初中数学九年级锐角三角函数知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28锐角三角函数一、知识框架

二、知识点、概念总结

1.Rt△ABC中

(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边

斜边

(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边

斜边

(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边

(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边

2.特殊值的三角函数:

a sina cosa tana cota

30°1

2

3

2

3

3

3

45°

2

2

2

2

1 1

60°

3

2

1

2

3

3

3

3.互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

4. 同角三角函数间的关系

平方关系:

sin2(α)+cos2(α)=1

tan2(α)+1=sec2(α)

cot2(α)+1=csc2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

5.三角函数值

(1)特殊角三角函数值

(2)0°~90°的任意角的三角函数值,查三角函数表。

(3)锐角三角函数值的变化情况

(i)锐角三角函数值都是正值

(ii)当角度在0°~90°间变化时,

正弦值随着角度的增大(或减小)而增大(或减小)

余弦值随着角度的增大(或减小)而减小(或增大)

正切值随着角度的增大(或减小)而增大(或减小)

余切值随着角度的增大(或减小)而减小(或增大)

(iii)当角度在0°≤∠A≤90°间变化时,

0≤sinα≤1, 1≥cosA≥0,

当角度在0°<∠A<90°间变化时,

tanA>0, cotA>0.

6.解直角三角形的基本类型

解直角三角形的基本类型及其解法如下表: 类型

已知条件 解法 两边 两直角边a 、b c=22a b +,tanA=a b

,∠B=90°-∠A 一直角边a ,斜边c b=22c a -,sinA=a c

,∠B=90°-∠A 一边一锐角 一直角边a ,锐角A ∠B=90°-∠A ,b=a ·cotA ,c=sin a A

斜边c ,锐角A ∠B=90°-∠A ,a=c ·sinA ,

b=c ·cosA

7.仰角、俯角

当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.

相似三角形知识点

相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

相似三角形判定定理1:两角对应相等,两三角形相似(ASA)。

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)。

判定定理3:三边对应成比例,两三角形相似(SSS)。

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。 性质定理2:相似三角形周长的比等于相似比。

性质定理3:相似三角形面积的比等于相似比的平方。

相关文档
最新文档