斜拉桥的发展

合集下载

我国公路桥梁施工技术现状及发展趋势

我国公路桥梁施工技术现状及发展趋势

我国公路桥梁施工技术现状及发展趋势我国公路桥梁施工技术现状当前,我国公路桥梁施工技术经历了从传统施工向现代化施工方式的转变。

其中,钢结构桥梁、混凝土桥梁、斜拉桥、预应力桥等各种桥梁工程,都经过了创新成果的应用和不断的技术进步。

1. 钢结构桥梁钢结构桥梁具有轻质、高强度、易于制造和安装等优点,逐渐成为我国公路桥梁建设的主要发展方向。

此类桥梁适用于大跨度、重载、高速公路等场合。

2. 混凝土桥梁混凝土桥梁的主要特点是设计先进、材料可靠、施工方便、耐久性好。

近年来,混凝土桥梁的施工技术也得到了较大的发展,如旋转施工法、连续刚构法、精细满浆等,提高了混凝土桥梁的质量与安全性能。

3. 斜拉桥斜拉桥是我国近年来发展较快的一种桥梁形式,主要采用大直径、高强度的钢缆进行支撑,对支座的要求较低,可跨越水面、山谷和公路等障碍。

同时,斜拉桥具有优美、大气的造型,也成为吸引游客的景点之一。

4. 预应力桥预应力桥梁的优点主要表现在强度和耐久性能的提高,具有较好的反抗荷载和抗震的能力。

预应力桥梁在建设中需要在钢筋加工、张拉钢筋、灌浆、松弛处理等方面做好技术细节工作,才能确保桥梁的质量和安全。

发展趋势未来,公路桥梁建设将面临一系列新的挑战。

其中,强调绿色建设、节能减排和资源循环,将成为公路桥梁建设的主要目标。

为实现高质量、高效益、低风险、可持续发展,公路桥梁建设将逐渐呈现以下发展趋势:1. 信息化模式逐渐实现工程全过程信息化管理,利用先进技术手段实现工程设计、施工、运营、管理的无缝衔接,提高工程的效率和质量。

2. 高强度材料和新技术采用新型材料和新技术,提高桥梁设计和施工的质量、效率和安全性,降低桥梁的建设成本。

3. 建筑工程智能化利用数字化技术、智能化设备和物联网等先进技术手段,实现公路桥梁建设的智能化、自动化、智能协同等,提高施工效率和质量。

4. 节能减排在公路桥梁建设中采用生态环保的设计和施工方式,充分利用可再生资源和节能技术,降低对环境的影响,实现可持续发展。

斜拉桥发展史及现状综述

斜拉桥发展史及现状综述

从斜拉桥看桥梁技术的发展姓名:马哲昊班级:1403专业:建筑与土木工程学号:143085213086摘要: 介绍了国内外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,对今后斜拉桥的发展做出展望。

关键词: 斜拉桥;发展史;现状;展望Abstract: the paper introduces the domestic and foreign in recent decades history of Cable-stayed bridge.the paper summarized the The structure of cable-stayed bridge and the Economic benefits and Introduced the technology of it.the direction of further research in the future was put forward.Key words: Cable-stayed bridge; Review; Looking forward to1.斜拉桥的发展1.1 斜拉桥的历史斜拉桥是一种古老而年轻的桥型结构。

早在数百年前,斜拉桥的设想和实践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的斜拉结构人行桥。

在古代,世界各地也都出现过通行人、马等轻型荷载的斜拉结构桥梁在 18 世纪,德国人就曾提出过木质斜张桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜张桥,该桥的桥塔采用铸铁制造,拉索则采用了钢丝。

以后在欧洲的很多国家都先后出现了一些斜拉桥,如 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了铁链条和铸铁杆,后来由于承载能力不足而垮塌。

1818 年,英国一座跨越特威德河的人行桥也毁于风振。

浅谈斜拉桥的发展

浅谈斜拉桥的发展

度、 温度变化 、 风力和 日 照影 响 、 土收缩 徐变等复杂因素 干扰等 , 混凝 使 力与变形的关系十分复杂 。 特别是斜拉索的存在 , 使得设计计算和施工 控制更加复杂。 斜拉索类似 预应力作用 , 必须进行 张拉才能有效发挥作 用。 索力 的大小对结 构受力 的影响很大 , 而索力又通常在施工过程中进 行有 限次张拉后确定。由于施工设备数量等条件限制, 张拉只能逐根或 分组进行 。斜拉索的张拉及索力的大小对整个斜拉桥的受力有很大的 影响, 中包括对其它未张拉拉索的影响。因此 , 其 索力是影响斜拉桥受 力的一个核心因素 , 在施 工过程 和运营管理中 , 必须 对索力进行监测。 特别是 由于风或桥面振动的激励 , 斜拉索会发生多种形式的振动 , 有时振 幅会很大。 为了抑制拉索 的振动 , 通常在拉索两端靠近锚头的附 近安装减振器 。 减振器嵌在拉索和拉索钢导管之间构成阻尼支点后 , 拉 索稍有振动 , 阻尼衬套就受到挤压并吸收能量 , 发挥减振作用 。设置附 加的阻尼支点后 , 除了拉索的振动能量被吸收外 , 整根拉索还被分隔成 中间长 、 两边短 的三段。这时 , 拉索 的固有频率有所提高 , 拉索 的振型也 有所变化 , 通常所采用的振动频率量测法将不再适用 。因而 , 若能对索 力计算公式进行修 正 , 考虑减振器 的影 响 , 必将方便施工控 制 , 加快 施 工进度 , 确保桥梁结构安全 , 对斜拉桥施工控制和运营管理带来很大的 便利 。 三、 结构分析与存在的问题 现在斜拉桥的体系多 以漂浮式和半漂浮式为 主。混凝土桥面仍然
●从 17 建 设 第 一 座 斜 拉 桥 至 18 9 5年 9 2年 ,是 我 国斜 拉 桥 发 展 的 起步阶段 , 也是我 国斜拉桥发展 的第 一 次高潮 。这一 阶段 以 18 9 2年建 成的主跨 2 0 2 m的山东济南黄河斜拉桥为代表 。7 年间 , 国斜拉桥跨 我 径 从 7 m增 加 到 2 0 增 加 了 近 三倍 , 建 成 l 座 斜 拉 桥 , 标 志 着 6 2 m, 共 1 这 我国 已基本掌握大跨径斜拉桥设计与施 工技术 。 ●1 8 9 3年至 1 8 9 6年为我国斜拉桥发展 的第二阶段 。 由于第一 阶段 已建斜拉桥的拉索 防护层次多 、 成本高, 并且过于简单, 有的处理不 当而 失败 , 大桥建成 3 4年拉索 防护就损坏 , - 危及桥梁安全 。第二 阶段建成 的斜拉桥数 量不多 , 是桥梁工作者进一步探索 、 研究 、 总结经验的阶段 。 ●8 0年代 中后期至今 , 是我 国斜拉桥技术发展鼎 盛时期 。这 阶段 修建的斜拉桥近 4 O座 ,跨径从 20 0 m到 6 0 0 m以上 ,达到世界先进水 平 。 国 40 我 0 m以上的长大斜拉桥均是在这一 时期设计 , 并于 9 0年代初 开始建设 的。说 明我 国斜拉桥的发展和技 术开发逐趋完善和成熟。 二 、 展 前 景 发 自 15 9 5年瑞 典 建 成 第 一 座 现 代 斜 拉 桥 以来 , 拉 桥建 设 在世 界 上 斜 迅 速 发 展 , 现 有 的斜 拉 桥 一 般 都 是 独 塔 双跨 式 或 双塔 三 跨 式 , 三塔 但 而 四跨式且具有连续主梁 的斜拉桥却很 少。一方 面是由于这 种桥型受力 较为复杂, 工作做得很有 限; 研究 另一方 面是斜拉 桥属超 大跨径 桥梁 , 需 要有多个超大跨径来跨越 的桥位情况 比较少。 斜拉桥属高次超静定 的柔性结构 , 受力 性能比较 复杂 , 而三塔 斜拉 桥 的整体刚度 比独塔或 双塔斜拉桥明显要小 , 受力性 能也更为复杂 。 三 塔斜拉桥 由于中间塔顶 没有端锚索来有效地限制它的变位 。 因此 , 已经 是柔性结构的斜拉桥采用 三塔 四跨式将 使结 构的柔性更大 ,随之而来 的是 变 形 过 大 。在 现 有 的 已建 斜 拉 桥 中 , 塔 四 跨式 斜 拉 桥 通 常 将 中间 三

现代斜拉桥的发展

现代斜拉桥的发展

3、桥塔的形式和布置
1)桥塔纵向形式 主要有三种类型: 单柱形、倒V形、倒Y形
2)桥塔的横向形式 桥塔的横向形式与索面布置密切相关。当采用单面索中,横向形式主要为 三种类型:单柱形、倒V形、A形
当采用双索面时,桥塔横向形式有5种:独柱形、A形、菱形、门形、梯形。
Knie Bridge(中文:格尼桥),位于德国杜塞尔多夫。该桥为独塔竖琴式 双索面斜拉桥,桥塔为柱形。
4、锚拉体系与支承体系 1)斜索的锚拉体系 有三种:自锚式、地锚式、部分地锚式。
2、桥塔支承体系 (1)、塔墩固结、塔梁分离 (2)、塔梁固结、梁墩分离 (3)、铰支桥塔 (4)、塔、梁、墩固结
三、现代斜拉桥发展趋势
现代斜拉桥的发展趋势是: (1)桥跨向特大跨度(即1000m以上)发展; (2)结构形式更为美观,表现为桥塔独特异形,桥面加劲梁更为轻巧。 因此需要存在改进的问题为: (1)、抗风设计 风的随机性和其动力振动行为极为复杂,尽管依靠风洞试验来验证抗风设 计,但风洞模型与实际还是存在差异。因此,需要多收集跨海峡大桥的风振方 面实际资料加以研究。 (2)、抗震设计 斜拉桥的塔、索、梁的各自振动特性有很大差别,给地震设计带来很大的复 杂性。此外结构的阻尼特性也还研究不够,再加之对于大跨度桥梁,地震的行 波效应也需要考虑。 (3)、斜索的使用寿命 影响斜索的使用寿命是两个方面的问题:腐蚀与疲劳。 (4)结构材料强度的提高 结构材料强度的提高可以减轻结构自重,从而提高桥梁跨越能力。
长沙浏阳河洪山大桥,主桥结构形式为无背索斜塔竖琴式单索面斜拉桥,主 跨206米,等截面薄壁空心钢筋混凝土结构,钢箱梁高4.4米,桥面宽33.2米。
4)多塔多跨式 斜拉桥与悬索桥很少采用多塔多跨式。主要原因是多塔多跨式斜拉桥的中间 桥塔顶没有很好的方法来有效地限制它的变位。

斜拉桥梁简介及发展趋势

斜拉桥梁简介及发展趋势

大跨度桥梁——斜拉桥专业:岩土与地下工程班级:10-1班姓名:卢雪东学号:20101792斜拉桥斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。

斜拉桥由索塔、主梁、斜拉索组成。

索塔主要是承压,斜拉索受拉,梁体主要承受弯矩,外荷载主要由主梁和斜拉索承受,并由斜拉索将受力传递给索塔。

主梁由一根根拉索拉起,等于在梁内设置了许多支撑点,可以将其看作由拉索代替支墩的多跨弹性支承连续梁,这种结构能够非常有效的减小梁体内弯矩,从而降低主梁的高度,减轻结构重量,节省建筑材料,有利于斜拉桥向大跨度方向发展。

主梁常见的截面形式有:板式截面和箱形截面。

主梁截面选取主要由斜拉索的布置形式和抗风稳定性情况所决定。

板式截面的主梁构造简单,施工方便,一般适用于双索面斜拉桥。

箱形截面梁有抗弯、抗扭刚度大、收缩变形较小等特点,能适应许多不同形式的拉索布置,对悬臂施工非常有利,而且可以部分预制、部分现场浇筑,为施工方案提供了多种选择,因此箱形截面主梁逐渐成为现代斜拉桥中经常采用的形式。

另外,主梁按材料可以分为:预应力混凝土梁、刚—混凝土组合梁、钢主梁和混合式梁斜拉桥相对悬索桥有较大的刚度,在抵抗风载、地震、竖向活载的作用方面有优势斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型,也是我国大跨径桥梁最流行的一种桥型。

目前为止我国建成或正在施工的斜拉桥共有30余座,仅次于德国、日本,而居世界第三位。

而大跨径混凝土斜拉桥的数量已居世界第一。

按照交通功能分类根据桥梁建造的使用目的,可以分为公路斜拉桥,铁路斜拉桥,人行斜拉桥,斜拉管道桥,斜拉渡槽等,有时在一座桥上这些功能是兼而有之的,如公铁两用桥,现在越来越多的斜拉桥都同时通行管道(输送水。

液化气。

电缆等);按照梁体材料分类有钢桥、混凝土桥、迭合梁桥。

复合梁桥、组合梁桥;按照塔的数量分类有单塔、双塔、多塔;按照索面不知形式分类索的布置:面外——单面索、双面索、多面索、空间索,单索面应用较少,因为采用单索面是拉索对结构抗扭不起作用,主梁需要采用抗扭刚度大的截面。

浅谈对现代斜拉桥发展与现状的认识

浅谈对现代斜拉桥发展与现状的认识

随着科学技术的进步, 现代斜拉桥发展 越
来越快。 桥(Cable- sta yed br dge)的上 斜拉 i
部结构由 索、 梁、 塔三类构件组成 。它是一 种桥面 体系以 加劲梁受压(密索)或受弯稀索)
为主、支承体系以斜索受拉及桥塔受压为主
的桥梁
斜拉桥的塔, 索、 梁பைடு நூலகம்各自 振动特性有
很大差别, 给地震设计带来很大的复杂性。此
盔璐和 SIN 3T W.二 70 C 0E Y 、。 0EE& } CO 7N
工 业 技 术
浅谈对现代斜拉桥发展与现状的认识
陈一统
‘ 汕揭高速公路 公司 广东 广东 有限 揭阳 52203们
摘 要: 简单对 斜拉桥的认识。
关键词 斜拉桥 斜索 桥塔 中图分类号 T U1 文献标识码: A 文章编号 1672- 3791(2007)10(c)--0016- 02
高。
7 各种桥塔形式的特点 7, ,单柱形桥塔
单柱形桥塔的优点是全桥外观简洁, 桥塔 结构简单 塔墩的宽度可以缩减: 缺点为桥面 中央分隔带所占宽度较大。
7 2 双柱形桥塔
双柱形桥塔的优点是两根塔柱之间不设
1.4 设计理 和计算技术的进 论 步
杭风抗 震的计算 理论有了 长足的 进展, 电 子计算机有限元 分析计算软件 的应用。
斜拉桥早在 19 世纪初期在欧洲就曾 风行 一时。但由于当时对于理论认识的不足, 对于
3 设计上存在改进的问题
3 .1 杭风设计
6 3 铰支桥塔
高次超静 定结构无法精确计算以及缺乏 高强 材料等原因, 致使建成的桥梁多 次发生毁 桥事 故, 甚至造成严重的伤亡悲剧, 这就使得 此种
新的桥型没有得到发展。

道路与桥梁工程概论论文

道路与桥梁工程概论论文

道路与桥梁工程概论论文——浅谈斜拉桥的基本概况及发展前景摘要:斜拉桥是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是一种由塔、梁、索三种基本构件组成的组合桥梁结构体系,可看作是拉索代替支墩的多跨弹性支承连续梁。

其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。

斜拉桥由索塔、主梁、斜拉索组成。

斜拉桥在目前所有桥型中具有鲜明的特征和优势。

在此浅述有关斜拉桥的发展历程和建造技术要点,以及斜拉桥在世界桥梁发展史上的地位和发展前景。

关键字:跨径结构体系构造建筑美学Abstract:With many girder cable-stayed bridge is will draw directly lasso in bridge tower bridge, is a kind of by a tower, beams, cable three basic components combination bridge structure system, can be considered a lasso more instead of a pier across the elastic supporting continuous beam. It can make the beam is reduced, reduce body bending moment the height and reduce the weight, saving material structure. Cable-stayed bridge by cable tower, girders, composed stay-cables.Cable-stayed bridge in the present in all the distinctive temperature.though characteristics and advantages. In the light of the development process and relevant cable-stayed bridge built technological essencials, as well as in world history ofcable-stayed bridge bridge the status and development prospects.Key Words:span structurestructural system architectural aesthetics正文:身处三大,身在宜昌这个坐落在长江之滨的魅力城市,自然和跨江桥梁构成了密不可分的关系。

有关斜拉桥的发展与创新

有关斜拉桥的发展与创新

有关斜拉桥的发展与创新一、斜拉桥的发展历程世界上第一座现代的斜拉桥——斯特伦松德桥是德国工程师弗兰茨·狄辛格从1955年开始在瑞典主持设计的。

1975年,这种桥型传入我国,第一座试验性斜拉桥——四川云阳汤溪河大桥(当时重庆属四川管辖)建成。

虽然我国斜拉桥的建造比世界晚了二十年,但是经过中国桥梁工程师们不懈的理论探索和创新实践,中国的斜拉桥事业发展迅速,到现在中国已经成为世界第一桥梁大国。

根据查找资料了解到我国斜拉桥的发展历程大致可以分为三个阶段。

第一阶段是我国斜拉桥的起步阶段,从1975~1982年,是我国斜拉桥发展的第一次高潮。

在这期间所修建的斜拉桥均为混凝土斜拉桥。

除了一开始提到的于1975年2月我国建成的第一座试验性斜拉桥——四川云阳汤溪河大桥以外;还有1980年建成的第一座预应力混凝土斜拉桥——三台涪江大桥;然后是1980年,我国在广西建成的第一座铁路预应力混凝土斜拉桥——红水河铁路桥;还有1981年我国建成了第一座独塔斜拉桥——四川金川县曾达桥,这座桥创造性地采用了平转法施工;1982年建成了上海泖港大桥为双塔双索面预应力混凝土斜拉桥,是中国第一座真正意义上的大跨度斜拉桥。

第二阶段是我国斜拉桥的提升阶段,从1983~1991年。

为何会有提升阶段的划分呢?这是由于第一阶段的建成的斜拉桥大多有拉索上的损坏问题,危及桥梁安全。

在这种情况下,越来越多优秀的桥梁工程师开始了斜拉桥的深入研究。

1985年,上海市政设计院的林元培先生主持设计了重庆嘉陵江石门大桥及上海恒丰北路桥,为日后设计建造南浦大桥积累了宝贵的技术经验。

1987年建成了天津永和大桥。

该桥是跨越永定新河的一座公路桥,是津汉公路的重要通道。

第三阶段是我国斜拉桥的飞跃式发展阶段,从1991年至2023年。

从1990年以后,我国经济迅速发展,交通的建设也必须提上日程,所以中国迎来了桥梁建设的春天。

尤其是造型美观的斜拉桥往往成为首选桥型。

结构设计知识:结构设计中的斜拉桥原理

结构设计知识:结构设计中的斜拉桥原理

结构设计知识:结构设计中的斜拉桥原理斜拉桥是一种采用钢索拉拔承载荷载的桥梁结构,是桥梁工程中一种非常常见的结构形式。

其大跨度、美观、安全、经济的特点,使得斜拉桥成为了现代化城市中最具有标志意义的建筑之一。

1.斜拉桥的定义斜拉桥是一种悬臂式桥梁结构,其主跨在一侧支撑,另一侧通过斜拉索将荷载传递到支撑侧。

斜拉索与主梁之间以倾角拉伸,使得主梁受力形成压弯、斜拉索受力形成拉伸,从而达到桥梁结构整体的稳定。

2.斜拉桥的原理(1)力学原理:斜拉桥的传力方式为张索承载,传递的力主要集中在索的上沿,支点处受力的剪力、正弯矩、剪力与正剪力的作用远小于横梁的。

同时,也避免了对斜拉索产生任何的损伤。

(2)优点:斜拉桥主跨悬空,岸塔占用地面较小,有利于提高航道和涉水公路的通行条件。

(3)视觉效果:斜拉桥在结构性上和造型美观上都表现良好,有时候设计师的创意在构造中受较小影响,以达到更好的视觉效果。

3.斜拉桥的结构形式(1)桥面梁:一般采用钢结构桁架梁、钢箱梁桥、钢混合结构。

斜拉桥采用桁架梁结构时,高强度钢材的使用量越来越大,优点是自重可控,安装高效、需要空间小等。

(2)索:斜拉桥使用的索材料一般是钢材,经过拉伸后可以达到较大的抗弯能力。

索一般分成主索和斜拉索两种,其中主索是跨越主桥墩的长索,通过桥墩支撑节点和钢支座进行传力;斜拉索则是连接主索和桥面梁,起到将荷载转移至主梁的作用。

(3)塔:斜拉桥中的塔起到支撑主索、斜拉索的作用,是斜拉桥中非常重要的组成部分。

塔的数量以两个为基本单位,每个塔都有稳固的支撑基础,可以承受相应的荷载。

(4)锚固:索以特制的锚固方式固定在主梁和塔上,固定具有可拆卸性和可调节性,方便调整索的张拉度和锚固位置。

4.斜拉桥的设计原则(1)主跨采用大跨度,力度平衡的设计原则,塔和索的高度要使斜拉力的夹角较大,达到均衡受力。

(2)合理分配斜拉索的长短,使得受拉索、主索、撑杆处于最佳受力状态。

(3)锚固点的布置应使得索材料受力均匀,防止应力集中而产生的材料劣化和疲劳断裂。

现代斜拉桥的发展趋势

现代斜拉桥的发展趋势

现代斜拉桥的发展趋势
近年来,现代斜拉桥的发展趋势主要体现在以下几个方面:
1. 载重能力增强:随着交通和贸易的不断发展,斜拉桥需要承载更多的交通载荷和人流量。

现代斜拉桥的设计和建造致力于提高桥梁的载重能力,通过增加主梁和拉索的数量和尺寸等方式来增强桥梁的承载能力。

2. 结构优化:现代斜拉桥在结构上进行了优化,利用新材料和新技术,减少了桥梁的自重,提高了桥梁的可靠性和耐久性。

例如,采用更轻的复合材料作为主梁材料,采用预应力技术来增强桥梁的稳定性等。

3. 美学和环保要求的提升:现代斜拉桥不仅要满足功能需求,还要注重桥梁的外观设计和环境保护。

设计师和建筑师在桥梁的外形、色彩、灯光设计等方面加入了更多的美学元素,使得斜拉桥成为城市的地标和风景线。

同时,为了减少对环境的影响,现代斜拉桥在材料的选择、施工过程的环保措施等方面也更加注重可持续发展。

4. 智能化和数字化应用:随着科技的发展,现代斜拉桥也开始应用智能化和数字化技术。

通过传感器和监测系统,实时监测桥梁结构的变化和健康状况,提前发现潜在故障,保障桥梁的安全性。

同时,与交通管理系统和智能交通技术相结合,实现桥梁的智能化管理和运营。

总之,现代斜拉桥在载重能力、结构优化、美学要求、环保要求以及智能化和数字化应用方面都有了显著的发展趋势,以满足不断增长的交通需求和城市发展的要求。

国内外无背索斜拉桥的发展概况

国内外无背索斜拉桥的发展概况

国内外无背索斜拉桥的发展概况自1992年西班牙塞维利亚建成世界上第一座无背索斜拉桥Alamillo桥以来,无背索斜拉桥这种造型优美独特的桥梁结构形式立即引起了世界桥梁界的关注,并在后续短短的十几年里,世界各国相继建成无背索斜拉桥10余座,其中中国已建成的有长沙洪山大桥、合肥铜陵路桥、哈尔滨太阳桥等。

西班牙塞维利亚的Alamillo桥建于1992年,由Santiago Calatrava先生设计,是世界上第一座大跨度无背索斜塔斜拉桥,Alamillo桥主跨200m,桥宽32m,桥梁总长250m,主塔高142m,主塔倾角58°。

长沙市洪水大桥坐落于长沙市洪山庙休闲度假区,横跨浏阳河,主跨206m,主梁为钢-混凝土叠合脊骨结构体系,梁高4.4m,索塔采用预应力混凝土箱形结构,桥面以上塔高136.8m,水平倾角58°,洪山桥为单索面结构,横桥向两排索间距6m,顺桥向索距12m,共计13对26根索,索的水平倾角25°,平行布置。

太阳桥位于哈尔滨太阳岛旅游区,主跨跨径布置为: 14m (西过渡孔)+ 60m (边跨)+140m(中跨)+ 14m(东过渡孔)=228m。

桥梁总宽15.5m,有效宽度为12m 。

主梁梁高2.4 m,为扁平流线型正交异性桥面板钢箱梁,底面为圆弧形,钢箱梁全长200m(含0号节段),共分27个节段,标准节段长度为8m。

主塔为钻石造型桥塔,水平倾角60°,塔高93.5m。

采用变截面钢箱结构,有索区塔截面由2个8边形组合而成。

无索区为2个分离式8边形。

合肥市铜陵路桥是一座新型的无背索斜拉桥,是利用倾斜的塔柱自重来与主梁及荷载相平衡,组成一种独特的传力体系。

其桥垮布置为30m(压重边跨)+ 66m (主跨)+ 30m(边跨)=126m(桥梁总长)。

桥梁总宽38m ,主梁为肋板式结构,主跨梁高2.8m。

主塔为门式型桥塔,水平倾角为62 °,塔高为56.71m ,采用等截面矩形结构,为双索面配置斜拉索,斜拉索共布置16根,为扇形布置。

斜拉桥的发展现状及常见问题分析

斜拉桥的发展现状及常见问题分析

斜拉桥的发展现状及常见问题分析摘要:作为一种可以跨越超长距离的桥梁结构,斜拉桥主要是由主塔和斜索所组成的桥梁结构,这种形式的桥梁结构,虽然整体性能突出,但是在施工的过程中稳定性控制难度极大,一旦施工操作不到位,就可能一发坍塌事故。

为此,想要全面提升斜拉桥的施工效果,施工企业就必须要积极开展斜拉桥相关技术的研究工作,了解发展情况,分析常见问题。

关键词:斜拉桥;结构;桥梁工程引言在社会不断发展,城市化建设进程不断加快的过程中,区域间的交流与沟通日益频繁,此时就对交通运输工程提出了更高的要求。

比如说在进行桥梁项目建设的过程中,为了对其美观性、实用性、受力性、跨越能力等方面进行兼顾,就可以对斜拉桥施工技术展开运用,同时积极进行施工技术的研究工作,促进斜拉桥梁作用的充分发挥。

1斜拉桥技术研究目的斜拉桥属于一种高次超静定桥梁结构,在具体施工的过程在,由于收到桥梁结构参数与设计值差异和施工中荷载不确定等因素的影响,就会造成斜拉桥结构内力与位移的计算结果无法满足设计要求。

在施工的过程中如果不能进行有效的控制与调节,就会对斜拉桥的使用性能产生影响,严重的还会威胁到整体使用安全。

为此,就需要积极开展斜拉桥施工的研究工作,全面提升斜拉桥结构内力、线性与设计要求的一致性,保障使用安全,延长使用寿命。

开展斜拉桥施工控制工作,可以对斜拉桥结构的目标状态与实施状态进行有效的调控,并且必须要严格遵循斜拉桥结构施工的安全性和周期性要求,同斜拉桥自身结构特点相结合确定具体的管控手段,合理确定施工中的允许误差,积极开展施工监控工作,全面提升斜拉桥施工效果,保障我国路桥项目使用安全,为城市与交通运输事业的发展的奠定基础。

2斜拉桥的发展现状目前,斜拉桥正朝着多元化、轻便化方向进行发展。

首先,在开展桥面布设和规划工作的过程中,需要严格遵循轻型化原则,适当减轻桥面系统的构筑重量,同时科学控制拉索部分的造价成本,提高主题结构的轻柔化水平在对近年来大部分大跨度斜拉桥工程的建设施工情况进行分析的过程中可以发现,叠合梁的使用越发频繁,除了可以减轻桥面的实际重量,同时还促进了斜拉桥结构大范围跨越能力的提升,推动整体结构设计朝着多样化方向发展进行发展。

国外桥梁发展动向和趋势

国外桥梁发展动向和趋势

国外桥梁发展动向和趋势(编者注:本文摘自楼庄鸿研究员撰写的《国内外桥梁发展的动向和趋势》一文,有较大改动,因为时间关系,本文未经作者审阅。

)概述一部桥梁发展的历史,是桥梁跨径不断增大的历史;是桥型不断丰富的历史;是结构不断轻型化的历史。

1、跨径不断增大目前,钢梁、钢拱的最大跨径已超过500m,钢斜拉桥为890m,而钢悬索桥达1990m。

随着跨江跨海的需要,钢斜拉桥的跨径将突破1000m,钢悬索桥将超过3000m。

至于混凝土桥,梁桥的最大跨径为270m,拱桥已达420m,斜拉桥为530m。

2、桥型不断丰富本世纪50~60年代,桥梁技术经历了一次飞跃:混凝土梁桥悬臂平衡施工法、顶推法和拱桥无支架方法的出现,极大地提高了混凝土桥梁的竞争能力;斜拉桥的涌现和崛起,展示了丰富多彩的内容和极大的生命力;悬索桥采用钢箱加劲梁,技术上出现新的突破。

所有这一切,使桥梁技术得到空前的发展。

3、结构不断轻型化悬索桥采用钢箱加劲梁,斜拉桥在密索体系的基础上采用开口截面甚至是板,使梁的高跨比大大减少,非常轻颖;拱桥采用少箱甚至拱肋或桁架体系;梁桥采用长悬臂、板件减薄等,这些都使桥梁上部结构越来越轻型化。

以下分别就各种桥型,进行简述。

一、梁桥梁桥仍然是最常用的一种桥型,目前,国外跨径在15m以下,用钢筋混凝土梁桥;以上则用预应力混凝土梁桥;跨径25-40m,往往用结合梁桥或预弯预应力梁桥。

从50年代德国首次采用平衡悬臂施工法修建跨径114.2m的Worms桥以后,混凝土梁桥也用于大跨径桥梁。

最大的混凝土梁桥,国外是跨径270m的巴拉圭Asuncion桥。

钢梁桥一般用于大跨径,尤其是桁架梁,用于特大跨径。

最大的钢桁梁桥,是跨径549m的加拿大魁北克桥,为悬臂梁桥,公铁两用。

1、混凝土连续梁和连续刚构桥有了快速发展。

交通运输的迅速发展,要求行车平顺舒适,多伸缩缝的T型刚构已经不能满足要求,因而连续梁和连续刚构得到了迅速发展。

连续梁的不足之处是需用大吨位的盆式橡胶支座,养护工作量大。

斜拉桥

斜拉桥

42
1 主梁的构造
主梁的作用:
1、将恒、活载分散传给拉索。梁的刚度越小,则承担的弯矩越小; 2、与拉索及索塔一起成为整个桥梁的一部分,主梁承受的力主要是拉索的 水平分力所形成的轴压力,因而需有足够的刚度防止压屈; 3、抵抗横向风载和地震荷载,并把这些力传给下部结构。
主梁的型式:
1、实体梁、板式;2、箱型截面梁;3、叠合梁;4、钢桁梁
斜拉桥多数是自锚体系。只有在主跨很大边跨很小时,少 数斜拉桥才采用部分地锚体系。
图1-11 西班牙卢纳桥
40
(6)矮塔/部分斜拉桥体系
按塔高分类:常规斜拉桥和矮塔部分斜拉桥 矮塔部分斜拉桥受力性能介于梁式桥和斜拉桥之间。
图1-12 矮塔部分斜拉桥
41
二 斜拉桥的构造
1 主梁的构造
2 索塔
3 拉索
45
单索面箱形截面主梁
(a)法国布鲁东纳(Brotonne)桥
(b)美国日照(Sunshine Skyway)桥
单箱单室: 采用斜腹板,可以改善抗风性能,又可减小墩台的宽度,且箱形截面的抗 扭刚度也大。
46
单箱三室:
30100
1.5% 1.5%
300
4900
2650
15000
2650
4900
宽达30-35m,悬臂施工时, 须将截面分成三榀,先施 工中间箱,待挂完拉索后, 再完成两侧边箱的施工, 呈品字形前进,将截面构 成整体。
12
海参崴俄罗斯岛跨海大桥(L=1104,2012)成为全世界第三座跨度超过千米的 13 斜拉桥,全球主跨最长的斜拉桥。
( 286+560+560+560+286m ,2003年)

斜拉桥发展概况

斜拉桥发展概况

斜拉桥发展概况自1955年瑞典建成世界第一座现代斜拉桥以来,斜拉桥的建设在世界各地蓬勃发展,但现有斜拉桥大多是独塔双跨式和双塔三跨式,而具有连续主梁的三塔四跨式斜拉桥很少。

伴随着内陆经济发展,三峡库区蓄水工作逐渐完成,长江做为最大的黄金水道其重要性更加凸显,这也要求桥梁必须能够保证通航,多跨连续斜拉桥正好可以完整适应这一要求。

1斜拉桥的发展及其结构特点斜拉桥是现代大跨度桥梁的重要结构形式,特别是在跨越峡谷、海湾、大江、大河等不易修筑桥墩和由于地质的原因不利于修建地锚的地方,往往选择斜拉桥的桥型。

它的受力体系包括桥面体系,支承桥面体系的缆索体系,支承缆索体系的桥塔。

斜拉桥不仅能充分利用钢材的抗拉性能、混凝土材料的抗压性能,而且具有良好的抗风性能和动力特性。

它以其跨越能力大,结构新颖而成为现代桥梁工程中发展最快,最具有竞争力的桥型之一。

2国内外斜拉桥的发展现状及展望现代斜拉桥的历史虽短,但是利用斜向缆索、铁链或铁杆,从塔柱或桅杆悬吊梁体的工程构思以及实际应用可追朔到17 世纪。

斜拉桥发展几乎与悬索桥同时代(Virlogeux M, 1999)。

在我国古代,城墙外面护城上架设的可以开启的桥梁应属于斜拉式,东南亚地区的原始竹索桥的布置与近代的斜拉桥颇为相似。

15, 16世纪的地理大发现,极大推动了东西方文明的交流,源于亚洲的原始形态的斜拉桥对欧美近代斜拉桥的演变产生了深远的影响。

在欧美,最早见于记载的斜拉桥是1617年意大利威尼斯工程师V erantius建造的一座有几根斜拉铁链的桥。

1784年,德国人C.J. Loscher建造了一座木制斜拉桥。

这是世界上第一座真正愈义上的斜拉桥。

但是,18 世纪初两座斜拉桥的损毁,致使这种斜拉体系在18 世纪到19 世纪期间的发展几乎停滞[Podolny W, 1976]。

1918 年,位于英国Dryburgh-Abber 附近,跨越Tweed 河长约79m 的人行桥,在风力振荡的情况下,致使斜链在节点处折断而出现事故。

小议大跨度斜拉桥施工技术发展现状及发展趋势

小议大跨度斜拉桥施工技术发展现状及发展趋势

小议大跨度斜拉桥施工技术发展现状及发展趋势大跨度斜拉桥施工技术发展的现状如下:1、斜拉索材料的发展:传统的斜拉索材料主要采用钢材,但随着新材料的发展,现在也有采用碳纤维、高强度钢丝等材料作为斜拉索的新型斜拉桥。

这些新材料具有重量轻、强度高、耐腐蚀等特点,能够提高斜拉桥的承载能力和使用寿命!2、斜拉索施工技术的改进:传统的斜拉索施工主要采用吊索法或者拉索法,但这些方法存在一定的施工难度和风险。

现在,一些新的斜拉索施工技术被引入,如预应力张拉法、预制张拉法等,能够提高斜拉索的施工效率和质量。

3、斜拉桥结构设计的创新:传统的斜拉桥结构设计主要采用单塔单索或者双塔双索的形式,但这些结构存在一定的限制。

现在,一些新型的斜拉桥结构被提出,如多塔多索、斜塔斜索等,能够适应更大跨度和更复杂的地形条件。

4、斜拉桥施工技术的自动化和智能化:随着科技的发展,大跨度斜拉桥施工技术也在向自动化和智能化方向发展。

例如,施工机械的自动化控制、无人机的应用、人工智能的辅助设计等,能够提高施工效率和质量。

大跨度斜拉桥施工技术的发展趋势主要包括以下几个方面:1、施工工艺的优化:随着施工技术的不断发展,施工工艺也在不断优化。

传统的大跨度斜拉桥施工通常需要大量的人力和物力投入,而现代化的施工工艺可以通过使用先进的机械设备和自动化技术来提高施工效率,减少施工时间和成本。

2、材料的创新:大跨度斜拉桥的施工需要使用高强度、轻质的材料,以保证桥梁的结构稳定性和承载能力。

随着材料科学的不断进步,新型材料的开发和应用将为大跨度斜拉桥的施工提供更多选择,例如高强度钢材、碳纤维等。

3、结构设计的优化:大跨度斜拉桥的结构设计是保证桥梁安全可靠的关键。

随着计算机技术的发展,结构设计分析软件的应用越来越广泛,可以对桥梁的结构进行更加精确和详细的分析,优化结构设计,提高桥梁的承载能力和抗震性能。

4、施工监测技术的应用:大跨度斜拉桥的施工过程需要进行实时的监测和控制,以确保桥梁的安全性和稳定性。

斜拉桥的认识

斜拉桥的认识

斜拉桥的认识浅谈斜拉桥认识斜拉桥又称斜张桥,是一种缆索承重结构体系,其上部结构由塔、梁、拉索三种基本构件组成。

由塔柱伸出的斜拉索作为主梁的多点弹性支承,同时斜拉索拉力的水平分力对主梁起着轴向预应力作用,因此斜拉桥是一种桥面体系以主梁受压(密索)或受弯(稀索)为主、支承体系以斜拉索受拉及桥塔受压为主的桥梁。

斜拉桥良好的力学性能、建造相对经济、景观优美,已是我国大跨径桥梁最流行的桥型之一。

一、斜拉桥介绍以斜拉桥的主要结构体系来划分,斜拉桥的发展可分成两个阶段:第一阶段,稀索体系;第二阶段,密索体系。

稀索体系的主梁基本上为弹性支承连续梁;密索体系的主梁主要承受强大的轴向力,同时又是一个受弯构件。

斜拉桥是将主梁用许多拉索直接拉在桥塔上的一种桥梁,可看作是拉索代替支墩的多跨弹性支承连续梁。

斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。

这样可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。

斜拉桥是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。

索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。

斜拉索布置有单索面、平行双索面、斜索面等。

梁按所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。

纵观斜拉桥结构体系的发展历史,可以看到,加劲梁朝着更细更柔的方向演变,加劲梁的高跨比不断减小。

唯一的制约来自于空气动力作用,为了使加劲梁获得令人愉悦的外形而同时又要保证最小刚度,加劲梁从最初的重质量块发展到后来的加肋板、箱梁。

虽然也有由桁架构成的加劲梁体系,但这多应用于双层桥面体系。

拉索体系则经历了一个从无到有、从少到多的过程。

现在稀索体系斜拉桥已经很少采用,除非偶尔为了桥梁造型上的求新创异,密索体系以其突出的优势成为了人们心目中默认的斜拉桥体系,也必然将是超千米主跨斜拉桥结构体系的组成之一。

索塔的外形由简单到复杂,稳定性却在不断加强,其最初为门式塔,继而“入"形塔,A形塔,钻石形塔,直至空间塔结构。

斜拉桥发展历程

斜拉桥发展历程

斜拉桥发展历程斜拉桥作为桥梁的一种重要结构形式,出现于17世纪,其发展几乎与悬索桥同时代。

在欧美,有记录的最早的斜拉桥是,1617年意大利工程师Verantius建造的一座有几根斜铁链的桥,但受制于当时的科技发展水平,不能对其进行可靠的力学分析和提供足够强度的材料,致使其没有发展起来。

18世纪,德国人就曾设想过建造木制斜拉桥,1817年英国架成了一座跨径34m的人行木制斜拉桥,桥塔是铸铁的,缆索使用铁丝,但是材料的强度有限,结构的受力也无法分析,这座桥不久就毁坏了。

之后,英、法、德等国都曾修过一些木制斜拉桥,但不久都毁坏了。

1824年,在英国在Nienburg跨越Saale河修了一座用铁链条和铸铁杆作拉索的斜拉桥,不久就毁于一场游行。

1918年,位于英国Dryburgh-Abber附近,跨越Tweed河建造的一座长约79m 的人行桥,在风力振荡的情况下,致使斜链在节点处折断而出现事故。

这些的主要原因是当时的工业水平不高,无法制造高强钢丝,只能用铁丝或者铁丝绳,同时由于当时的理论体系不健全和计算手段落后,无法准确计算多次超静定结构,也无法分析风振动对桥梁的影响。

1930年,法国的著名工程师Navier在研究了这些桥的事故后,著文声称斜拉桥概念是模糊不清,是不能成立的,并宣布了斜拉桥的死刑.他认为毁坏的原因是由于没能精确计算力的变化过程,同时对一些细节处理不够。

他提出悬索桥和斜拉桥相结合的方案,后来由美国的一位工程师设计并建成当时世界上跨径最大的桥梁。

直到1938 年德国工程师Dishinger 重新认识到了斜拉桥的优越性, 并对其进行了研究。

1955年,Dischinger设计建成了世界第一座现代化的大跨斜拉桥——瑞典的S trömsund桥(图1-1),主跨182.6米,采用全部斜拉结构,其主梁为钢板梁,中间用横梁连接,双塔式,每塔只用两对高强钢丝拉索,属于稀索体系。

尽管用现代的观点来看,这座桥在细节处尚有一些不足之处,如桥面采用分离的混凝土梁的方案,索塔造型尚缺美观等,但其在桥梁结构上却是开创了一个新纪元,创造了一个新体系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国斜拉桥的发展状态和关键技术摘要:斜拉桥的发展引用着多种现代的高新技术,得以桥梁在大跨度的桥梁施工中,得以精确度的保证以及在规范要求的范围内,并且施工中必须考虑到外部环境的影响,所以接下来对以上的问题作以叙述。

关键词:斜拉桥全球卫新定位系统防护措施施工重点斜拉桥又称斜张桥,上部结构由索、梁、塔三个主要组成部分构成,从其力学特点看,属于组合体系桥。

斜拉桥依靠斜拉索支撑梁跨,类似于多跨弹性支承梁,梁内弯矩与桥梁的跨度基本无关,而与拉索间距有关。

斜拉桥开始于17世纪,现在斜拉桥正处于发展的高峰期间,长度、跨度和持久性也在不断增加。

斜拉桥采用斜拉索来支撑主梁,使主梁变成多跨支撑连续梁,从而降低主梁高度、增大跨度。

斜拉桥属于自锚结构体系,斜拉索对桥跨结构的主梁产生有利的压力,改善了主梁的受力状态。

主要构造有基础、墩塔、主梁和拉索。

其上的主梁是受弯构件,为多点弹性支撑,弯矩和挠度显著减小,斜拉索水平分力,提供对称的预应力,减缓主梁的压力。

斜索是受拉构件,为主梁提供弹性支持,调整其索力、间距和数量,可调整桥梁内力分布及刚度,对斜拉索进行预张拉。

斜拉桥孔跨布置主要可分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。

在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。

1、双塔三跨式目前双塔三跨式最常用,形式有对称式和非对称式,适用在跨越较大的河流、海口及海面比较近的工程中。

以下为双塔三跨式的例子,如图一所示。

杭州湾跨海大桥建于2003年11月14日开工,2007年6月26日贯通,2008年5月1日启用。

杭州湾跨海大桥是一座横跨中国杭州湾海域的跨海大桥,北起浙江嘉兴海盐郑家埭,南至宁波慈溪水路湾,全长36公里,比连接巴林与沙特的法赫德国王大桥还长11公里,已经成为中国世界纪录协会世界最长的跨海大桥候选世界纪录,成为继美国的庞恰特雷恩湖桥和青岛胶州湾大桥是世界上最长的跨海大桥后世界第三长的桥梁。

此桥的特点为两侧都建有辅助墩,目的是为了缓和端锚索应力集中或减少边跨主梁弯矩,增大桥梁总体刚度。

杭州湾大桥的钢管桩制作过程中,每个工序都进行严格质量检查,对焊缝百分之百进行超声波检查,还有部分的需要进行射线照相。

其中T形和十字形的焊缝及近桩顶焊缝作为重点检查。

焊缝不允许有咬边、焊缝未融合、未焊透的情况表面气孔、弧坑、夹渣等外观缺陷,这些都是对桩的焊接要求,而且在做这桥的设计时,还得考虑到一些外在因素,因为作为海上建筑,必须考虑到海上的海风很大,桥墩放下的时候会因为海风的吹动而摇晃,可能导致放置的位置不精确,所以得用到精密仪器测量和GPS 定位导航系统,这个是近几年才开始开发使用在桥梁建筑上的科技技术使用。

在建成的时候还得预防以后海上出现台风现象,因为美国就有桥在设计时未能够充分考虑到风力和风速的影响,导致桥在风的作用下,产生摇晃,导致桥的倒塌。

钢管桩的制作已经需要考虑到防腐的问题,而且也要考虑到在运输的时候,防止桩与周围的摩擦。

而且全球卫星定位系统在这里利用的地方也比较多。

像这里外海沉桩施工过程中,因为在海上的施工,所以在岸上看上去距离远,常规的经纬仪和全站仪测量定位很难达到设计的要求,所以只有使用全球卫星定位系统在施工过程中,一直使用着,这样才能在施工后才能保证规范要求。

图一2、独塔双跨式独塔双跨式适用于跨越中、小河流、谷地和城市道路或较大河流的主航道。

江苏通州世纪大桥位于江苏著名通航运河,南通第一运河——通吕运河上,如图二所示。

该桥主桥采用双跨独斜拱塔双索面预应力斜拉桥,主桥主梁共分成17个标准节段,节段长度6米,采用挂蓝悬浇施工;锚跨采用支架现浇施工。

塔为钢结构“拱形”索塔,塔高约62米,塔向岸跨倾斜15度,塔身为箱形截面,纵桥向为变宽,横桥向为椭圆线形。

跨径组合为110+80米,主桥36、6米。

像这种独塔双跨式的桥梁,从构造上,大概可以分为桥梁一边地锚式,这样的主要受力类似于悬索桥的边跨时的构造受力,像这种独塔双跨地锚式的斜拉桥的的跨度达不到很长的要求。

还有另一种就是利用桥墩的受力,然后再两边拉钢绞线钢丝,拉在桥墩两侧,这样的受力比较均匀于桥墩的两侧,不过这种在施工的时候,像这种比较高的桥墩。

必须考虑到在拉索时,因为一侧受力过大,而导致桥梁因为弯矩过大而导致桥梁垮塌。

这种的建筑看着比较优美,但是在桥梁跨度小时用这种形式的属于为浪费材料,在跨度大的时候用这种的桥梁构造又是属于较为危险的建筑,在以后的维修和防护比较麻烦,所以想这种的桥梁在现实中比较少利用。

图二3、无背索式由无背索式让我突然得到一个想法,我们既然有无背索式,那么我们为何不将它使用在武汉长江大桥上做设计,如今武汉长江大桥需要做一些改进,使得那么排水量大的船通过,那么我们可以在某一段作为截开点,在这个截开两侧分别使用无背索式,然后再加上现在的液压法在这两处,也就是在有大货船通过时,将一部分的桥梁直接通过液压的方式向上升起。

但是这样的设计对桥墩的要求将会上升,以前建造的桥墩不知是否能够支撑得住这样设计的索塔所带来的压力,即使能够支撑得了,也不知道基础会不会因为压力的增大而导致不均匀的沉降。

若像之前老师说的所有桥墩都增加几十米,那么所带来的影响会和前面所带来的影响相似处很多,所以我个人觉得如果需要对武汉长江大桥所做一些小小的修改的话,也许用这种开启式的会比较方便,如果用的是悬索桥的话,那么太浪费材料了,而且稍微的修改只是部分,而悬索桥在跨度达到千米左右时,用此桥型比较合理的选择。

无背索式的桥梁构造例如长沙洪山大桥,如图三所示的洪山大桥是目前世界上跨度最大的竖琴式无背索斜塔斜拉桥,也是世界上唯一高度超百米的混凝土斜塔桥。

主梁采用的是钢箱梁,挑梁间距为4~5米,主塔倾角为58°,主跨206米,主塔桥面以上高度138米。

主塔和主梁采用的是顶推法施工。

由于不设背索,仅利用塔柱倾斜来平衡桥面恒载和活载,使结构的受力和设计变得十分特殊。

为保证大桥的顺利施工采用了多项创新技术:1、主梁采用独特的脊骨梁形式和特殊的加劲方式,并从理论、施工、美观上综合考虑了竖琴式斜拉桥合理布局的问题;2、对超长悬臂组合梁进行大吨位预压,以满足这种特殊结构的受力要求;3、采用独特的拉索锚固方式,确保全桥整体受力良好;4、采用人行道高出车行道的方案,使行人倍感安全和舒适,同时塔内设观光电梯,塔顶有观景台以俯瞰长沙城,真正体现了人性化设计概念。

图三4、多塔多跨式前面列举的桥梁中都不是现在比较常见的桥,如今比较多出现的桥梁是多塔多跨式的桥梁,比如现在比较出名的米约大桥,如图四。

这座桥超越了很多不可思议的构想,比如桥墩的高度。

这种高度的桥墩就像一根细长杆竖立在地上,假如在施工过程中,一不小心哪侧的力稍微过大,那么将会产生特别大的弯矩,如此带来的后果是不堪设想的。

而且像这种高空施工作业,也是一件特别棘手的工程。

并且在施工过程中,每施工一段距离,必须用全球卫星定位系统来纠正在施工过程中可能会出现的一些偏差,从而保证桥梁在建成之时的精确度能够达到规范要求。

在这桥上行车,站在大桥上向下俯瞰,桥底下是一望无际的云雾,整个大桥仿佛在云雾中横空出世,腾云驾雾,行走其间仿佛置身另一世界。

其总设计师诺曼·福斯特再设计时着重考虑到风力的影响,特意将大桥桥面结构设计成三角形,以有效减少风阻。

除了计算机模拟试验外,有关风力模拟户外试验从1997年就开始了,法国气象局专家甚至在图卢兹一带修建了一个人工山谷,然后向这个“山谷”灌水,水中夹杂了许多小颗粒,专家通过水流颗粒的变化模拟出塔恩河山谷可能出现的各种复杂风向,从而对大桥各种建筑结构的比例不断进行修改。

最终大桥的设计使其可以抵御时速250公里的大风。

如下图四就是米约大桥建成后的成果。

图四5、千米斜拉桥关键影响因素及稳定性的考虑像这种跨度比较长的斜拉桥,在很多设计上需要着重考虑。

比如千米以上大跨度斜拉桥各构件的内力、基础反力及动力响应均较大,合理选择结构的支承体系, 通过静、动力分析合理选择减、隔震支座及动力阻尼装置,选择合适的动力阻尼参数,可以减小结构各构件的内力以及动力响应,提高结构的耐久性。

斜拉桥上部结构塔、梁、索为主要受力构件,合理的塔形可增大抗风稳定性、减小下部结构规模, 由于跨大、塔高,主塔锚固区施工难度大、受力复杂、定位困难,须对主塔锚固区细部构造进行比较研究,选择合理的锚固形式。

主梁承受压力、弯矩、扭矩共同作用,在脉动风和地震作用下还要发生振动。

须选择抗弯及抗扭刚度大,气动外形好的主梁结构。

结合建桥条件,首先应考虑采用钢与混凝土混合梁的可能性,以平衡边、中跨荷载,消除边跨负反力,减小塔根弯矩对斜索在梁上的锚固细节应对比研究目前常用的钢锚拉板式、锚箱式及锚管式等构造方式,对细节进行有限元及试验研究。

千米以上超大跨斜拉桥最长斜拉索将超过 500 m,斜索垂度效应明显,除承受恒、活载作用外,还承受较大风力。

应对平行钢丝索及平行钢绞线斜索进行受力比较,对锚头细节进行研究,对超长索的减、隔震措施进行研究。

主塔大型深水基础规模及施工难度均较大,须对沉井及桩基础进行受力及经济性比较,结合桥位处地质、水流以及冲刷等自然条件,选择合理的基础形式。

另外,还必须对船舶撞击进行数模分析,对失控船舶漂移对桥梁的影响进行研究,确定基础的船舶撞击力。

对防撞设施进行研究,确保结构安全、耐久。

结构的静力稳定问题的研究分为两类,第一类稳定为分支点失稳问题;第二类为极值点失稳问题。

对于一类稳定的安全系数评价,在规范中有规定对于二类稳定的安全系数评价规范没有规定,国内有的科研单位采用边缘纤维屈服准则作为极限强度判别标准,以结构构件边缘应力达到屈服强度时的荷载与实际荷载的比值作为稳定安全系数。

斜拉桥的主塔和主梁都是压弯构件,千米级跨度的斜拉桥结构内力大,主塔高约300m,主梁长约2000m,主塔高耸以及主梁薄壁高强材料的运用,施工中主梁超大伸臂安装,使得稳定问题与强度问题同等重要。

因此,必须对结构在独塔自立、最大单双伸臂、成桥状态等各控制工况在施工荷载、风力以及运营荷载作用下进行一类稳定分析。

6、结语由以上各种桥梁的设计和施工等等,我们可以看出,现代斜拉桥在设计施工时,桥梁的跨度不断在扩大,而且在施工过程中,不断引用新的技术,很多以往的就技术在这种跨海或者高桥墩的设计时,引用以前的技术对这种的设计的施工过程中,由于距离或者高度的问题,在使用时会被环境的影响偏大,而且可能会在施工完后无法达到规范的要求,所以新技术必须引进,新的想法设计必须出现,只要是不影响安全问题和不触及规范边缘问题的,在外国规范中都是可以允许的,所以米约大桥的出现是一种突破性的桥梁设计,这些桥梁都用到全球卫星定位系统,这样可以保证施工过程中和施工完成后的精确度,不至于在施工完成后会有出现桥梁偏移量过大的问题。

相关文档
最新文档