学而思小学奥数知识体系
学而思小学奥数知识点梳理
学而思小学奥数知识点梳理学而思教材编写组前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如: =100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
学而思小学奥数
学而思小学奥数知识点梳理学而思教材编写组侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:=100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
学而思小学奥数知识点梳理大纲视图
学而思小学奥数知识点梳理学而思教材编写组侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:=100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
学而思小学奥数知识点梳理
学而思小学奥数知识点梳理The final edition was revised on December 14th, 2020.学而思小学奥数知识点梳理学而思教材编写组前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如: =100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
学而思小学奥数知识点梳理(大纲视图)
学而思小学奥数知识点梳理学而思教材编写组侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:=100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
学而思奥数八大专题
学而思奥数八大专题
在当今的教育领域,奥数教育一直备受关注。
作为国内知名的教育机构,学而思在奥数教育方面拥有着丰富的经验和优秀的教学资源。
最近,学而思推出了“八大专题”奥数课程,旨在为学生提供更加系统、专业的奥数学习体验。
首先,我们来了解一下什么是学而思的“八大专题”奥数课程。
这八个专题分别是:数论、组合数学、图论、几何、排列组合、概率统计、数列与数学归纳法和数学建模。
每个专题都由资深的数学教师团队进行精心设计,确保学生能够深入理解数学原理和方法,提高数学思维能力。
学而思的“八大专题”奥数课程具有以下特点:
1.系统性:这八个专题涵盖了奥数的主要领域,让学生在学习过程中能够全面了解奥数的知识体系。
2.专业化:每个专题都由资深的数学教师团队进行设计,确保课程内容的专业性和准确性。
3.互动性:课程采用线上教学方式,学生可以通过实时互动与教师和其他学生进行交流,提高学习效果。
4.实践性:课程注重实践应用,通过解决实际问题来提高学生的数学应用能力。
对于想要提高数学思维能力、准备参加数学竞赛或者对数学有浓厚兴趣的学生来说,学而思的“八大专题”奥数课程是一个非常不错
的选择。
通过学习这门课程,学生可以深入了解奥数的知识体系,提高数学思维能力,为未来的学习和职业发展打下坚实的基础。
总之,学而思的“八大专题”奥数课程为学生提供了一个系统、专业的学习平台,有助于提高学生的数学思维能力与实践应用能力。
相信在这门课程的帮助下,学生们一定能够在数学领域取得更好的成绩和发展。
学而思小学奥数知识点梳理(大纲视图)精编版
植 四、 典型应用题
1. 树问题
①开放型与封闭型 ②间隔与株数的关系 阵 2. 方 问题 外层边长数-2=内层边长数 (外层边长数-1)×4=外周长数 外层边长数 2-中空边长数 2=实面积数 车 桥 3. 列 过 问题 ①车长+桥长=速度×时间 ②③列车车车长长与甲甲人++车车或长长骑乙乙车==速速人度度或和差另××一追相列及遇车时时上间间的司机的相遇及追及问题 车长=速度和×相遇时间 车长=速度差×追及时间 龄 4. 年 问题
概述
一、 计算
1. 四则混合运算繁分数 ⑴ 运算顺序 ⑵ 分数、小数混合运算技巧
①一般而言: 加减运算中,能化成有限小数的统一以小数形式;
② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化 ⑷繁分数的化简 2. 简便计算 ⑴凑整思想 ⑵基准数思想 ⑶裂项与拆分 ⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序
六、 计数问题
类枚举 1. 加法原理:分 排 2. 乘法原理: 列组合 容斥 3. 原理:
① 总 量数 =A+B+C-(AB+AC+BC)+ABC ② 常 总 量 用: 数 =A+B-AB
抽屉 4. 原理:
5. 握手至问多题至少问题
在 广泛 图形计数中应用 ① 角、线段、三角形,
② ③
长正方方形形、梯形、平行四边形
3.
路流程水行差船=速度差×追及时间 顺逆水水速速度度==船船速速+-水水速速
4. 船水多速速次相==((遇顺顺水水速速度度+-逆逆水水速速度度))÷÷22
线环型型路路程程:: 甲甲乙乙共共行行全全程程数数==相相遇遇次次数数×2-1
5. 环其形中跑甲道共行路程=单在单个全程所行路程×共行全程数
学而思小学奥数知识点梳理精选文档
学而思小学奥数知识点梳理精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-学而思小学奥数知识点梳理学而思教材编写组前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若,则c>b>a.。
形如:,则。
5.定义新运算6.特殊数列求和运用相关公式:①②③④⑤⑥⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如: =100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
学而思奥数知识点总结最新(精编文档).doc
【最新整理,下载后即可编辑】学而思小学奥数知识点梳理概述 一、 计算1. 四则混合运算繁分数 ⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式; ② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化 ⑷繁分数的化简 2. 简便计算 ⑴凑整思想 ⑵基准数思想 ⑶裂项与拆分 ⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序① 运算定律的综合运用 ② 连减的性质 ③ 连除的性质④ 同级运算移项的性质 ⑤ 增减括号的性质 ⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法 4. 比较大小 ① 通分a. 通分母b. 通分子 ② 跟“中介”比 ③ 利用倒数性质若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
5.定义新运算 6.特殊数列求和 运用相关公式: ①()21321+=++n n n ②()()612121222++=+++n n n n③()21n a n n n n =+=+ ④()()412121222333+=++=+++n n n n⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇 奇±偶=奇 奇×偶=偶 偶±偶=偶 偶×偶=偶 2. 位值原则形如:abc =100a+10b+c3. 数的整除特征:①如果c|a、c|b,那么c|(a b)。
最新学而思奥数知识点总结最新
学而思小学奥数知识点梳理概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:1212......(......)nn a b a b a ba a a b3.估算求某式的整数部分:扩缩法4.比较大小①通分a.通分母b.通分子②跟“中介”比③利用倒数性质若111abc,则c>b>a.。
形如:312123m m m n n n ,则312123n n n m m m 。
5.定义新运算6.特殊数列求和运用相关公式:①21321n n n②612121222n n n n ③21na n n nn④412121222333n n nn ⑤131171001abc abc abcabc ⑥bab aba22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n2二、数论1.奇偶性问题奇奇=偶奇×奇=奇奇偶=奇奇×偶=偶偶偶=偶偶×偶=偶2.位值原则形如:abc =100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或5 9 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a 、c|b ,那么c|(ab)。
②如果bc|a ,那么b|a ,c|a 。
③如果b|a ,c|a ,且(b,c )=1,那么bc|a 。
学而思小学奥数知识点梳理
学而思小学奥数知识点梳理学而思教材编写组 侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言: ① 加减运算中,能化成有限小数的统一以小数形式; ② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化 ⑷繁分数的化简 2. 简便计算⑴凑整思想 ⑵基准数思想 ⑶裂项与拆分 ⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序① 运算定律的综合运用 ② 连减的性质 ③ 连除的性质 ④ 同级运算移项的性质 ⑤ 增减括号的性质 ⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法 4. 比较大小① 通分a. 通分母b. 通分子 ② 跟“中介”比 ③ 利用倒数性质若111a b c >>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n nm m m <<。
5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②()()612121222++=+++n n n n③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc ⑥()()b a b a b a -+=-22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇 奇±偶=奇 奇×偶=偶 偶±偶=偶 偶×偶=偶2. 位值原则形如:abc =100a+10b+c3. 数的整除特征: 整除数 特 征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数 5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数 4和25 末两位数是4(或25)的倍数 8和125末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。
最新学而思奥数知识点总结最新
学而思小学奥数知识点梳理概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质 若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②()()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c4. 整除性质① 如果c|a 、c|b ,那么c|(a ±b)。
学而思小学奥数知识点梳理
学而思小学奥数知识点梳理学而思教材编写组侍春雷前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质 若111a b c >>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n②()()612121222++=+++n n n n③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇奇×偶=偶偶±偶=偶偶×偶=偶2.位值原则形如:abc=100a+10b+c3.数的整除特征:4.整除性质①如果c|a、c|b,那么c|(a±b)。
学而思奥数体系和高斯
学而思奥数体系和高斯引言概述:学而思奥数体系是一套全面的数学学习体系,旨在培养学生的数学思维能力和解决问题的能力。
而高斯是历史上一位杰出的数学家,对数学的发展做出了巨大的贡献。
本文将从五个大点阐述学而思奥数体系和高斯的相关内容。
正文内容:1. 学而思奥数体系的概述1.1 学而思奥数体系的目标学而思奥数体系旨在培养学生的数学思维能力和解决问题的能力。
通过系统的学习和训练,学生能够掌握数学的基本概念和方法,培养逻辑思维和创新思维,提高数学解题的能力。
1.2 学而思奥数体系的内容学而思奥数体系包括数学的各个分支,如数与代数、几何、概率与统计等。
每个分支都有一套完整的课程体系,从基础知识到高级应用,逐步深入,帮助学生建立起扎实的数学基础。
2. 高斯的贡献2.1 高斯的数学成就高斯是数学史上的一位巨人,他在数学领域做出了许多重要的贡献。
他提出了高斯消元法,解决了线性方程组的问题,为线性代数的发展奠定了基础。
他还发现了高斯曲线,为概率论的发展做出了贡献。
此外,高斯还在数论、几何等领域有着深入的研究。
3. 学而思奥数体系与高斯的关系3.1 学而思奥数体系的教学方法与高斯的思维方式相契合学而思奥数体系注重培养学生的数学思维能力,与高斯的思维方式相契合。
学而思奥数体系采用启发式教学法,鼓励学生通过思考和探索解决问题,培养学生的创新思维。
这与高斯在数学研究中的方法相似,高斯也是通过深入思考和探索,不断提出新的理论和方法。
4. 学而思奥数体系的优势4.1 培养全面的数学能力学而思奥数体系注重培养学生的数学思维能力和解决问题的能力,使学生能够熟练掌握各个数学分支的基本概念和方法,建立起扎实的数学基础。
4.2 培养创新思维学而思奥数体系通过启发式教学法,鼓励学生通过思考和探索解决问题,培养学生的创新思维。
这有助于学生在数学领域中提出新的理论和方法。
4.3 培养解决问题的能力学而思奥数体系注重培养学生解决问题的能力,通过实际问题的训练,培养学生的逻辑思维和分析能力,提高解决问题的能力。