整车电子电气架构演进
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整车电子电气架构演进
什么是汽车电子电气架构?
电子电气架构:EEA,Electrical/Electronic Architecture
根据百度百科的解释:“汽车电子电气架构是集合了汽车的电子电气系统原理设计、中央电器盒设计、连接器设计、电子电气分配系统等设计为一体的整车电子电气解决方案”的概念,由德尔福(DELPHI)首先提出。具体就是在功能需求、法规和设计要求等特定约束下,通过对功能、性能、成本和装配等各方面进行分析,将动力总成、传动系统、信息娱乐系统等信息转化为实际的电源分配的物理布局、信号网络、数据网络、诊断、电源管理等电子电气解决方案(如图1所示)。
图1 整车电子电气架构与功能域
EEA不仅在汽车中经常使用,也在航电系统、工业自动化以及国防系统等其他控制系统中有广泛应用。
EEA的开发包括需求定义、逻辑功能架构设计、软件/服务架构设计、硬件架构设计、线束设计等不同层面的开发活动,如图2和图3。
图2 基于PREEvision的EEA开发模式
图3 基于PREEvision的EEA设计
电子电气架构演进
随着移动互联网在消费者生活领域的广泛渗透,人们的生活习惯和价值取向开始转移。伴随互联网尤其是移动互联网的飞速发展,人类的生产生活重心逐步转移至虚拟的赛博空间(Cyberspace)中。尤其是2007年苹果创造出智能手机这种便携化的智能终端后,不论是网上购物、网上娱乐、网络社交、移动支付、网络咨询,还是在线政务、线上办公、在线教育等生产生活活动,都在逐步地向赛博空间转移。未来还将有更多的老百姓被转化为网民,并更多地“生活”在赛博空间中。
人类生产生活逐步向赛博空间转移的过程中,也会对PC、平板电脑、手机或其他智能终端等消费电子产品的使用习惯和喜好向其他人类生产生活工具上转移。一旦其他工具具备了PC、平板或手机相应特征,就会形成市场需求,因为人类又多了一种智能终端能够与赛博空间进行连接,熟悉的、便利的互联网应用又可以在新工具和设备上运行,方便了生活,提高了生产效率。
汽车的驾驶自动化(Drving Automatization)趋势在很久很久以前就已经产生了。了解下Global OEM的Demo项目,甚至上知网搜索下相关论文,就会发现ADAS是多么古老的一种技术了,远远早于近几年的人工智能热潮。但是,随着特斯拉Model S、Model X等一系列车型的推出,使人们对汽车智能化(Intelligence)有了新的期待。仔细品一下Automatization和Intelligence这两个单词的含义,个人认为还是Intelligence含义更丰富。因此,汽车智能化,不仅包括了驾驶自动化,也包括智能网联、智能交互(以及后续的智能座舱)等数字化和信息化趋势。
也因为特斯拉等新玩家的创新性车型的推出,人们开始对汽车有了以下这种强烈的预期(图4),即智能汽车。所谓的智能汽车,基本是要对标着手机、PC这种数字化/信息化的半导体设备去了。
图4 智能汽车:拥有四个轮子的大型智能手机
既然老百姓的需求是“智能汽车”,那么具备“智能汽车”特征的车型就会有更多市场需求,客户也更加愿意买单。那么表征智能汽车的核心智能化功能都有哪些呢?按照汽车智能化的趋势(即CASE,Connected互联、Autonomous自动、Sharing共享、Electric电动),智能驾驶、智能座舱、智能网联应该就是终端用户期待的功能。以上的这些功能,相对于曾经汽车电子的功能,复杂度有很大提升。为了实现以上复杂功能,我们需要软件的SOA架构,我们需要基于服务的通信,我们需要满足车规的RTOS(实时操作系统),我们需要FOTA (固件空中升级),总之,我们需要一台软硬件解耦的、能够用软件来定义功能的汽车。这就需要一个大大的前提——集中化的EEA。这又是为什么呢?
先进行粗略分析。首先,看看当前的整车EEA现状:a) 电子单元:众多分散的运算&控制单元;b) 电气单元:发动机、伺服电机、电磁阀等; c) 执行机构:机械、液压、气门机构... 也就是说,当前的汽车只是一台相对精密的机电一体化设备(Mechatronics,隶属于控制工程范畴,还需进一步电气化),而非数字化/信息化的半导体设备(ICT范畴),距离智能手机有些遥远。但是消费者目前想要的是一台像手机一样的车(智能终端、电子设备)。究竟如何才能使汽车朝向一台大型的“电子”设备转型呢?答案是继续提高电气化程度,即电子电气架构从分布式向集中式发展,直到形成真正的车载中央计算机。接下来,分为两个具体维度进行分析:
2.2.1 整车设计/制造维度
从整车的设计/制造维度讲,若汽车继续按照当前的分布式架构发展,且不说算力是否满足,单就车辆物理安装空间上讲就有问题。可能会导致难以布置更多ECU和更多线束;更多的ECU和更多的线束,势必导致组装困难,只能继续依靠人工。伊隆马斯克也曾为过度依赖自动化产线而焦头烂额,之后也曾发誓要对汽车进行“线束革命”,说明过多复杂线束和过多ECU的安装会严重影响产线的高度自动化。而集中式电子电气架构,能够逐步平抑ECU和线束的增长趋势,甚至到达某个时间节点之后,能够促进大幅减少ECU和线束用量,降低EEA 网络拓的扑复杂度。倘若确实能够减少ECU数量和线束用量,也就能够降低电子电气系统的重量,对整车的轻量化设计目标也有帮助。
电子电气架构的集中化,就意味着单个ECU的“扩容”,以及多个ECU的“合并”。换句话说,ECU要越来越大型化,算力要高,功耗/成本还都需要进行控制。结论是什么?需要大型的、高算力的、制程小的(意味着低功耗)车载SOC芯片。为什么要用SOC芯片?因为通过堆大量算力低的芯片做控制器不可行;芯片多,集成度低,PCB板以及域控制器太大不好布置(想象一下Demo车的后备箱塞满工控机的场景),功耗和成本也高。总之,集成化程
度高是刚需,SOC芯片又能够较好的解决这个问题。各个芯片玩家疯狂扩大SOC规模(从英伟达Xavier和ORIN,到特斯拉FSD芯片,甚至Mobileye提供EyeQ5的开放方案),也是为了解决这个痛点。所谓“规模”,实质是指算力,DMIPS/TFLOPS/TOPS都要足够高。
有了强大而“趁手”的芯片,就能“攒”出来满足集中化要求的ECU了。不管是叫DCU(域控制器),还是HPC(高性能计算机),甚至是VCC(车载中央计算机),也不过是表征一下ECU有多大规模。
综上论述,从整车维度讲,大型SOC芯片(以及基于大型SOC芯片构建的大型域控制器/高性能计算机)和先进线束都是集中化EEA的关键基础技术。
2.2.2 价格/成本维度
不管是什么产品,到了只拼价格/成本的竞赛,基本意味着没有太大创新了。因为创新是有代价的,创新是很“贵”的一件事,因此我相信集中化EEA也会遵循发展的常识。最开始是功能导向,为了实现某些关键功能的落地而不惜代价,价格/因素会较少考虑;然后是性价比导向,关键功能实现了,为了体现性价比,就会把手伸到“别人的地盘”,即几个大型ECU通过吸收其他专用小型ECU的功能(把小型ECU从车上干掉,平抑整个系统的成本),通过集成更多功能来保持“虽然贵,但是功能也强大”的性价比优势;最后是成本导向,大型ECU 的功能scope确定了、“扩张边界”也确定了,就得比价格/成本了。然后不停的往复循环以上逻辑。
当前的智能驾驶域,在L0-L2已经相对成熟,因为该级别的各个ADAS功能相对确定,因此边界已经清晰了,那么开始打“性价比”牌和赤裸裸的“价格”牌也就不奇怪了。而L2+到L3还在比拼功能落地,那么价格因素就可以适当妥协(当然不能无限妥协,毕竟做产品归根结底是做生意,钱永远是最重要的)。
总之,若把智能驾驶、智能座舱的复杂功能作为必定要实现的“既定事实”看的话,集中化EEA还是“省钱”的。因为,即便假设分布式EEA从技术角度能够实现复杂功能,成本也会非常高。
以上,也可以回答作者作为一个做量产ADAS/AD的技术人员,为什么要关注整车电子电气架构演进的原因。因为关注EEA的进化,实质是关注前装量产高级别自动驾驶功能的落地节奏,以及汽车数字化、软件化的推进节奏!