数为()()()()12111k d n a a a =+++ ,n 的一切正约数之和为()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅--- . 证明:注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是 23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 证明:注 省略号其实是有限项之和.画线示意50!中2的指数.35678912450!23571113171923293137414347ααααααααα==定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a --. 证明1:证明2:定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数.定理16 设正整数1212k k n p p p ααα= ,则()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ . 证明:注 示意3n =的容斥原理.推论 对素数p 有()()11,p p p p p αααϕϕ-=-=-. 定理17 整系数不定方程ax by c +=(0ab ≠)存在整数解的充分必要条件是(),a b c .证明:定理18 若0ab ≠,(),1a b =,且00,,x x y y =⎧⎨=⎩是整系数不定方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈. ① 证明:定义10 (平面整点)在平面直角坐标系上,纵横坐标都是整数的点称为整点(也称格点).类似地可以定义空间整点.。
高中竞赛数学讲义第35讲整数性质

第16 讲整数的性质初等数论的基本研究对象是整数.两个整数的和、差、积都是整数,但商却不一定是整数.由此引出了数论中最基本的概念:整除.整除性理论是初等数论中最基础的部分,它是在带余除法的基础上建立起来的.整数a除以整数b (b≠0),可以将a表示为a=bq+r,这里q,r是整数,且0≤r<b.q称为a除以b所得的商,r称为a除以b 所得的余数.当r=0时,a=bq,称a能被b整除,或称b整除a,记为b | a,b叫做a的因数,a叫做b的倍数;q取1,则a=b,a也是它本身的因数.当r≠0时,称a不能被b整除,b不整除a,记作b├a.若c | a,c | b,则称c是a,b的公因数,a,b的最大公因数d记为(a,b).若a | c,b | c,则称c是a,b的公倍数,a,b的最小公倍数M记为[a,b].一个正整数,按它的正因数个数可以分为三类.只有一个正因数的正整数是1;有两个正因数的正整数称为素数(质数),素数的正因数只有1和它本身;正因数个数超过两个的正整数称为合数,合数除了1和它本身外还有其他正因数.任何一个大于1的整数均可分解为素数的乘积,若不考虑素数相乘的前后顺序,则分解式是惟一的.一个整数分解成素数的乘积时,其中有些素数可能重复出现,把分解式中相同的素数的积写成幂的形式,大于1的整数a 可以表示为:a =1212i S i S p p p p αααα⋅……,其中i =l ,2,…,s .以上式子称为a 的标准分解式.大于l 的整数的标准分解式是惟一的(不考虑乘积的先后顺序).若a 的标准分解式是a =1212i S i S p p p p αααα⋅……,其中i =l ,2,…,s ,则d 是a 的正因数的充要条件是 d =1212i S i S p p p p ββββ⋅……,其中 0≤βi ≤αi ,i =l ,2,…,s . 由此可知,a 的正因数的个数为d (a )=(α1+1) (α2+1)…(αs +1) .由a 的标准分解式a =1212i S i S p p p p αααα⋅…… (i =l ,2,…,s ),若a是整数的k 次方,则αi (i =l ,2,…,s )是k 的倍数.若a 是整数的平方,则αi (i =l ,2,…,s )是偶数.推论:设a =bc ,且(b ,c )=1,若a 是整数的k 次方,则b ,c也是整数的k 次方.若a 是整数的平方,则b ,c 也是整数的平方.A 类例题例1.若任何三个连续自然数的立方和都能被正整数a 整除,则这样的a 的最大值是( )A. 9B. 3C. 2D. 1分析 观察最小的三个连续自然数的立方和36,a 是它的约数,a不会超过36,不能排除任何选择支;观察第二个小的三个连续自然数的立方和,进一步缩小a的范围,可以排除取偶数的可能。
高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法一. 条件的增设对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。
1. 大小顺序条件与实数范围不同,若整数x ,y 有大小顺序x <y ,则必有y ≥x +1,也可以写成y =x +t ,其中整数t ≥1。
例1. (IMO-22)设m ,n 是不大于1981的自然数,1)(222=--m nm n ,试求22n m +的最大值。
解:易知当m =n 时,222=+n m 不是最大值。
于是不访设n >m ,而令n =m +u 1,n >u 1≥1,得-2(m -1mu 1)22112=--u mu 。
同理,又可令m = u 1+ u 2,m >u 2≥1。
如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。
故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。
例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。
因为所求的都是整数,所以原不等式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12(3)2(222≤-+-+-c b ba ,从而只有a =1,b =2,c =1。
2. 整除性条件对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ∤y ,则可令y =tx +r ,0<r ≤|x |-1。
这里字母t ,r 都是整数。
进一步,若a q |,b q |且a b >,则q a b +≥。
高中数学竞赛讲义整除 新人教A 版

§26整除整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题.Ⅰ. 整数的整除性初等数论的基本研究对象是自然数集合及整数集合. 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如b a ,是整除,0≠b ,则ba不一定是整数. 由此引出初等数论中第一个基本概念:整数的整除性.定义一:(带余除法)对于任一整数a 和任一整数b ,必有惟一的一对整数q ,r 使得r bq a +=,b r <≤0,并且整数q 和r 由上述条件惟一确定,则q 称为b 除a 的不完全商,r 称为b 除a 的余数.若0=r ,则称b 整除a ,或a 被b 整除,或称b a 是的倍数,或称a b 是的约数(又叫因子),记为a b |.否则,b | a .任何a 的非1,±±a 的约数,叫做a 的真约数. 0是任何整数的倍数,1是任何整数的约数.任一非零的整数是其本身的约数,也是其本身的倍数. 由整除的定义,不难得出整除的如下性质: (1)若.|,|,|c a c b b a 则(2)若.,,2,1,,|,|1n i Z cb c a b a ini i i i =∈∑=其中则(3)若c a |,则.|cb ab 反之,亦成立.(4)若||||,|b a b a ≤则.因此,若b a a b b a ±=则又,|,|. (5)a 、b 互质,若.|,|,|c ab c b c a 则(6)p 为质数,若,|21n a a a p ⋅⋅⋅ 则p 必能整除n a a a ,,,21 中的某一个. 特别地,若p 为质数,.|,|a p a p n则(7)如在等式∑∑===mk kn i i ba 11中除开某一项外,其余各项都是c 的倍数,则这一项也是c 的倍数.(8)n 个连续整数中有且只有一个是n 的倍数. (9)任何n 个连续整数之积一定是n 的倍数. 本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.Ⅱ. 最大公约数和最小公倍数定义二:设a 、b 是两个不全为0的整数.若整数c 满足:b c a c |,|,则称b a c ,为的公约数,b a 与的所有公约数中的最大者称为b a 与的最大公约数,记为),(b a .如果),(b a =1,则称b a 与互质或互素.定义三:如果a d 是、b 的倍数,则称a d 是、b 的公倍数. b a 与的公倍数中最小的正数称为b a 与的最小公倍数,记为],[b a .最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用),,,(21n a a a 表示na a a ,,,21 的最大公约数,],,,[21n a a a 表示n a a a ,,,21 的最小公倍数.若1),,,(21=n a a a ,则称n a a a a ,,,,321 互质,若n a a a ,,,21 中任何两个都互质,则称它们是两两互质的.注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于|||,|,b a b a 与有相同的公约数,且|)||,(|),(b a b a =(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.Ⅲ.方幂问题 一个正整数n 能否表成m 个整数的k 次方和的问题称为方幂和问题.特别地,当1=m 时称为k 次方问题,当2=k 时,称为平方和问题. 能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论: (1)平方数的个位数字只可能是0,1,4,5,6,9. (2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1. (3)奇数平方的十位数字是偶数. (4)十位数字是奇数的平方数的个位数一定是6. (5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除.因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7. (6)平方数的约数的个数为奇数. (7)任何四个连续整数的乘积加1,必定是一个平方数.例题讲解1.证明:对于任何自然数n 和k ,数1042),(3++=k kn n k n f 都不能分解成若干个连续的正整数之积.2.设p 和q 均为自然数,使得.131911318131211+--+-= q p 证明:p 可被1979整除.3.对于整数n 与k ,定义,),(112∑=-=nr k r k n F 求证:)1,(n F 可整除).,(k n F4.求一对整数b a ,,满足:(1))(b a ab +不能被7整除;(2)777)(b a b a --+能被77整除.5.求设a 和b 是两个正整数,p b a ,1),(=为大于或等于3的质数,ba b a b a c pp +++=,(),试证:(1)1),(=a c ;(2)1=c 或.p c =6.m 盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是.1),(=n m7.求所有这样的自然数n ,使得n222118++是一个自然数的平方.例题答案:1. 证明:由性质9知,只需证明数),(k n f 不能被一个很小的自然数n 整除.因,1)1)(1()3(31033),(333++--++=++-+=k k k k k k k k k n n n n n n n n n k n f),1)(1(|3),3(3|33+-++k k k k k n n n n n 3 1,故3 ),(k n f ,因而),(k n f 不能分解成三个或三个以上的连续自然数的积.再证),(k n f 不能分解成两个连续正整数的积.由上知,)(13),(N q q k n f ∈+=,因而只需证方程:)1(13+=+x x q 无正整数解.而这一点可分别具体验算234,134,3++=r x 时,)1(+x x 均不是13+q 形的数来说明.故),(k n f 对任何正整数n 、k 都不能分解成若干个连续正整数之积.2. 证明:)131814121(2)1319131211(+++-+++= q p =)6591211()1319131211(+++-++++=)99019891()131816611()131916601(++++++ =1979×)99098911318661113196601(⨯++⨯+⨯两端同乘以1319!得1319!*).(1979N m m qp∈⨯=⨯ 此式说明1979|1319!×.p 由于1979为质数,且1979 1319!,故1979|.p 【评述】把1979换成形如23+k 的质数,1319换成*)(12N k k ∈+,命题仍成立.牛顿二项式定理和n b a b a b a b a nnnn(|)(,|)(-+--为偶数), n b a b a nn(|)(-+为奇数)在整除问题中经常用到.3.证明:当m n 2=时,,)12()1,2(21∑=+==mr m m r m F∑∑+=-=-+=mm r k mr k rrk m F 2112112),2(],)12([)12(12112112112-=-=-=--++=-++=∑∑∑k mr k mr k mr k r m r r m r由于[…]能被12)12(+=-++m r m r 整除,所以),2(k m F 能被12+m 整除,另一方面,=),2(k m F ,)2(])2([1212121112----=-++-+∑k k k m r k m m r m r上式中[…]能被m r m r 2)2(=-+整除,所以),2(k m F 也能被m 整除.因m 与2m +1互质,所以),2(k m F 能被m (2m +1)(即)1,(m F )整除.类似可证当12+=m n 时,F (2m +1,k )能被F (2m +1,1)整除. 故),(k n F 能被)1,(n F 整除.4. 777)(b a b a --+=)](5)(3)[(7223355b a b a b a ab b a ab +++++ =.))((7222ab b a b a ab +++ 根据题设要求(1)(2)知,|,)(|72226ab b a ++即.|7223ab b a ++令,7322=++ab b a 即,343)(2=-+ab b a 即19=+b a ,则.343192-=ab 故可令1,18==b a 即合要求.5. 由已知得),(,N s t cs ba b a ct b a pp ∈=++=+,两式相乘得 ,)(1112ct pa t pac t c a ct a b a st c p p p p p p p p p ---++-=-+=+= 于是 ,12211-----++-=p p p p p pa t pac t c cs 故.|1-p pa c(1)现用反证法来证明1),(=a c .若,1),(>=k a c 令q 是k 的一个质因子,则有.|,|a q c q 因b a c +|,则b a q +|,从而.|b q 于是q 是a 、b 的一个公约数,这与),(b a =1矛盾,故1),(=a c .(2)因为,1),(,|1=-a c pac p 所以.|p c 而p 为质数且3≥p ,故1=c 或.p c =6. 证明:设1),(=n m ,则有Z v u ∈,使得)1()1(1++-=+=v m v vm un ,此式说明:对盒子连续加球u 次,可使1-m 个盒子各增加了v 个,一个增加)1(+v 个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若1),(>=d n m ,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为,1,|,|>d n d m d 所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须1),(=n m . 7. 证明:(1)当8≤n 时,)122(222118118++⋅++=--n nnN ,因(…)为奇数,所以要使N 为平方数,n必为偶数.逐一验证8,6,4,2=n 知,N 都不是平方数.(2)当9=n 时,11222289118⨯=++=N 不是平方数.(3)当10≥n 时,)29(288-+=n N ,要N 为平方数,829-+n 应为奇数的平方,不妨假设829-+n =2)12(+k ,则).2()1(210+⨯-=-k k n 由于1-k 和2+k 是一奇一偶,左边为2的幂,因而只能1-k =1,于是得2=k ,由21022=-n 知12=n 为所求.。
《数学奥林匹克专题讲座》第04讲 整数

《数学奥林匹克专题讲座》第04讲整数4讲整数的分拆整数的分拆,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。
整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。
在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。
例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。
我们知道,1+2+3+4+5+6+7=28。
如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。
由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。
例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。
所以最多可以播7天。
说明:本题实际上是问,把正整数30分拆成互不相等的正整数之和时,最多能写成几项之和?也可以问,把一个正整数拆成若干个整数之和时,有多少种分拆的办法?例如:5=1+1+1+1+1=1+1+1+2, =1+2+2 =1+1+3=2+3 =1+4,共有6种分拆法(不计分成的整数相加的顺序)。
例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。
问:有多少种不同的支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。
因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。
当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2), 23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。
高中数学 第十七章《整数问题》数学竞赛讲义 苏教版

第十七章 整数问题一、常用定义定理1.整除:设a,b ∈Z,a ≠0,如果存在q ∈Z 使得b=aq ,那么称b 可被a 整除,记作a|b ,且称b 是a 的倍数,a 是b 的约数。
b 不能被a 整除,记作a b.2.带余数除法:设a,b 是两个给定的整数,a ≠0,那么,一定存在唯一一对整数q 与r ,满足b=aq+r,0≤r<|a|,当r=0时a|b 。
3.辗转相除法:设u 0,u 1是给定的两个整数,u 1≠0,u 1 u 0,由2可得下面k+1个等式:u 0=q 0u 1+u 2,0<u 2<|u 1|; u 1=q 1u 2+u 3,0<u 3<u 2; u 2=q 2u 3+u 4,0<u 4<u 3; …u k-2=q k-2u 1+u k-1+u k ,0<u k <u k-1; u k-1=q k-1u k+1,0<u k+1<u k ; u k =q k u k+1.4.由3可得:(1)u k+1=(u 0,u 1);(2)d|u 0且d|u 1的充要条件是d|u k+1;(3)存在整数x 0,x 1,使u k+1=x 0u 0+x 1u 1.5.算术基本定理:若n>1且n 为整数,则k ak aap p p n 2121=,其中p j (j=1,2,…,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。
6.同余:设m ≠0,若m|(a-b),即a-b=km ,则称a 与b 模同m 同余,记为a ≡b(modm),也称b 是a 对模m 的剩余。
7.完全剩余系:一组数y 1,y 2,…,y s 满足:对任意整数a 有且仅有一个y j 是a 对模m 的剩余,即a ≡y j (modm),则y 1,y 2,…,y s 称为模m 的完全剩余系。
8.Fermat 小定理:若p 为素数,p>a,(a,p)=1,则a p-1≡1(modp),且对任意整数a,有a p≡a(modp). 9.若(a,m)=1,则)(m aϕ≡1(modm),ϕ(m)称欧拉函数。
高二数学奥赛讲义

高二数学奥赛讲义一、整除1. 整数的简单性质(1)素数与合数;仅有1和它本身这两个正因数且大于1的整数叫素数(或质数),一个正整数除1和它本身以外,还有其他正因数的数叫做合数,1既不是素数也不是合数.{正整数}={1}⋃{素数}⋃{合数}.(2)互素;如果两个整数p 与q 没有共同的素因数,则称p 与q 互素,记为(p ,q )=1. (3)设a 为大于1的整数,则a 的大于1的最小因数一定是素数.(4)设a 为大于1p ,有p ?q (表示a 不被p 整除),则a 是素数.2.整数的奇偶性(1)能被2整除的数称偶数,可表示为2()n n Z ∈的形式;不能被2整除的数称为奇数,可表示为21()n n Z -∈的形式.(2)奇数与偶数的性质:①奇数≠偶数;②奇数个奇数之和为奇数,偶数个奇数之和这偶数,奇数加偶数为奇数,偶数加偶数为偶数;③两数和与两数差的奇偶性相同;④积为奇数的充要条件是各个因数均为奇数;⑤偶数与任何整数的乘积都为偶数;⑥n 个偶数的积为2n 的倍数. 3. 带余除法若,a b 是两个整数,0b ≠,则一定有且只有两个整数q ,r ,使得(0)a bq r r b =+≤<成立. 0r =时,称b 整除a ,记作|b a .(1)若两个整数m 与n 被b 除的余数相同,则();|()m n b m n b --反之,若,则m 与n 被b 除的余数相同;(2)n 个连续整数中有且仅有一个是n 的倍数;(3)设b 是整数,则任意()p p b >个整数中,至少有两个数被b 除的余数相同.4. 整除的性质设d 为,a b 的最大公因数,记为(,);,a b d m a b =是的最小公倍数,记为[,]a b m =,整除有以下性质; (1)若|,|,|a b b c a c 则; (2)若|,0,|a b c ac bc ≠则; (3)若|,|,,,|;c a c b m n c ma nb +则对任何有 (4)若(),1,|,|a b a bc ab c =则(5)若(,)1,|,|,|a b a c b c ab c =则 (6)若(,)1,(,)(,)a b ac b c b ==则(7)若(,),(,)()a b d a b ta d t =+=则为整数; (8)若0,c >则(,)(,)a b c ac bc ⋅=;(9)若0,c >且c 是,a b 的公因数,则(,),;a b a b c c c⎛⎫=⎪⎝⎭(10)[,a b ](,)a b a b ⋅=⋅;(11)*||()n n b a b n N a ⇔∈;(12)若p 为素数,1 1.(,)1,|n a p p a -==则例1.证明:对于任何自然数n k 和,数3410(.)2k k n f n k n ++=都不能分解成若干个连续的正整数之积. 例2. 设127,,a a a 是1,2,,7的一个排列,求证:127(1)(2)(7)p a a a =--- 必是偶数.例3. 若三个大于3的素数,,a b c 满足关系式25,9|.a b c a b c +=++求证:例4. 试求出所有的正整数,,a b c ,其中1,(1)(1)(1)1a b c a b c abc <<<----使得是的因数.例5. 设a 是正整数,3100,23a a <+并且能被24整除,求所有这样的a 的个数.二、同余 定义设m 是一个给定的正整数,如果两个整数,a b m 用除所得的余数相同,则称,a b 对模m 同余,记为(mod )a b m = 同余的基本性质(1)反身性:(mod )a a m =.(2)对称性:若(mod )a b m =,则(mod )b a m =.(3)传递性:若(mod ),(mod ),(mod )a b m b c m a c m ===则. (4)若(mod ),(mod ),(mod )a b m c d m a c b d m ==±=±则 (5)若(mod ),(mod ),(mod )a b m c d m ac bd m ===则 (6)若*(mod )(mod )()nna b m a b m n N ==∈则.(7)若(mod ),0,(mod),(,)1,(mod ).(,)mac bc m c a b c m a b m c m =≠===则当时有 (8)若*(mod ),|,,(mod )a b m n m n N a b n =∈=则 (9)若*12(mod ),1,2,,,(mod[,,])()i n a b m i n a b m m m n N ===∈(10)完全平方数模4同余于0或1;模8同余于0,1或4;模3同余于0或1;模5同余于0,1或-1,完全立方数模9同余于0,1或-1,整数的四次方模16同余于0,1. 例1. 求2004818(736)+的个位数字是?例2.若*n N ∈,且2131n n ++与都是完全平方数,那么n 必为40的倍数.例 3. 设12100{1,2,3,,200},{,,,},E G a a a E G ⊂≠==且具有下列两条性质;(1)对任何1100,i j ≤<≤恒有201;i j a a +≠ (2)100110080i ai ==∑.证明:G 中的奇数的个数是4的倍数,且G 中所有数字的平方和为一个定值.例4. 写出所有的由3个素数组成公差为8的等差数列.三、抽屉原理 抽屉原理又称为鸽笼原理或狄利克雷原理,它是数学中证明存在性的一种特殊方法. 定理1 把1mn +个元素分成n 个集合,其中必有一个集合至少含有1m +个元素. 定理1还有无限形式,但不管是有限还是无限形式,我们考虑的总是元素多的集合,其实元素少的集合有时也很有用,所以抽屉原理还有另一种形式; 定理2 把1mn -个元素分成n 个集合,其中必有一个集合至多含有1m -个元素. 我们将从数论、集合、几何、三角不等式证明等来说明抽屉原理的应用.利用抽屉原理解题,关键是构造合适的抽屉.例1. 设θ为无理数.证明:对任意的正整数n ,存在整数,(||)p q q n ≤,满足1.q p nθ-<例2. 求所有的正整数n ,使得集合{1,2,,50}M =的任意35元子集至少存在两个不同的元素a.b满足.a b n a b n +=-=或例3. 设有六个点,每两点之间用红色或蓝色线段相连,且任意三点不共线,求证:总可以找到三个点,以这三点构成的三角形的三边涂有相同的颜色.例4. 在ABC ∆中,求证:3cos cos cos .2A B C ++≤变式:在ABC ∆中,求证:2229sin sin sin .4A B C ++≤四、客斥原理 客斥原理,又称为包容排斥原理或逐步淘汰原理.顾名思义,即先计算一个较大集合的元素的个数,再把多计算的那一部分去掉.它由英国数学家J.J.西尔维斯特首先创立.当12,,,n A A A 是有限集合A 的一个分划,即12,,n i j A A A A A A ==∅⋃⋃⋃⋂这时我们有12.n A A A A =+++这实际上是组合计数中的加法原理.但当i j A A =∅⋂时,又该如何计数A 呢?这就有下面的所谓的容斥原理.容斥原理设12,,,n A A A 为集合A 的有限子集,其元素个数分别为1A ,2A ,,n A ,则12111n i i j i j k i j ni j ni j k nA A A A A A A A A ≤≤≤≤≤≤≤<<≤=-+⋃⋃⋃⋂⋂⋂∑∑∑1(1)n --+-12.n A A A ⋂⋂⋂由集合知识,有1212,n n A A A A A A =⋂⋂⋂⋃⋃⋃从而容斥原理还有另一种表现形式1212111(1)n n i i j i j k ni ni j ni j k nA A A A A A A A A A A A A ≤≤≤<≤≤<<≤=-+-++-⋂⋂⋂⋂⋂⋂⋂⋂⋂∑∑∑容斥原理可用数学归纳法证明.对于n=2的情形,可以用组合恒等式证明中的“贡献法”来证明。
最新高中数学竞赛全套精品讲义

竞赛讲座01-奇数和偶数整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)若a、b为整数,则a+b与a-b有相同的奇数偶;(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.1.代数式中的奇偶问题例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□□÷□=□.解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组是整数,那么(A)p、q都是偶数. (B)p、q都是奇数.(C)p是偶数,q是奇数(D)p是奇数,q是偶数分析由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数.分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面都添上正号和负号不改变其奇偶性,而1+2+3+…+1992==996×1993为偶数于是题设的代数和应为偶数.2.与整除有关的问题例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几?解设70个数依次为a1,a2,a3据题意有a1=0, 偶a2=1 奇a3=3a2-a1, 奇a4=3a3-a2, 偶a5=3a4-a3, 奇a6=3a5-a4, 奇………………由此可知:当n被3除余1时,a n是偶数;当n被3除余0时,或余2时,a n是奇数,显然a70是3k+1型偶数,所以k必须是奇数,令k=2n+1,则a70=3k+1=3(2n+1)+1=6n+4.解设十位数,五个奇数位数字之和为a,五个偶数位之和为b(10≤a≤35,10≤b≤35),则a+b=45,又十位数能被11整除,则a-b应为0,11,22(为什么?).由于a+b与a-b有相同的奇偶性,因此a-b=11即a=28,b=17.要排最大的十位数,妨先排出前四位数9876,由于偶数位五个数字之和是17,现在8+6=14,偶数位其它三个数字之和只能是17-14=3,这三个数字只能是2,1,0.故所求的十位数是9876524130.例6(1990年日本高考数学试题)设a、b是自然数,且有关系式123456789=(11111+a)(11111-b),①证明a-b是4的倍数.证明由①式可知11111(a-b)=ab+4×617②∵a>0,b>0,∴a-b>0首先,易知a-b是偶数,否则11111(a-b)是奇数,从而知ab是奇数,进而知a、b 都是奇数,可知(11111+a)及(11111-b)都为偶数,这与式①矛盾其次,从a-b是偶数,根据②可知ab是偶数,进而易知a、b皆为偶数,从而ab+4×617是4的倍数,由②知a-b是4的倍数.3.图表中奇与偶例7(第10届全俄中学生数学竞赛试题)在3×3的正方格(a)和(b)中,每格填“+”或“-”的符号,然后每次将表中任一行或一列的各格全部变化试问重复若干次这样的“变号”程序后,能否从一张表变化为另一张表.解按题设程序,这是不可能做到的,考察下面填法:在黑板所示的2×2的正方形表格中,按题设程序“变号”,“+”号或者不变,或者变成两个.表(a)中小正方形有四个“+”号,实施变号步骤后,“+”的个数仍是偶数;但表(b)中小正方形“+”号的个数仍是奇数,故它不能从一个变化到另一个.显然,小正方形互变无法实现,3×3的大正方形的互变,更无法实现.例8(第36届美国中学生数学竞赛试题)将奇正数1,3,5,7…排成五列,按右表的格式排下去,1985所在的那列,从左数起是第几列?(此处无表)解由表格可知,每行有四个正奇数,而1985=4×496+1,因此1985是第497行的第一个数,又奇数行的第一个数位于第二列,偶数行的第一个数位于第四列,所以从左数起,1985在第二列.例9 如图3-1,设线段AB的两个端点中,一个是红点,一个是绿点,在线段中插入n个分点,把AB分成n+1个不重叠的小线段,如果这些小线段的两个端点一个为红点而另一个为绿点的话,则称它为标准线段.证明不论分点如何选取,标准线段的条路总是奇数.分析 n个分点的位置无关紧要,感兴趣的只是红点还是绿点,现用A、B分别表示红、绿点;不难看出:分点每改变一次字母就得到一条标准线段,并且从A点开始,每连续改变两次又回到A,现在最后一个字母是B,故共改变了奇数次,所以标准线段的条数必为奇数.4.有趣的应用题例 10(第2届“从小爱数学”赛题)图3-2是某一个浅湖泊的平面图,图中所有曲线都是湖岸.(1)如果P点在岸上,那么A点在岸上还是在水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.如果有一点B,他脱鞋垢次数与穿鞋的次数和是个奇数,那么B点是在岸上还是在水中?说明理由.解(1)连结AP,显然与曲线的交点数是个奇数,因而A点必在水中.(2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数和为2,由于 A点在水中,氢不管怎样走,走在水中时,脱鞋、穿鞋的次数的和总是偶数,可见B点必在岸上.例11 书店有单价为10分,15分,25分,40分的四种贺年片,小华花了几张一元钱,正好买了30张,其中某两种各5张,另两种各10张,问小华买贺年片花去多少钱?分析设买的贺年片分别为a、b、c、d(张),用去k张1元的人民币,依题意有10a+15b+25c+40d=100k,(k为正整数)即 2a+3b+5c+8d=20k显然b、c有相同的奇偶性.若同为偶数,b-c=10 和a=b=5,不是整数;若同为奇数,b=c=5和a=d=10,k=7.例12 一个矩形展览厅被纵横垂直相交的墙壁隔成若干行、若干列的小矩形展览室,每相邻两室间都有若干方形门或圆形门相通,仅在进出展览厅的出入口处有若干门与厅外相通,试证明:任何一个参观者选择任何路线任意参观若干个展览室(可重复)之后回到厅外,他经过的方形门的次数与圆形门的次数(重复经过的重复计算)之差总是偶数.证明给出入口处展览室记“+”号,凡与“+”相邻的展览室记“-”号,凡与“-”号相邻的展览室都记“+”号,如此则相邻两室的“+”、“-”号都不同.一参观者从出入口处的“+”号室进入厅内,走过若干个展览室又回到入口处的“+”号室,他的路线是+-+-…+-+-,即从“+”号室起到“+”号室止,中间“-”、“+”号室为n+1(重复经过的重复计算),即共走了2n+1室,于是参观者从厅外进去参观后又回到厅外共走过了2n+2个门(包括进出出入口门各1次).设其经过的方形门的次数是r次,经过圆形门的次数是s,则s+r=2n+2为偶数,故r-s也为偶数,所以命题结论成立.例13 有一无穷小数A=0.a1a2a3…a n a n+1a n+2…其中a i(i=1,2)是数字,并且a1是奇数,a2是偶数,a3等于a1+a2的个位数…,a n+2是a n+a n+1(n=1,2…,)的个位数,证明A 是有理数.证明为证明A是有理数,只要证明A是循环小数即可,由题意知无穷小数A的每一个数字是由这个数字的前面的两位数字决定的,若某两个数字ab重复出现了,即0.…ab…ab…此小数就开始循环.而无穷小数A的各位数字有如下的奇偶性规律:A=0.奇偶奇奇偶奇奇偶奇……又a是奇数可取1,3,5,7,9;b是偶数可取0,2,4,6,8.所以非负有序实数对一共只有25个是不相同的,在构成A的前25个奇偶数组中,至少出现两组是完全相同的,这就证得A是一循环小数,即A是有理数.练习1.填空题(1)有四个互不相等的自然数,最大数与最小数的差等于4,最大数与最小数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是______.(2)有五个连续偶数,已知第三个数比第一个数与第五个数和的多18,这五个偶数之和是____.(3)能否把1993部电话中的每一部与其它5部电话相连结?答____.2.选择题(1)设a、b都是整数,下列命题正确的个数是()①若a+5b是偶数,则a-3b是偶数;②若a+5b是偶数,则a-3b是奇数;③若a+5b是奇数,则a-3b是奇数;④若a+5b是奇数,则a-3b是偶数.(A)1 (B)2 (C)3 (D)4(2)若n是大于1的整数,则的值().(A)一定是偶数(B)必然是非零偶数(C)是偶数但不是2 (D)可以是偶数,也可以是奇数(3)已知关于x的二次三项式ax2+bx+c(a、b、c为整数),如果当x=0与x=1时,二次三项式的值都是奇数,那么a()(A)不能确定奇数还是偶数(B)必然是非零偶数(C)必然是奇数(D)必然是零3.(1986年宿州竞赛题)试证明11986+91986+81986+61986是一个偶数.4.请用0到9十个不同的数字组成一个能被11整除的最小十位数.5.有n 个整数,共积为n,和为零,求证:数n能被4整除6.在一个凸n边形内,任意给出有限个点,在这些点之间以及这些点与凸n边形顶点之间,用线段连续起来,要使这些线段互不相交,而且把原凸n边形分为只朋角形的小块,试证这种小三我有形的个数与n有相同的奇偶性.7.(1983年福建竞赛题)一个四位数是奇数,它的首位数字泪地其余各位数字,而第二位数字大于其它各位数字,第三位数字等于首末两位数字的和的两倍,求这四位数.8.(1909年匈牙利竞赛题)试证:3n+1能被2或22整除,而不能被2的更高次幂整除.9.(全俄15届中学生数学竞赛题)在1,2,3…,1989之间填上“+”或“-”号,求和式可以得到最小的非负数是多少?练习参考答案1.(1)30.(最小两位奇数是11,最大数与最小数同为奇数)(2)180.设第一个偶数为x,则后面四个衣次为x+2,x+4,x+6,x+8.(3)不能.2.B.B.A3.11986是奇数1,91986的个位数字是奇数1,而81986,61986都是偶数,故最后为偶数.4.仿例51203465879.5.设a1,a2,…,an满足题设即a1+a2+…+an=0①a1·a2……an=n②。
四川省成都七中高中数学竞赛数论专题讲义及详解:1整除

高一竞赛数论专题1.整除设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b Œ. 整除关系的基本性质(1)|,||.a b b c a c ⇒(2)|,|a b a c ⇔对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a1.设12,a a 是两个不全为零的整数,证明对任意整数q ,都有12121(,)(,).a a a a qa =+2.设(,)1,a b =证明(1)若|,|a c b c 则|.ab c(2)若|a bc 则|.a c3.(Bezout 定理)设,a b 是不全为零的整数,证明(,)1a b =的充要条件是存在整数,x y 使得 1.ax by +=4.证明对任意整数n ,65222n n n n +--能被120整除.5.设m 是一个大于2正整数,若存在正整数n 使得21|21m n -+.求m 的所有可能取值.6.证明:正整数M 是完全平方数的充要条件是对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.7.已知整数,x y 满足1,1,x y ≠-≠-且使得441111x y y x --+++是整数,求证4441x y -能被1x +整除.8.证明:对于任何自然数n 和k ,数3(,)2410k k f n k n n =++都不能分解成若干个连续的自然数之积.9.对于所有素数p 和所有正整数()n n p ≥,证明:p n n C p ⎡⎤-⎢⎥⎣⎦能被p 整除.10.(1)求所有的素数数列12n p p p <<<,使得11(1)n k kp =+∏是一个整数. (2)是否存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)n k ka =+∏为整数?.11.设,m n 是正整数, 证明(,)(21,21)21.m n m n --=-12.任给2n ≥,证明:存在n 个互不相同的正整数,其中任意两个的和整除这n 个数的积.高一竞赛数论专题1.整除解答设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b Œ. 整除关系的基本性质(1)|,||.a b b c a c ⇒(2)|,|a b a c ⇔对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a1.设12,a a 是两个不全为零的整数,证明对任意整数q ,都有12121(,)(,).a a a a qa =+证明:记121(,),a a d =1212(,)a a qa d +=.121(,),a a d =即1112|,|.d a d a 于是11121|,|.d a d a qa +所以12.d d ≤1212(,)a a qa d +=,即21221|,|.d a d a qa +于是2122112|,|().d a d a qa qa a +-=所以21.d d ≤所以12.d d =命题得证.2.设(,)1,a b =证明(1)若|,|a c b c 则|.ab c(2)若|a bc 则|.a c证明(,)1,a b =则1.ax by =+于是1().c c c ax by acx bcy =⋅=+=+(1)|,|a c b c ,则12,.c aq c bq ==于是2121().c abq x baq y ab q x q y =+=+所以|.ab c(2)|,a bc 则|.a acx bcy +即|.a c3.(Bezout 定理)设,a b 是不全为零的整数,证明(,)1a b =的充要条件是存在整数,x y 使得 1.ax by +=证明:当,a b 中有一个为零时,结论是显然的.不妨设,a b 都不为零,且||||.a b ≤一方面若存在整数,x y 使得 1.ax by +=注意到(,)|,(,)|a b a a b b .所以(,)|.a b ax by +即(,)|1.a b 所以(,)1a b =.另一方面设11111,0||,,b aq r r a q r =+≤<为整数,若10,r =则辗转相除到此为止;否则继续.1222122,0,,a r q r r r q r =+≤<为整数,若20,r =则辗转相除到此为止;否则继续.12333233,0,,r r q r r r q r =+≤<为整数,若30,r =则辗转相除到此为止;否则继续.由于123r r r >>>且123,,,r r r 均为自然数,所以经过有限步辗转相除可得0.k r =即3211.k k k k r r q r ----=+21(0).k k k k k r r q r r --=+=引理:设,a b 是两个整数且0,a ≠,0||,,b aq r r a q r =+≤<为整数.则(,)(,).a b a r =证明:因为(,)(,).a b a b aq =-又.r b aq =-所以(,)(,).a b a r =回到原题:利用引理我们可得112211(,)(,)(,)(,)(,).k k k k a b a r r r r r r r ---=====注意到0.k r =所以11(,)(,0).k k a b r r --==由辗转相除的过程知道1321.k k k k r r r q ----=- 2432.k k k k r r r q ----=-3123.r r r q =-212.r a r q =-11r b aq =-所以11,r b aq =-212122()(1),r a b aq q q q a q b =--=+-311223123123[(1)][(1)](1),r b aq q q a q b q q q q q a q q b =--+-=+-++所以1k r -是,a b 的线性组合即存在整数,x y 使得1.k r ax by -=+即(,).a b ax by =+所以若(,)1,a b =则存在整数,x y 使得 1.ax by +=4.证明对任意整数n ,65222n n n n +--能被120整除.证明:65254222(2)(2)(2)(1)(2)(1)(1)(1)n n n n n n n n n n n n n n n n +--=+-+=+-=+-++ 22(2)(1)(1)(45)(2)(1)(1)(2)5(1)(1)(2)n n n n n n n n n n n n n n =+-+-+=--+++-++.5!|(2)(1)(1)(2),n n n n n --++4!|(1)(1)(2),5!|5(1)(1)(2),n n n n n n n n -++-++所以65222n n n n +--能被120整除.5.设m 是一个大于2正整数,若存在正整数n 使得21|21m n -+.求m 的所有可能取值.解: 因为21|21m n -+,所以2121n m +≥-所以n m ≥(若不然,则 1.n m ≤-于是1212121m n m -+≥+≥-,即2m ≤矛盾).因为n m ≥,所以存在正整数,q r 使得,0.n mq r r m =+≤<1212122212(21)212(21)[(2)21]21n mq r mq r r r r mq r r m m q m r ++-+=+=-++=-++=-+++++. 因为21|21m n -+,所以21|21m r -+.从而212 1.r m+≥- 注意到0.r m ≤<所以 1.r m ≤-于是121212 1.m r m -+≥+≥-即2m ≤矛盾.所以不存在这样的.m6.证明:正整数M 是完全平方数的充要条件是对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.证明:()⇒正整数M 是完全平方数,则2.M d = 222222()()()()M i M d i d d d i d d i +-=+-=++-+.2d d i -+对于1,2,,i n =是连续n 个正整数,所以一定存在某个i 使得2|.n d d i -+于是2|().n M i M +- 所以对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.()⇐假设正整数M 不是完全平方数,则M 中一定有一个素因数p ,它的指数是奇数即存在正整数k 使得212|,.k k p M p M -Œ因为对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除. 故取2k n p =,对于21,2,,k i p =一定存在某个i 使得22|().k p M i M +-注意到2k p M Œ.所以22()k p M i +Œ( 若不然, 22|(),k p M i +又22|().k p M i M +-于是2k p M Œ矛盾). 由于22|(),k p M i M +-于是212|().k p M i M -+-注意到21|k p M -.所以212|().k p M i -+我们得到212|()k pM i -+且22()k p M i +Œ.这与2()M i +是完全平方数矛盾. 所以假设错误.所以正整数M 是完全平方数.7.已知整数,x y 满足1,1,x y ≠-≠-且使得441111x y y x --+++是整数,求证4441x y -能被1x +整除.证明:设4411,.11x a y cy b x d--==++其中(,)1,(,)1,0,0.a b c d b d ==>> 则a c ad bcb d bd++=是整数.即|.bd ad bc + 从而|,|.b ad bc d ad bc ++于是|,|.b ad d bc 注意到(,)1,(,) 1.a b c d == 所以|,|.b d d b 又0,0b d >>,所以.b d =因为44222211(1)(1)(1)(1)(1)(1)(1)(1)(1)(1).1111a c x y x x x y y y x x y yb d y x y x ---++-++⋅=⋅=⋅=-+-+++++ 所以a cb d⋅是整数,结合.b d = 所以2|.b ac 于是|b ac ,又(,)1a b =,则|,b c 又(,) 1.b c =且0.b >所以 1.b =也就是411y c x -=+.即41| 1.x y +-又44444444441049421(1)1(1)[()()1](1)(1)(1)x y x y x x y y y y x x x -=-+-=-++++++-+.所以4441| 1.x x y +-8.证明:对于任何自然数n 和k ,数3(,)2410k kf n k n n =++都不能分解成若干个连续的自然数之积.证明: 我们知道数(,)f n k 能分解成n 个连续的自然数之积,则一定能被!n 整除.所以只需要证明数(,)f n k 不能被一个很小的自然数n 整除即可.33333(,)2410(339)13(3)()1k k k k k k k k k k f n k n n n n n n n n n n =++=++-++=++--+ 33(3)(1)(1)1k k k k k n n n n n =++--++. 33|3(3),3|(1)(1),3 1.k k k k k n n n n n ++-+Œ所以3(,).f n k Œ也就是数(,)f n k 不能分解成3个或3个以上的连续的自然数之积. 下面再证明数(,)f n k 不能分解成2个连续的自然数之积.由上可知(,)31f n k q =+.因此只需要证明31(1)q x x +=+无自然数解. 当3x m =时,(1)3(31)3[(31)]x x m m m m +=+=+,故无解.当31x m =+时,2(1)(31)(32)3(33)2x x m m m m +=++=++,故无解.当32x m =+时,(1)(32)(33)3(1)(32)x x m m m m +=++=++故无解. 所以数(,)f n k 不能分解成2个连续的自然数之积.于是我们证明了对于任何自然数n 和k ,数3(,)2410k kf n k n n =++都不能分解成若干个连续的自然数之积.9.对于所有素数p 和所有正整数()n n p ≥,证明:pn n C p ⎡⎤-⎢⎥⎣⎦能被p 整除. 证明:,1,2,,1n n n n p ---+这连续p 个数有且仅有一个被p 整除,设这个数为.N 则,.N pq q Z =∈则.n Nq p p⎡⎤==⎢⎥⎣⎦且,1,,1,1,1n n N N n p -+--+除以p 的余数不计次序为1,2,,1p -.于是(1)(1)(1)(1)(1)!.n n N N n p p pA -+--+=-+(1)(1)(1)(1)(1)(1)(1)(1)1!(1)!p n n n n N N N n p n n N N n p C q q p p p ⎡⎤⎡⎤-+--+-+--+-=-=-⎢⎥⎢⎥-⎣⎦⎣⎦(1)!1(1)!(1)!p pA pqAq p p ⎡⎤-+=-=⎢⎥--⎣⎦. 因为p 与1,2,,1p -互素,所以(,(1)!) 1.p p -=于是(1)!|..(1)!p n n qAp qAC p p p ⎡⎤--=⋅⎢⎥-⎣⎦所以|.pn n p C p ⎡⎤-⎢⎥⎣⎦10.(1)求所有的素数数列12n p p p <<<,使得11(1)nk kp =+∏是一个整数. (2)是否存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)nk k a =+∏为整数?.解(1)111(1)1(1).nk nk n k k kk p p p ===++=∏∏∏ 当3n ≥时,1,1 1.n k p p k n >+≤≤-故11((1),) 1.n knk p p -=+=∏所以|1.nn pp +又|.n n p p 所以|1.n p于是1n p =矛盾.所以2n ≤.当1n =时,111N p +∉. 当2n =时,1212121212(1)(1)111(1)(1)1.p p p p N p p p p p p ++++++==+∈ 1212|1p p p p ++,21221|1,|1.p p p p p +++又211p p ≥+.所以211.p p =+于是1111|11,|2.p p p p +++ 所以122, 3.p p ==综上,所求的数列只有一个122, 3.p p == (2)不存在. 当121n a a a <<<<时,设.n a m ≤2222222212222111(!)21(1)(1) 2.(1)!1(1)(1)1(1)!2nm m m m k k k k k k k k k m mm a k k k k k m m =====+<+≤+=<===<+--++-∏∏∏∏∏所以211(1)nk k N a =+∉∏.所以不存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)nk k a =+∏为整数.11.设,m n 是正整数, 证明(,)(21,21)21.m n m n --=- 解:不妨设.m n ≥有带余除法得1111(1,0)m q n r q r n =+≥≤<.我们有111111111212122212(21)2 1.q n r q n r r r r q n r m++-=-=-+-=-+-因为121|21q nn--,所以1(21,21)(21,21).r m n n --=--注意到1(,)(,).m n n r =若10,r =则1(,)(,).m n n r n ==于是1(21,21)(21,21)(0,21)2 1.rm n n n n--=--=-=-结论成立.若10,r >则作辗转相除.,212221(1,0)n q r r q r r =+≥≤<.我们有212221221212(21)2 1.q r r r q r r n+-=-=-+-因为12121|21rq r --,所以112(21,21)(21,21)(21,21)r r r m n n --=--=--.若20,r >则继续处理,直到10k r +=为止.由辗转相除法知(,).k m n r =1112(,)(21,21)(21,21)(21,21)(21,21)(21,0)212 1.k k k k r r r r r r r m n n m n +--=--=--==--=-=-=-至此,我们证得了结论.12.任给2n ≥,证明:存在n 个互不相同的正整数,其中任意两个的和整除这n 个数的积.证明:我们任取n 个互不相同的正整数12,,,,n a a a 并选取一个正整数参数,K 希望12,,,n Ka Ka Ka 的积12n n K a a a 被任意两项的和i j Ka Ka +()i j ≠整除,取1().i j i j nK a a ≤<≤=+∏12,,,n Ka Ka Ka 互不相同, 1()().i j i j i j i j nKa Ka a a a a ≤<≤+=++∏12121(()).n n n i j n i j nK a a a a a a a a ≤<≤=+∏显然有12|.ni j n Ka Ka K a a a +。
数学竞赛中的整数问题及其解法

数学竞赛中的整数问题及其解法数学竞赛中的整数问题及其解法
整数竞赛是一项数学竞赛中的重要组成部分,旨在测试竞赛者的整数基础知识
及其解决整数问题的能力。
整数竞赛的主要特点是,看似简单的数学题目藏有复杂的解决思路,要求竞赛者对数学基础知识有较高的准确度和解决特定问题的思维敏捷。
在解决整数题目时,首先要充分理解题意,集中细心地钻研题目给出的条件,
联想分析。
接着,要通过列表的方式分解问题,确定正确的解决方案,通过代数运算符、逻辑表达式来分析问题,确定结果。
根据不同的问题,有不同的解法来实现,例如数论类问题,数论是数学竞赛中
的一大类问题,其主要考查竞赛者对素数、数列、有理数等数学概念的理解和运用,常见的素数问题可以用欧拉筛选法或者素数筛选算法进行解答。
另外如组合类问题,典型的组合问题可以用预处理法、测试法或者分支限界法进行解题。
此外,还有动态规划类问题可以用穷举法、递归法、贪婪法等解答,智力图谱类问题可以用数据结构的思想来解决。
总之,整数竞赛中的问题是一种挑战,只有充分理解,不断训练,并通过各种
技巧,对整数问题应用适当的算法和解决方法,才能更加准确和快速地解决问题。
解决整数竞赛中的问题,不仅要挖掘各种数学知识,还需要较强的抽象能力,更需要数学基础知识的深入理解以及构造有效的解题思路。
高二数学竞赛班二试数论讲义-整数的性质

高二数学竞赛班二试讲义整数的性质班级姓名一、知识点金一、整数的性质1.两个连续整数之间不再有其他整数,两个连续整数的完全平方数之间不存在完全平方数;2.若,,i a b x Z ∈,1,2,3,,i n =⋅⋅⋅,|i a b ,则1|n i ii a b x =∑。
3.n 个连续整数的乘积一定能被!n 整除。
4.设N 是自然数,在十进制中的1n +位数可表示为1210n n N a a a a a -=⋅⋅⋅,09(0,1,2,,),0i n a i n a ≤≤=⋅⋅⋅≠(1)若03|ni i a =∑,则3|N 。
(2)若104|a a ,则4|N 。
(3)若1107|(2)n n a a a a -⋅⋅⋅-,则07|(21)7|N a N -⇒。
(4)若2108|a a a ,则8|N 。
(5)若09|n i i a=∑,则9|N 。
(6)若02413511|[()()]a a a a a a +++⋅⋅⋅-+++⋅⋅⋅,则11|N 。
5.算术基本定理:任何一个正整数n ,都可以唯一分解成素因数乘积的形式,其中1212k k n p p p ααα=⋅⋅⋅。
12,,,k p p p ⋅⋅⋅均为素数,12,,,k ααα⋅⋅⋅为非负整数。
6.设12121212,k k k k m p p p n p p p αβααββ=⋅⋅⋅=⋅⋅⋅,12,,,k p p p ⋅⋅⋅均为素数,,i i αβ为非负整数。
,m n 的最大公约数1212(,),min(,)k k i i i m n p p p γγγγαβ=⋅⋅⋅=,1,2,,i k =⋅⋅⋅,m n 的最小公倍数1212[,],max(,)k k i i i m n p p p γγγγαβ=⋅⋅⋅=,1,2,,i k=⋅⋅⋅二、例题分析例1.设,x y 是正整数,,667x y x y <+=,它们的最小公倍数除以最大公约数所得的商为120,求x 和y 。
高中数学竞赛———整数问题 ppt课件

高中数学竞赛———整数问题
1
1答案 2答案 3答案 4答案 5答案 课外思考
∵13 是质数 ∴ 212 1(mod13) . ∴ 2100 21284 24 3(mod13)
高中数学竞赛———整数问题
3
3.(教程 P581 4) 22225555 55552222 ____(mod 7)
22225555 55552222 222292565 555537062 22225 55552 35 42 0(mod 7)
1.(教程 P573 5)3960 的正约数的个数(包括 1 和自身) 有___个.
∵ 3960 23 32 511 ∴3960 的正约数共有 (3 1)(2 1)(1 1)(1 1) 48 个.
高中数学竞赛———整数问题
2
2.(教程 P581 1)当 2100 被 13 除时,余数是( ) (A)1 (B)3 (C)7 (D)11
关于整数问题的几个训练
1.(教程 P573 5)3960 的正约数的个数(包括 1 和自身)
有_4__8个. B 2.(教程 P581 1)当 2100 被 13 除时,余数是( )
(A)1 (B)3 (C)7 (D)11
0 3.(教程 P581 4) 22225555 55552000
高中数学竞赛———整数问题
5
5.(美国第 4 届数学邀请赛题)使 n3+100 能被 n+10 整 除的正整数 n 的最大值是多少?
高一年级竞赛数学数论专题讲义:1整除

高一年级竞赛数学数论专题讲义:1整除高一竞赛数论专题1.整除设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b ?. 整除关系的基本性质(1)|,||.a b b c a c ?(2)|,|a b a c ?对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a1.设12,a a 是两个不全为零的整数,证明对任意整数q ,都有12121(,)(,).a a a a qa =+2.设(,)1,a b =证明(1)若|,|a c b c 则|.ab c(2)若|a bc 则|.a c3.(Bezout 定理)设,a b 是不全为零的整数,证明(,)1a b =的充要条件是存在整数,x y 使得 1.ax by +=4.证明对任意整数n ,65222n n n n +--能被120整除.5.设m 是一个大于2正整数,若存在正整数n 使得21|21m n -+.求m 的所有可能取值.6.证明:正整数M 是完全平方数的充要条件是对于任意正整数n ,22(1),(2),,M M M M +-+-2()M n M +-中至少有一项可以被n 整除.7.已知整数,x y 满足1,1,x y ≠-≠-且使得441111x y y x --+++是整数,求证4441x y -能被1x +整除.8.证明:对于任何自然数n 和k ,数3(,)2410k k f n k n n =++都不能分解成若干个连续的自然数之积.9.对于所有素数p 和所有正整数()n n p ≥,证明:p n n C p ??-能被p 整除.10.(1)求所有的素数数列12n p p p <<<,使得11(1)n k kp =+∏是一个整数. (2)是否存在n 个大于1的不同正整数*12,,,,,n a a a n N ∈使得211(1)n k ka =+∏为整数?.11.设,m n 是正整数, 证明(,)(21,21)21.m n m n --=-12.任给2n ≥,证明:存在n 个互不相同的正整数,其中任意两个的和整除这n 个数的积.高一竞赛数论专题1.整除解答设,,0.a b Z a ∈≠如果存在,q Z ∈使得,b aq =那么就说b 可被a 整除(或a 整除b ),记做|.a b 且称b 是a 的倍数,a 是b 的约数(也可称为除数、因数).b 不能被a 整除就记做a b ?. 整除关系的基本性质(1)|,||.a b b c a c ?(2)|,|a b a c ?对任意的,,x y Z ∈有|.a bx cy +设12,a a 是两个不全为零的整数,如果1|d a 且2|,d a 那么d 就称为1a 和2a 的公约数,我们把1a 和2a 的公约数中的最大的称为1a 和2a 的最大公约数,记做12(,).a a 若12(,)1,a a =则称1a 和2a 是既约的,或是互素的.设12,a a 是两个均不为零的整数,如果1|,a l 且2|,a l 那么l 就称为1a 和2a 的公倍数,我们把1a 和2a 的公倍数中的最小的称为1a 和2a 的最小公倍数,记做12[,].a a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数问题一、常用定义定理1.整除:设a,b ∈Z,a ≠0,如果存在q ∈Z 使得b=aq ,那么称b 可被a 整除,记作a|b ,且称b 是a 的倍数,a 是b 的约数。
b 不能被a 整除,记作a b.2.带余数除法:设a,b 是两个给定的整数,a ≠0,那么,一定存在唯一一对整数q 与r ,满足b=aq+r,0≢r<|a|,当r=0时a|b 。
3.辗转相除法:设u 0,u 1是给定的两个整数,u 1≠0,u 1 u 0,由2可得下面k+1个等式:u 0=q 0u 1+u 2,0<u 2<|u 1|; u 1=q 1u 2+u 3,0<u 3<u 2; u 2=q 2u 3+u 4,0<u 4<u 3; …u k-2=q k-2u 1+u k-1+u k ,0<u k <u k-1; u k-1=q k-1u k+1,0<u k+1<u k ; u k =q k u k+1.4.由3可得:(1)u k+1=(u 0,u 1);(2)d|u 0且d|u 1的充要条件是d|u k+1;(3)存在整数x 0,x 1,使u k+1=x 0u 0+x 1u 1.5.算术基本定理:若n>1且n 为整数,则k ak aap p p n 2121=,其中p j (j=1,2,…,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。
6.同余:设m ≠0,若m|(a-b),即a-b=km ,则称a 与b 模同m 同余,记为a ≡b(modm),也称b 是a 对模m 的剩余。
7.完全剩余系:一组数y 1,y 2,…,y s 满足:对任意整数a 有且仅有一个y j 是a 对模m 的剩余,即a ≡y j (modm),则y 1,y 2,…,y s 称为模m 的完全剩余系。
8.Fermat 小定理:若p 为素数,p>a,(a,p)=1,则a p-1≡1(modp),且对任意整数a,有a p≡a(modp).9.若(a,m)=1,则)(m aϕ≡1(modm),ϕ(m)称欧拉函数。
10.(欧拉函数值的计算公式)若k a ka a p p pm 2121=,则ϕ(m)=.)11(1∏=-ki ip m 11.(孙子定理)设m 1,m 2,…,m k 是k 个两两互质的正整数,则同余组: x ≡b 1(modm 1),x ≡b 2(modm 2),…,x ≡b k (modm k )有唯一解, x ≡'1M M 1b 1+'2M M 2b 2+…+'k M M k b k (modM), 其中M=m 1m 2m k ;i M =im M ,i=1,2,…,k ;i i M M '≡1(modm i ),i=1,2,…,k. 二、方法与例题 1.奇偶分析法。
例1 有n 个整数,它们的和为0,乘积为n ,(n>1),求证:4|n 。
[证明] 设这n 个整数为a 1,a 2,…,a n ,则a 1,a 2,…,a n =n , ① a 1+a 2+…+a n =0。
②首先n 为偶数,否则a 1,a 2,…,a n 均为奇数,奇数个奇数的和应为奇数且不为0,与②矛盾,所以n 为偶数。
所以a 1,a 2,…,a n 中必有偶数,如果a 1,a 2,…,a n 中仅有一个偶数,则a 1,a 2,…,a n 中还有奇数个奇数,从而a 1+a 2+…+a n 也为奇数与②矛盾,所以a 1,a 2,…,a n 中必有至少2个偶数。
所以4|n. 2.不等分析法。
例2 试求所有的正整数n ,使方程x 3+y 3+z 3=nx 2y 2z 2有正整数解。
解 设x,y,z 为其正整数解,不妨设x ≢y ≢z ,则由题设z 2|(x 3+y 3),所以z 2≢x 3+y 3,但x3≢xz 2,y 3≢yz 2,因而z=nx 2y 2-233zy x +≣nx 2y 2-(x+y),故x 3+y 3≣z 2≣[nx 2y 2-(x+y)]2,所以n 2x 4y 4≢2nx 2y 2(x+y)+x 3+y 3,所以nxy<3311112ny nx y x ++⎪⎪⎭⎫ ⎝⎛+。
若x ≣2,则4≢nxy<3311112ny nx y x ++⎪⎪⎭⎫⎝⎛+≢3,矛盾。
所以x=1,所以ny<31122ny n y ++-,此式当且仅当y ≢3时成立。
又z 2|(x 3+y 3),即z 2|(1+y 3),所以只有y=1,z=1或y=2,z=3,代入原方程得n=1或3。
3.无穷递降法。
例3 确定并证明方程a 2+b 2+c 2=a 2b 2的所有整数解。
解 首先(a,b,c)=(0,0,0)是方程的整数解,下证该方程只有这一组整数解。
假设(a 1,b 1,c 1)是方程的另一组整数解,且a 1,b 1,c 1不全为0,不妨设a 1≣0,b 1≣0,c 1≣0且0212121>++c b a ,由2121b a ≡1或0(mod4)知a 1,b 1,c 1都是偶数(否则2121212121b a c b a ++(mod4)),从而)2,2,2(111c b a 是 方程x 2+y 2+z 2=2x 2y 2的一组整数解,且不全为0,同理可知2,2,2111cb a 也都是偶数)2,2,2(212121c b a 为方程x 2+y 2+z 2=24x 2y 2的解。
这一过程可以无限进行下去,另一方面a 1,b 1,c 1为有限的整数,必存在k ∈N,使2k>a 1,2k>b 1,2k>c 1,从而k k kc b a 2,2,2111不是整数,矛盾。
所以该方程仅有一组整数解(0,0,0). 4.特殊模法。
例4 证明:存在无穷多个正整数,它们不能表示成少于10个奇数的平方和。
[证明] 考虑形如n=72k+66,k ∈N 的正整数,若22221s x x x n +++= ,其中x i 为奇数,i=1,2,…,s 且1≢s ≢9。
因为n ≡2(mod8),又2i x ≡1(mod8),所以只有s=2.所以2221x x n +=,又因为2i x ≡2或0(mod3),且3|n ,所以3|x 1且3|x 2,所以9|n 。
但n=72k+66≡3(mod9),矛盾。
所以n 不能表示成少于10个奇数的平方和,且这样的n 有无穷多个。
5.最小数原理。
例5 证明:方程x 4+y 4=z 2没有正整数解。
[证明] 假设原方程有一组正整数解(x 0,y 0,z 0),并且z 0是所有正整数解z 中最小的。
因此,20220220)()(z y x =+,则=20x a 2-b 2,20y =2ab,z 0=a 2+b 2,其中(a,b)=1,a,b 一奇一偶。
假设a为偶数,b 为奇数,那么0020≡≡z x (mod4),而32220≡-≡b a x (mod4),矛盾,所以a 为奇数,b 为偶数。
于是,由2220a b x =+得x0=p 2-q 2,b=2pq,a=p 2+q 2(这里(p,q)=1,p>q>0,p,q 为一奇一偶)。
从而推得)(422220q p pq ab y +==,因为p,q,p 2+q 2两两互质,因此它们必须都是某整数的平方,即p=r 2,q=s 2,p 2+q 2=t 2,从而r4+s4=t2,即(r,s,t)也是原方程的解,且有t<t 2=p 2+q 2=a<a 2+b 2=z ,这与z 的最小性矛盾,故原方程无正整数解。
6.整除的应用。
例6 求出所有的有序正整数数对(m,n),使得113-+mn n 是整数。
解 (1)若n=1,则12-m 是整数,所以m-1=1或2,所以(m,n)=(2,1),(3,1). (2)若m=1,则12112111233-+++=-+-=-+n n n n n n n ,所以n-1=1或2,所以(m,n)=(1,2),(1,3).(3)若m>1,n>1,因为1133--mn n m 是整数,所以111)1()1(33333-+=-++--mn m mn n m n m 也是整数,所以m,n 是对称的,不妨设m ≣n ,ⅰ)若m=n ,则1111112323-+=-++-=-+n n n n n n n n 为整数,所以n=2,m=2. ⅱ)若m>n ,因为n 3+1≡1(modn),mn-1≡-1(modn),所以113-+mn n ≡-1(modn).所以存在k ∈N ,使kn-1=113-+mn n ,又kn-1=,1111112323-+=-+<-+n n n n mn n 所以(k-1)n<1+11-n ,所以k=1,所以n=1=113--mn n ,所以.121112-++=-+=n n n n m 所以n-1=1或2,所以(m,n)=(5,3)或(5,2).同理当m<n 时,有(m,n)=(2,5),(3,5).综上(m,n)=(1,2),(2,1),(1,3),(3,1),(2,2),(2,5),(5,2),(3,5),(5,3). 7.进位制的作用例7 能否选择1983个不同的正整数都不大于105,且其中没有3个正整数是等差数列中的连续项?证明你的结论。
解 将前105个自然数都表示为三进制,在这些三进制数中只选取含数字0或1(而不含数字2)的数组成数集T ,下证T 中的数符合要求。
(1)因为310<105<311,所以前105个自然数的三进制至多由11个数字组成,因而T 中的元素个数共有1+2+22+…+210=211-1=2047>1983(个)。
这是因为T 中的k 位数的个数相当于用0,1这两个数在k-1个位置上可重复的全排列数(首位必须是1),即2k-1,k=1,2, (11)(2)T 中最大的整数是1+3+32+…+310=88573<105。
(3)T 中任意三个数不组成等差排列的三个连续项。
否则,设x,y,z ∈T,x+z=2y ,则2y 必只含0和2,从而x 和z 必定位位相同,进而x=y=z ,这显然是矛盾的。
三、习题精选1.试求所有正整数对(a,b),使得(ab-a 2+b+1)|(ab+1).2.设a,b,c ∈N +,且a 2+b 2-abc 是不超过c+1的一个正整数,求证:a 2+b 2-abc 是一个完全平方数。
3.确定所有的正整数数对(x,y),使得x ≢y ,且x 2+1是y 的倍数,y 2+1是x 的倍数。
4.求所有的正整数n ,使得存在正整数m,(2n -1)|(m 2+9).5.求证:存在一个具有如下性质的正整数的集合A ,对于任何由无限多个素数组成的集合,存在k ≣2及正整数m ∈A 和n A ,使得m 和n 均为S 中k 个不同元素的乘积。