轴承震动原因
磨煤机小牙轮轴承振动原因及处理
磨煤机小牙轮轴承振动原因及处理磨煤机是一种常见的煤磨设备,用于将煤炭磨成粉煤,用于燃烧或其他工业用途。
在运行过程中,磨煤机的小牙轮轴承振动是一个常见的问题,会影响磨煤机的正常运行。
下面将介绍磨煤机小牙轮轴承振动的原因和处理方法。
1. 装配不良:磨煤机在安装和调整过程中,如果轴承和小牙轮的安装不当,会导致轴承振动。
如果安装时轴承没有正确对齐,或者安装时轴承周围的密封件没有正确安装,都会导致轴承振动。
2. 轴承损坏:磨煤机的轴承长时间运行后会磨损,如果不及时更换,就会导致轴承振动。
轴承损坏的原因有很多,例如润滑不良、使用寿命过长等。
3. 小牙轮偏心:小牙轮的偏心现象也是引起轴承振动的原因之一。
小牙轮偏心通常是由于小牙轮安装不平衡或者小牙轮在使用过程中出现破损引起的。
1. 检查并更换损坏的轴承:定期对磨煤机的轴承进行检查,如果发现轴承损坏或者寿命已到,及时更换新的轴承。
选择质量较好的轴承,确保其正常运行。
2. 检查并调整小牙轮安装:对磨煤机的小牙轮进行检查,如果发现小牙轮安装不平衡或者出现破损,及时调整或更换。
确保小牙轮的安装平衡,减少振动。
3. 加强润滑工作:磨煤机的轴承在运行过程中需要有足够的润滑,否则会加剧轴承的磨损和振动。
定期检查并及时加油或更换润滑油,确保轴承充分润滑。
4. 加强设备检修和维护:定期对磨煤机进行检修和维护,包括清洁设备、检查紧固件和密封件、调整传动部件的松紧度等。
及时发现和解决问题,减少振动的发生。
5. 在设计和制造过程中加强质量控制:在磨煤机的设计和制造过程中,加强质量控制,确保设备的质量和性能稳定。
合理选择材料和工艺,提高设备的耐久性和稳定性。
磨煤机小牙轮轴承振动的原因主要包括装配不良、轴承损坏和小牙轮偏心等。
处理方法包括更换损坏的轴承、调整小牙轮安装、加强润滑工作、加强设备检修和维护以及加强质量控制等。
只有通过科学合理的处理方法,才能保证磨煤机的正常运行和使用寿命。
引风机轴承振动大的原因及处理
引风机轴承振动大的原因及处理引风机是火力发电厂等大型工程的一部分,作用是将空气或烟气引入锅炉内,提高空气与燃烧材料的混合效率。
然而,引风机在运行时会出现一些问题,其中之一就是轴承振动大。
本文将分析引风机轴承振动大的原因,并提供相关的解决方案。
原因分析:1.轴承过紧或过松在使用引风机时,轴承的紧度非常关键。
如果轴承过紧或过松,会导致引风机轴承出现振动,影响正常运转。
轴承过紧的情况下,会增加了机壳与内部零件之间的外力作用,导致摩擦力增大;而轴承过松的情况下,会增加摩擦与机器间的间隙,进而导致失衡的发生。
因此,必须在设计和维修工作时确保轴承调整合适,可以仔细检测轴承是否过紧或者过松,必要时对其进行重新调整和校正。
2.轴承损坏另外,引风机长期使用会使轴承发生磨损和疲劳,尤其是在瞬间启停的频繁使用中容易出现损坏情况。
当轴承损坏时,通常会出现轴承碰撞或者扭曲的现象,引起机器振动。
因此,需要定期对轴承进行检测,并在必要时更换。
3.离心力的影响引风机旋转时产生的离心力也会影响轴承的工作情况。
当旋转的惯性力大于轴承的承受力时,轴承均会出现振动。
在这种情况下,需要重新设计和调整离心力的大小和方向。
解决方案:1.定期维护为了避免轴承振动的情况发生,引风机必须进行定期的维护和保养。
包括清洗轴承、检查并校正轴承、更换老化的零部件等。
这样可以保证引风机的正常运转,减少振动的发生。
2.使用合适的轴承在进行引风机的设计和选择时,应根据具体工作条件选择合适的轴承。
要确保轴承可以承受离心力和负载,并提高其耐磨性。
这样可以有效减少轴承的振动情况。
3.加强调节和控制引风机轴承振动大的另一个原因是因为控制不足。
因此,可以通过加强控制系统的调节和控制,使引风机的工作更加平稳和稳定。
算法控制,信号复合等技术的应用,能够提高引风机的工作效率,减少振动的发生。
总结:引风机是锅炉系统中非常重要的组成部分,用于疏通空气和排放有害气体,在正常运转中需要杜绝轴承振动的情况发生。
直线轴承晃动间隙大的原因
直线轴承晃动间隙大的原因
直线轴承晃动间隙大的原因有多个方面,具体如下:
1. 安装螺栓松动:如果直线轴承在运行过程中发生晃动,应立即检查内外圈的所有安装螺栓。
检查是否有松动,并按要求拧紧。
2. 支撑钢结构刚度不足:如果支撑直线轴承的钢结构刚度不够,导致加载时产生弹性变形,会导致直线轴承整体晃动。
3. 端盖松动:轴承盖松动会导致轴承支撑面积减小,进而产生晃动。
此时应将轴承盖拧紧,在拧紧之前需要先清洁轴承盖和轴承,去除可能存在的污垢和防止灰尘进入轴承内部。
4. 钢珠磨损:轴承钢珠磨损会导致轴承支撑面积减小,产生晃动。
如果轴承的磨损严重,则需要更换新的轴承。
在更换时,应注意选择合适的型号,并按照正确的安装方法进行安装。
5. 超负荷运行:检查是否超载运行,超负荷运行会导致滚道坍塌、间隙变大,使直线轴承出现晃动。
因此,需要严格按规定进行操作。
这些是可能导致直线轴承晃动间隙大的原因,具体情况还需要根据实际应用场景进行分析和排查。
如需更多信息,建议请教专业技术人员。
轴向轴承振动与稳定性分析
轴向轴承振动与稳定性分析轴向轴承是现代机械装置中非常重要的组件,其质量和性能对整个机械装置的工作效率和稳定性有着重要的影响。
因此,轴向轴承的振动与稳定性分析成为了工程师们必须掌握的一项技术。
首先,我们来讨论轴向轴承振动产生的原因。
轴承振动的主要原因包括以下几个方面:1. 轴承本身的制造和装配误差:轴承的制造和装配过程中难免存在一定的误差,如轴承外环的偏心度、圆度等参数不符合要求,都会导致轴承在旋转时产生振动。
2. 轴向力和径向力的不平衡:轴承工作时,由于机械装置的不平衡或者操作过程中的不同因素,轴向力和径向力会产生不平衡现象。
这些不平衡力对轴承的工作产生一定的影响,引起振动。
3. 润滑不良:轴承在工作时需要有足够的润滑剂,如果润滑不良,会增加轴承的摩擦系数,从而导致振动。
接下来,我们来讨论轴向轴承振动对机械装置稳定性的影响。
轴向轴承振动会引起以下几个方面的问题:1. 降低工作效率:轴向轴承振动会加大摩擦系数,降低轴承的工作效率,影响机械装置的整体运行效果。
2. 加剧磨损和疲劳:轴向轴承振动会导致轴承的磨损和疲劳程度增加,进而缩短轴承的使用寿命。
3. 传导振动:轴向轴承振动会通过机械装置的其他部件传导出去,引起整个机械装置的振动,影响工作环境。
为了解决轴向轴承振动问题,我们可以采取以下几种措施:1. 优化轴承制造和装配工艺:通过加强轴承的质量控制,减小制造和装配误差,降低轴承的振动产生。
2. 提高润滑效果:选择合适的润滑剂和润滑方式,保证轴承良好的工作状态,降低振动。
3. 平衡轴向力和径向力:通过调整机械装置的重心或者增加平衡设备,减小径向力和轴向力的不平衡程度,降低振动产生。
4. 定期检测和维护:定期检测轴向轴承的振动情况,及时发现问题并采取相应的维护措施,保证机械装置的稳定性和安全性。
综上所述,轴向轴承振动与稳定性分析是一项至关重要的技术,对于确保机械装置的工作效率和安全性具有重要的意义。
通过合理的分析和措施,我们可以降低轴承的振动,提高机械装置的稳定性和可靠性。
风电齿轮箱高速轴轴承振动的应用分析
风电齿轮箱高速轴轴承振动的应用分析二、风电齿轮箱高速轴轴承振动的成因1. 原因一:轴承设计不合理风电齿轮箱的高速轴轴承作为承受风机转速及载荷的重要组件,其设计合理与否直接影响着轴承的振动情况。
如果轴承在设计上存在问题,如径向间隙不合适、润滑不足、承载能力不足等,都会导致轴承在高速工况下产生过大的振动,从而影响风电齿轮箱的运行。
2. 原因二:运行过程中的损耗风电齿轮箱长期运行中,轴承会受到载荷和振动的影响,导致轴承零部件的损耗。
一旦轴承零部件损坏或磨损,会导致轴承产生振动,进而影响风电齿轮箱的运行稳定性和寿命。
3. 原因三:不良工况风电齿轮箱在运行中可能会出现异常工况,如过载、冲击负载、异常转速等,这些工况都会导致高速轴轴承振动。
尤其是在风电场运行环境复杂多变的情况下,异常工况的发生频率较高,更易导致轴承振动的出现。
三、风电齿轮箱高速轴轴承振动的应用分析1. 检测与监测技术风电齿轮箱高速轴轴承振动的检测与监测技术,可以采用传感器技术实时监测轴承的振动情况,并通过数据采集和分析系统对轴承的振动情况进行实时监测和记录。
通过这种技术手段,可以及时掌握轴承振动情况,为风电齿轮箱的故障诊断和维护提供数据支持。
2. 振动信号分析振动信号分析是对风电齿轮箱高速轴轴承振动的重要手段之一。
通过对轴承振动信号进行时域分析、频域分析和脉冲响应分析等手段,可以对轴承的振动情况和轴承零部件损伤程度进行评估,进而为风电齿轮箱的维护和故障诊断提供依据。
3. 振动控制技术振动控制技术是对风电齿轮箱高速轴轴承振动进行有效控制的手段之一。
通过合理的振动控制技术手段,可以降低轴承的振动水平,减小轴承振动对风电齿轮箱的影响,提高风电齿轮箱的运行稳定性和寿命。
4. 轴承维护保养针对风电齿轮箱高速轴轴承振动问题,加强轴承的维护保养工作,及时更换损坏的轴承零部件,加强轴承的润滑和冷却,提高轴承的运行稳定性和寿命,是解决轴承振动问题的重要手段。
轴承工作中产生振动断裂的原因有哪些
轴承运转处于贫油状态,易形成粘着磨损, 使表面状态恶化,粘着磨损产生的撕裂物易进入
保持架,使保持架产生异常载荷,有可能造成保
持架断裂。
轴承硬质异物的侵入 外来硬质异物的侵入,加剧了保持架的磨损
与产生异常附加载荷,也有可能导致保持架断
裂。
轴承蠕变现象 蠕变多指套圈的滑动现象,在配合面过盈量
不足的情况下,由于滑动而使载荷点向周围方向
轴承振动对轴承的损伤是很敏感的,在使用 过程中难免会出现故障,轴承的振动会给轴承的
使用带来一定的影响。例如剥落、压痕、锈蚀、
裂纹、磨损等都会在轴承的振动测量中反映出
来,所以,经过采用特殊的轴承振动丈量器(频 率剖析器等)可丈量出振动的大小,经过频率分
不可推断出异常的详细状况。测得的数值因轴承
的运用条件或传感器装置位置等而不同,因而需
求事前对每台机器的丈量值停止剖析比拟后肯 定判别规范。轴承中产生振动断裂的原因 ?轴承保持架异常载荷
安装不到位、倾斜、过盈量过大等易造成游 隙减少,加剧摩擦生热,表面软化,过早出现异
常剥落,随着剥落的扩展,剥落异物进入保持架
兜孔中,导致保持架运转阻滞并产生附加载荷,
Байду номын сангаас
加剧了保持架的磨损,如此恶化的循环作用,便 可能造成保持架断裂。 轴承润滑不良问题
移动,产生套圈相对轴或外壳向圆周方向位置偏
离的现象。 轴承保持架材料缺陷 裂纹、大块异金属夹杂物、缩孔、气泡及铆
合缺陷缺钉、垫钉或两半保持架结合面空隙,严 重铆伤等均可能造成保持架断裂。
0c04f8a 无油轴承
偏心轴与轴承系统的振动特性分析
偏心轴与轴承系统的振动特性分析引言振动是机械系统中常见的现象,对于轴承系统来说,振动问题会直接影响其运行稳定性和寿命。
本文的主题是分析偏心轴与轴承系统的振动特性,探讨其原因和相关影响因素。
一、偏心轴产生的振动偏心轴是指轴承轴线与旋转中心轴线不重合的情况。
当偏心轴旋转时,在轴承内部会产生径向力的不平衡,从而引起振动。
偏心轴产生的振动主要包括径向振动和轴向振动两种。
1. 径向振动径向振动是指轴承系统在旋转时产生的以轴心为中心的圆周振动。
偏心轴会引起轴承系统的不平衡,使得轴承产生径向力,进而导致径向振动。
径向振动的幅值与偏心距离和转速有关,偏心距离越大、转速越高,其振动幅值越大。
2. 轴向振动轴向振动是指轴承系统在旋转时产生的以轴线为方向的线性振动。
偏心轴会导致轴承产生轴向力,进而引起轴向振动。
轴向振动与偏心距离、转速以及轴承系统的结构有关,当偏心距离较大时,轴向振动的幅值也会增加。
二、轴承系统的振动特性轴承系统的振动特性是指在特定条件下,轴承系统的振动表现以及与其相关的影响因素。
1. 振动频率振动频率是指轴承系统振动的频率,其与轴承系统的固有特性和旋转速度有关。
常见的振动频率包括轴承固有频率、共振频率等。
不同振动频率对轴承系统的运行稳定性和寿命有着不同的影响。
2. 振动幅值振动幅值是指轴承系统振动的振幅,通常使用轴向振动或径向振动的最大值来表示。
振动幅值的大小与偏心距离、转速和轴承系统的结构有关,过大的振动幅值会导致轴承系统的故障和损坏。
3. 振动形态振动形态是指轴承系统振动的波形和频谱。
通过分析振动形态,可以判断轴承系统中是否存在缺陷和故障,进而采取相应的措施进行修复和改进。
三、影响偏心轴与轴承系统振动的因素1. 偏心距离偏心距离是指轴承轴线与旋转中心轴线之间的距离。
偏心距离越大,引起的不平衡力也越大,从而产生的振动幅值也会增加。
2. 转速转速是指轴承系统的旋转速度。
转速越高,偏心轴产生的不平衡力也越大,振动幅值会随之增加。
汽轮发电机组轴承振动原因浅析
汽轮发电机组轴承振动原因浅析
汽轮发电机组轴承振动是指轴承在工作过程中发生的振动现象。
轴承振动是一种常见
的故障现象,会导致机组的性能下降甚至整体损坏。
下面我们对导致轴承振动的原因进行
简要分析。
1. 轴承及轴承座不合适:轴承的选型不合适或者使用过程中轴承座变形等原因都会
导致轴承振动。
如果使用的是过小或者过大的轴承,都会造成轴承与轴颈之间的过度碰撞
和磨损,进而引起振动。
2. 轴承损伤或老化:轴承在长期使用过程中会出现损伤或老化的情况,比如球面磨损、疲劳裂纹等。
这些损伤或老化问题会导致轴承在工作时不平衡,从而引起振动。
3. 轴承润滑不良:轴承在工作时需要润滑剂的支持,如果润滑剂的质量不合格或者
润滑程度不够,都会导致轴承摩擦增大、磨损加剧,最终导致振动。
4. 轴颈变形:轴颈的变形会导致轴承的引导力不均匀,从而引起振动。
轴颈变形往
往是由于油膜崩溃、过热、过负荷等原因引起的。
5. 不平衡质量:如果转子的质量分布不均匀或者转子的安装过程中存在问题,都会
导致转子的不平衡,从而引起轴承振动。
6. 紧固螺栓松动:在机组运行过程中,螺栓松动会导致轴承座与轴承的连接不紧密,产生摩擦引发振动。
汽轮发电机组轴承振动可以由多种原因引起,如不合适的轴承、轴承损伤或老化、润
滑不良、轴颈变形、不平衡质量以及紧固螺栓松动等。
在发电机组的维护和使用过程中,
应注意对这些潜在问题进行定期检查和及时维修,以保证机组的正常运行和延长其使用寿命。
轴承振动特征分析
06 结论与建议
结论总结
轴承故障诊断的准确性得 到提高
通过分析振动信号,可以更准确地判断轴承 的运行状态,及时发现潜在的故障。
故障模式识别更加明确
振动特征分析有助于识别轴承的故障模式,如内圈 、外圈或滚动体的故障,为后续的故障原因分析和 修复提供依据。
定量评估轴承性能
通过分析振动信号的频谱、幅值等信息,可 以对轴承的性能进行定量评估,为轴承的维 护和更换提供决策依据。
原因
主要包括轴承座刚度不足、安装 不良、基础松动等。
振动特征分析方法
通过频谱分析、波形分析、轴心 轨迹分析等方法,对轴承座的振 动信号进行采集、处理和分析, 提取出轴承座的振动特征。
实例分析结果
轴承座的振动特征主要表现为低 频振动信号,其频率与轴承座的 结构和基础有关,通过分析这些 特征可以判断轴承座的工作状态 和故障类型。
轴承振动概述
轴承振动是指轴承在运转过程中产生的振动 现象,其产生的原因主要包括轴承内部元件 的相互作用、轴承座的不稳定以及外部激励 等。
轴承振动特征分析主要通过采集轴承的 振动信号,利用信号处理技术提取特征 ,进而对轴承的工作状态进行评估。
轴承振动通常采用振动烈度来描述, 其评价指标包括加速度、速度和位移 等。
02 轴承振动产生的原因
制造误差
材料不均匀
轴承材料内部存在不均匀性,导 致在运转过程中受力不均,引起 振动。
热处理不当
轴承的热处理工艺不佳,导致材 料内部存在残余应力,在运转过 程中产生振动。
装配误差
安装位置不准确
轴承在安装过程中位置不准确,导致运转过程中受力不均, 引起振动。
装配间隙不当
轴承的装配间隙过小或过大,都会影响轴承的正常运转,产 生振动。
深沟球轴承高速震动的原因
深沟球轴承高速震动的原因
首先,可能是由于安装不当导致的。
深沟球轴承在安装时需要保证轴承和座的配合间隙符合要求,如果安装不当,可能会导致轴承在高速旋转时出现不稳定的情况,从而产生震动。
其次,可能是由于轴承本身的质量问题。
如果深沟球轴承本身存在制造缺陷或材料问题,那么在高速旋转时就容易产生震动。
这可能是由于材料不均匀、加工精度不够或者表面处理不当等原因导致的。
此外,润滑情况也可能是一个导致高速震动的原因。
如果润滑不良或者使用了不合适的润滑脂,就会导致摩擦增大,从而引起轴承在高速运转时产生过热和震动。
另外,轴承的磨损也会导致高速震动。
如果深沟球轴承长时间使用或者受到过大载荷冲击,就会导致轴承零部件的磨损,从而引起高速震动。
最后,可能是由于工作环境引起的。
如果深沟球轴承所处的工作环境恶劣,比如温度过高、尘土过多或者有化学腐蚀性的介质存
在,都会导致轴承在高速运转时产生震动。
因此,深沟球轴承在高速运转时产生震动可能有多种原因,需要综合考虑各种可能性,并对症下药,及时进行检修和维护。
希望以上回答能够帮到你。
轴承振动的原因
轴承振动的原因
轴承振动是机械设备中常见的问题,它会导致设备的损坏和故障,甚
至会危及人员安全。
轴承振动的原因有很多,下面就来详细介绍一下。
1. 轴承本身的问题
轴承本身的质量问题是导致轴承振动的主要原因之一。
如果轴承的制
造工艺不好,或者材料不合格,就会导致轴承的内部结构不稳定,容
易产生振动。
此外,轴承的安装不当也会导致振动,例如安装不平衡、安装偏斜等。
2. 轴承与轴的配合问题
轴承与轴的配合问题也是导致轴承振动的原因之一。
如果轴承与轴的
配合不良,例如轴的直径过大或过小、轴的表面粗糙等,就会导致轴
承在运转时产生振动。
3. 轴承的润滑问题
轴承的润滑问题也是导致轴承振动的原因之一。
如果轴承的润滑不良,例如润滑油不足、润滑油质量不好等,就会导致轴承在运转时产生振
动。
4. 轴承的使用环境问题
轴承的使用环境问题也是导致轴承振动的原因之一。
如果轴承的使用环境不良,例如温度过高或过低、湿度过大等,就会导致轴承在运转时产生振动。
5. 轴承的使用寿命问题
轴承的使用寿命问题也是导致轴承振动的原因之一。
如果轴承使用时间过长,或者使用次数过多,就会导致轴承内部结构的磨损和变形,从而产生振动。
综上所述,轴承振动的原因有很多,包括轴承本身的问题、轴承与轴的配合问题、轴承的润滑问题、轴承的使用环境问题以及轴承的使用寿命问题等。
为了避免轴承振动,我们需要在轴承的选型、安装、使用和维护等方面做好相应的工作,确保轴承的质量和使用效果。
滚动轴承的振动形式及振动机理的研究
滚动轴承的振动形式及振动机理的研究滚动轴承是一种常见的机械元件,广泛应用于各种设备和机械系统中。
然而,滚动轴承在使用过程中常常会产生振动,这不仅会影响设备的正常运行,还会导致设备寿命的缩短。
因此,研究滚动轴承的振动形式及振动机理对于提高设备的可靠性和性能具有重要意义。
我们来探讨滚动轴承的振动形式。
滚动轴承的振动主要表现为径向振动和轴向振动两种形式。
径向振动是指滚动轴承在工作过程中产生的轴向位移,它可能由于滚动体与滚道之间的不匹配或轴承内部结构的不均匀等原因而引起。
轴向振动则是指滚动轴承在工作过程中产生的周向位移,它可能由于滚动体与保持架之间的不匹配或轴承内部结构的不均匀等原因而引起。
接下来,我们来研究滚动轴承振动的机理。
滚动轴承的振动源于多个因素的综合作用。
首先,滚动轴承在工作时承受着来自外部负载的力,这些力会引起滚动轴承的变形和位移,从而产生振动。
其次,滚动轴承内部的滚动体和保持架之间存在着摩擦力和碰撞力,这些力的作用也会导致滚动轴承的振动。
此外,滚动轴承的材料和制造工艺也会对其振动特性产生影响。
例如,滚动轴承的材料硬度不均匀或制造工艺不精细都会导致振动的增加。
为了研究滚动轴承的振动形式及振动机理,研究人员通常会采用实验方法和数值模拟方法进行研究。
实验方法通过在滚动轴承上安装加速度传感器等装置,测量滚动轴承的振动信号,并进行信号分析和处理,从而得到滚动轴承的振动特性。
数值模拟方法则是利用计算机模拟滚动轴承的工作过程,通过对滚动轴承内部力学和动力学特性的建模和计算,预测和分析滚动轴承的振动行为。
通过研究滚动轴承的振动形式及振动机理,可以帮助人们更好地理解滚动轴承的工作原理和振动特性,为改善滚动轴承的设计和制造提供理论依据和技术支持。
例如,可以通过优化滚动轴承的结构和材料,减小滚动轴承的振动幅值和频率,提高滚动轴承的工作效率和寿命。
此外,还可以通过改进滚动轴承的润滑和冷却方式,减少滚动轴承的热量和摩擦,从而降低滚动轴承的振动水平。
引风机轴承振动大的原因及处理
引风机轴承振动大的原因及处理
引风机是工业生产中常用的一种设备,其作用是将空气或气体吸入,然后通过旋转的叶片将其压缩并排出。
然而,在使用引风机的过程中,我们可能会遇到一些问题,其中之一就是引风机轴承振动大。
那么,引风机轴承振动大的原因是什么?我们该如何处理呢?
引风机轴承振动大的原因:
1.轴承损坏:轴承是引风机的重要组成部分,如果轴承损坏,就会导致轴承振动大。
轴承损坏的原因可能是使用时间过长、润滑不良、过载等。
2.不平衡:引风机的叶轮是通过旋转来产生气流的,如果叶轮不平衡,就会导致引风机振动大。
不平衡的原因可能是叶轮制造不良、叶轮安装不当等。
3.轴承间隙过大:轴承间隙过大也会导致引风机振动大。
轴承间隙过大的原因可能是轴承安装不当、轴承磨损等。
引风机轴承振动大的处理:
1.更换轴承:如果引风机轴承损坏,就需要更换轴承。
在更换轴承时,要选择质量好、性能稳定的轴承,并严格按照安装要求进行安装。
2.平衡叶轮:如果引风机叶轮不平衡,就需要进行平衡处理。
平衡处理可以通过专业的平衡设备进行,也可以通过试重法进行。
3.调整轴承间隙:如果引风机轴承间隙过大,就需要进行调整。
调整轴承间隙时,要按照轴承厂家的要求进行,避免调整不当导致轴承损坏。
引风机轴承振动大是一种常见的问题,我们需要找到问题的原因并采取相应的处理措施。
只有这样,才能保证引风机的正常运行,提高生产效率。
大型火电厂汽轮机轴承振动大的原因及对策分析
大型火电厂汽轮机轴承振动大的原因及对策分析火电厂的汽轮机是火力发电的核心设备之一,它承担了将燃烧产生的高温高压气体转化为机械能的重要职责。
由于长期运行和负荷变化等原因,汽轮机轴承的振动问题经常会出现,给设备的安全稳定运行带来了威胁。
本文将分析大型火电厂汽轮机轴承振动大的原因,并提出相应的对策。
1. 设备老化:大型火电厂汽轮机轴承经过长时间的运行,设备的磨损会逐渐增加,导致设备的故障率增加。
轴承磨损会导致轴承运行不稳定,产生振动。
2. 不平衡:由于零部件制造和装配的误差,以及长时间运行后零部件的变形,火电厂汽轮机轴承可能会出现不平衡现象。
不平衡会导致设备运行时产生振动。
3. 油膜失效:火电厂汽轮机轴承依赖润滑油膜来减小摩擦和磨损。
由于油品质量问题或长时间不更换润滑油,油膜可能会失效,导致轴承表面直接接触,从而产生振动。
4. 异物进入:在火电厂汽轮机运行过程中,由于设备老化或操作不当,可能会有异物进入轴承内部,干扰轴承正常运行,产生振动。
1. 定期检修:定期对大型火电厂汽轮机轴承进行维修和检查,及时替换磨损或老化的零部件,确保设备的正常运行。
2. 动平衡处理:定期进行动平衡处理,消除不平衡现象,减小设备的振动。
可以采用动平衡仪进行平衡测试,根据测试结果进行调整。
3. 定期更换润滑油:定期更换润滑油,确保润滑油的质量和性能符合要求,避免油膜失效造成的振动问题。
4. 强化设备维护:加强设备维护工作,定期清理设备周围的杂物,防止异物进入轴承内部。
5. 加强操作培训:加强对操作人员的培训和管理,提高其对设备的操作技能和维护意识,减少人为操作引起的振动问题。
大型火电厂汽轮机轴承振动大的原因主要包括设备老化、不平衡、油膜失效和异物进入等方面。
为了解决这一问题,可以通过定期检修、动平衡处理、定期更换润滑油、强化设备维护和加强操作培训等对策来降低振动问题,确保设备的安全稳定运行。
滚动轴承振动产生的可能原因及其特征频率
滚动轴承振动产⽣的可能原因及其特征频率通过前⾯的⽂章《滚动轴承的运动学》,我们了解了滚动轴承运转产⽣的特征频率,但实际上,除了这些频率之外,还存在⼀些其他的频率成分。
产⽣这些复杂的振动频率的原因可以分两类:第⼀类为外界激励所引起的,如轴不平衡、不对中、临界转速、结构共振等,这些故障(或缺陷)可以按照它们各⾃的特征频率来处理;第⼆类是由于滚动轴承⾃⾝结构特点以及故障缺陷所引起的。
通常,滚动轴承不会仅受到⼀种激励作⽤,更多是两种激励同时作⽤引起轴承振动,这就使得振动频谱更为错综复杂,对轴承的故障诊断增加难度。
另⼀⽅⾯,除了存在各⾃的特征频率成分及其谐波之外,还会存在相互调制效应,产⽣边频带。
当轴承各元件出现各种故障时,《滚动轴承的运动学》中的轴承频率公式提供了频率成分的理论计算,这些计算是基于这样的假设:当轴承各元件遭遇故障时,会产⽣⼀个理想的脉冲。
对于轴承局部故障,如滑动和点蚀,会产⽣短时尖的冲击,这些冲击将激起结构共振,相应的振动通过外部安装在轴承座上的传感器能测量到。
每次遭遇⼀个局部故障产⽣的冲击,测量到的振动信号将是按指数衰减的正弦振荡。
1载荷引起的振动滚动轴承在运转过程中,如受到通过轴⼼的轴向载荷,可以认为各个滚动体平均分担,即各滚动体受⼒相等。
但在受到径向载荷F r作⽤时,内圈沿径向载荷⽅向会移动⼀段路径δ0,如图1中虚线所⽰,此时上半圈滚动体不受⼒,下半圈的各个滚动体由于接触点上的弹性变形量δi不同⽽承受不同的载荷Q i。
处于F r作⽤线最下端位置的滚动体受⼒Q0最⼤,对应的变形量δ0也最⼤。
下半圈受载荷作⽤的其他各接触点滚动体的法向变形量为δi与径向载荷⽅向处变形量δ0的关系为图1 轴承元件上的受⼒分析各个接触点法向⼒Q i与沿径向载荷⽅向处的法向⼒Q0的关系为因此,在受载荷作⽤的半圈内,各接触点处的受⼒⼤致呈余弦分布状态,并引起相应规律的应⼒变化。
滚动轴承各元件在⼯作时承受变动的接触应⼒,如单颗滚动体受到的接触应⼒从⼩变⼤,然后再变⼩的周期性变化,⽽在不受载荷的半圈内不受接触应⼒作⽤,内圈上的某⼀点的接触应⼒也有类似的规律。
滚动轴承的振动形式及振动机理的研究
滚动轴承的振动形式及振动机理的研究滚动轴承是一种常见的机械元件,广泛应用于各种机械设备中。
在使用过程中,滚动轴承的振动问题一直是工程师们关注的焦点。
本文将介绍滚动轴承的振动形式及振动机理的研究。
滚动轴承的振动形式主要包括径向振动和轴向振动。
径向振动是指轴承内圈和外圈在径向方向上的振动,轴向振动则是指轴承内圈和外圈在轴向方向上的振动。
这些振动形式会导致轴承的噪声和寿命降低,因此需要对其进行研究和控制。
滚动轴承的振动机理主要包括内部因素和外部因素。
内部因素包括轴承结构、材料、制造工艺等,而外部因素则包括载荷、转速、温度、润滑等。
这些因素会影响轴承的刚度、阻尼、质量等特性,从而导致轴承的振动。
在研究滚动轴承的振动机理时,需要考虑轴承的动力学特性。
轴承的动力学特性包括刚度、阻尼、质量等,这些特性会影响轴承的振动响应。
因此,需要建立轴承的动力学模型,通过数值模拟等方法研究轴承的振动响应。
除了数值模拟,还可以通过实验研究轴承的振动特性。
实验方法包括模态分析、频率响应分析、阻尼比测试等。
这些实验方法可以直接观测到轴承的振动响应,从而更加深入地了解轴承的振动机理。
在控制滚动轴承的振动问题时,需要综合考虑内部因素和外部因素。
内部因素可以通过改变轴承结构、材料、制造工艺等来控制,而外部因素可以通过调整载荷、转速、温度、润滑等来控制。
此外,还可以采用主动控制、被动控制等方法来控制轴承的振动。
总之,滚动轴承的振动问题是一个复杂的问题,需要综合考虑多种因素。
通过建立动力学模型、数值模拟和实验研究等方法,可以更加深入地了解轴承的振动机理,从而控制轴承的振动问题,提高轴承的寿命和性能。
轴承振动的原因
轴承振动的原因
轴承振动常常会引起机器设备的故障或损坏,对于轴承振动的产生原因,有以下几点:
1.不良的安装。
轴承的安装必须要严格按照规定的安装方法进行,如果安装不当,会导致轴承内部的压力分布不均匀,产生振动。
2.轴承本身的缺陷。
轴承在制造过程中可能会存在一些隐蔽的缺陷,这些缺陷在使用过程中会逐渐放大,导致振动。
3.使用寿命过长。
轴承在工作过程中,由于磨损、疲劳等原因,会导致轴承的几何形状发生变化,进而产生振动。
4.轴颈和轴承的配合间隙过大。
轴承配合轴颈时,应该保证轴颈与轴承之间的接触面积足够,并且配合间隙不能过大,否则会产生振动。
5.外力干扰。
轴承在工作过程中,受到外力的影响,也会产生振动,如风力、地震等。
总之,轴承振动的原因是多方面的,需要对轴承的安装、制造、使用等方面进行全面的检查和分析,才能有效地解决轴承振动的问题。
- 1 -。
汽轮发电机组轴承振动原因浅析
汽轮发电机组轴承振动原因浅析
汽轮发电机组轴承振动是指在汽轮机运行过程中,轴承出现振动现象。
轴承振动的原因很多,包括以下几个方面:
1. 轴承制造质量问题:轴承制造中存在一定的工艺过程,如果存在工艺缺陷、材料问题等,就会导致轴承质量不过关,从而引起振动。
2. 轴承装配不良:如果在轴承的安装过程中,操作不当或者紧固力不够,就会导致轴承安装不稳定,进而引起振动。
3. 轴承润滑不良:轴承在工作时,需要加入润滑油脂进行润滑,如果润滑油脂不合适或者过少,在高速旋转时无法形成稳定的润滑膜,就会增加轴承的摩擦,导致振动。
4. 轴承损伤:轴承在长期运行中,可能会由于磨损、腐蚀等原因发生损伤,这些损伤会导致轴承失去平衡,从而引起振动。
5. 轴承过热:轴承在工作过程中会产生热量,如果无法有效散热,就会导致轴承过热,过热会使轴承失去正常的工作状态,从而引起振动。
6. 轴承负荷过大:如果轴承所承受的负荷超过其承载能力,就会导致轴承变形或损坏,进而引起振动。
为了减少或避免轴承振动的发生,可以采取以下措施:
1. 提高轴承制造质量,选择可靠的轴承厂家,确保轴承的质量过关。
2. 严格控制轴承的安装质量,确保装配过程准确、稳定。
3. 使用合适的润滑油脂,保证轴承的良好运行。
4. 定期检查轴承状态,及时发现并修复轴承损伤。
5. 加强轴承散热措施,保证轴承不会因过热而出现问题。
6. 合理控制轴承的负荷,避免过大的载荷给轴承带来压力。
轴承振动是一个复杂的问题,往往涉及多个方面因素的影响。
在实际应用中,需要对这些因素进行全面的分析与控制,以期减少轴承振动对汽轮发电机组运行的影响。
大型火电厂汽轮机轴承振动大的原因及对策分析
大型火电厂汽轮机轴承振动大的原因及对策分析大型火电厂汽轮机轴承振动大是很常见的问题,它会导致设备损坏,影响生产效率,甚至会威胁到工作人员的安全。
影响轴承振动的因素有很多,例如:轴承磨损、轴承松动、轴弯曲、不平衡负载、机组结构刚度不足等。
本文将针对这些因素进行分析,并提出解决方案,以期能有效地解决汽轮机轴承振动大的问题。
1. 轴承磨损问题轴承磨损是造成汽轮机轴承振动大的一个主要原因,它通常发生在轴承未及时维护时,轴承跑的时间过长,轴承表面被污染、腐蚀等。
轴承磨损会使得轴承的工作面积减少,减小了轴承的承载能力,导致轴承振动。
解决方案:在汽轮机开始运行之前,需要进行轴承的充分检查和维护,确保轴承表面没有任何污染和腐蚀,并及时更换旧轴承。
轴承的实际运行时间一般应该在3000个小时左右。
轴承松动也是导致汽轮机轴承振动大的原因之一。
这种松动可能是由于设备长时间运行或运行过程中意外冲击造成的。
轴承松动会使得轴承无法平衡负载,导致轴承振动。
解决方案:检查轴承是否松动,如果发现松动,应该立即对其进行紧固或替换。
在设备运转过程中,人员应该随时关注轴承的状态,以及注意设备的安全运行和及时检查。
3. 轴弯曲问题汽轮机轴弯曲是一个常见的问题,可导致轴承振动。
这可能是由于设备结构、车床操作,甚至是装配精度不足导致的。
解决方案:检查轴是否弯曲,任何弯曲的地方都可能导致轴承振动。
如果轴弯曲,需要及时替换。
在车床操作或装配过程中,必须严格遵守标准操作程序,以确保轴承和轴承环在安装过程中尽可能平稳。
4. 不平衡负载问题不平衡负载也是导致轴承振动的原因之一,这通常是由于设备的不平衡负载造成的。
这种不平衡可能是由于叶片偏向、叶片损坏或漏气等。
解决方案:检查设备是否均衡,是否发生了任何故障或振动,如叶片偏向、叶片损坏和漏气。
如果出现这些故障,应该尽快修复,以确保设备正常运行。
5. 机组结构刚度不足问题轴承振动问题还可能是由于机组结构刚度不足造成的,这通常表现为机房结构松动或不牢固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴承震动原因:
1、风机是离心式的吧?检查一下进风口,是否有进风量不足的问题,只有消除了其他工艺方面的原因,才能更好地查找设备方面的故障。
我曾经遇到过类似的问题,风机的轴承老是向一边跑(内圈挤外圈,结果将保持架挤裂,滚珠掉出来),原因就是进风口的过滤层太厚,积尘过.多,导致了进风量不足,轴向振动偏大。
2、检查轴承座是否有松动
3、增压风机轴承振动大的原因?
风机运行中常见故障原因和处理方法
发表时间:2009-11-16 点击量:55
一、风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,它是火电厂中不可少的机械设备,主要有送风机、引风机、一次风机、密封风机和排粉机等,消耗电能约占发电厂发电量的1.5%~3.0%。
在火电厂的实际运行中,风机,特别是引风机由于运行条件较恶劣,故障率较高,据有关统计资料,引风机平均每年发生故障为2次,送风机平均每年发生故障为0.4次,从而导致机组非计划停运或减负荷运行。
因此,迅速判断风机运行中故障产生的原因,采取得力措施解决是发电厂连续安全运行的保障。
虽然风机的故障类型繁多,原因也很复杂,但根据调查电厂实际运行中风机故障较多的是:轴承振动、轴承温度高、动叶卡涩、保护装置误动。
二、风机轴承振动超标
风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。
风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
1、不停炉处理叶片非工作面积灰引起风机振动
这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。
这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。
机翼型的叶片最易积灰。
当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。
由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。
在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。
在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。
这样不仅环境恶劣,存在不安全因素,而且造成机组的非计划停运,检修时间长,劳动强度大。
经过研究,提出了一个经实际证明行之有效的处理方法。
如图1所示,在机壳喉舌处(A点,径向对着叶轮)加装一排喷嘴(4~5个),将喷嘴调成不同角度。
喷嘴与冲灰水泵相连,将冲灰水作为冲洗积灰的动力介质,降低负荷后停单侧风机,在停风机的瞬间迅速打开阀门,利用叶轮的惯性作用喷洗叶片上的非工作面,打开在机壳底部加装的阀门将冲灰水排走。
这样就实现了不停炉而处理风机振动的目的。
用冲灰水作清灰的介质,和用蒸汽和压缩空气相比,具有对喷嘴结构要求低、清灰范围大、效果好、对叶片磨损小等优点。
2、不停炉处理叶片磨损引起的振动
磨损是风机中最常见的现象,风机在运行中振动缓慢上升,一般是由于叶片磨损,平衡破坏后造成的。
此时处理风机振动的问题一般是在停炉后做动平衡。
根据风机的特点,经过多次实践,总结了以下可在不停炉的情况下对风机进行动平衡试验工作。
(1)在机壳喉舌径向对着叶轮处(如图1)加装一个手孔门,因为此处离叶轮外圆边缘距离
最近,只有200 mm多,人站在风机外面,用手可以进行内部操作。
风机正常运行的情况下手孔门关闭。
(2)振动发生后将风机停下(单侧停风机),将手孔门打开,在机壳外对叶轮进行试加重量。
(3)找完平衡后,计算应加的重量和位置,对叶轮进行焊接工作。
内部调节机构损坏等。
但在实际中通常是另外一种原因:在风机动叶片和轮毂之间有一定的空隙以实现动叶角度的调节,但不完全燃烧造成碳垢或灰尘堵塞空隙造成动叶调节困难。
动叶卡涩的现象在燃油锅炉和采用水膜除尘的锅炉比较普遍,解决的措施主要有
(1)尽量使燃油或煤燃烧充分,减少碳黑,适当提高排烟温度和进风温度,避免烟气中的硫在空预器中的结露。
(2)在叶轮进口设置蒸汽吹扫管道,当风机停机时对叶轮进行清扫,保持叶轮清洁,蒸汽压力<=0.2MPa,温度<=200℃。
(3)适时调整动叶开度,防止叶片长时间在一个开度造成结垢,风机停运后动叶应间断地在0~55°活动。
(4)经常检查动叶传动机构,适当加润滑油。
4旋转失速和喘振
旋转失速是气流冲角达到临界值附近时,气流会离开叶片凸面,发生边界层分离从而产生大量区域的涡流造成风机风压下降的现象。
喘振是由于风机处在不稳定的工作区运行出现流量、风压大幅度波动的现象。
这两种不正常工况是不同的,但是它们又有一定的关系。
风机在喘振时一般会产生旋转气流,但旋转失速的发生只决定于叶轮本身结构性能、气流情况等因素,与风烟道系统的容量和形状无关,喘振则风机本身与风烟道都有关系。
旋转失速用失速探针来检测,喘振用U形管取样,两者都是压差信号驱动差压开关报警或跳机。
但在实际运行中有两种原因使差压开关容易出现误动作:1)烟气中的灰尘堵塞失速探针的测量孔和U形管容易堵塞;2)现场条件振动大。
该保护的可靠性较差。
由于风机发生旋转失速和喘振时,炉膛风压和风机振动都会发生较大的变化,在风机调试时通过动叶安装角度的改变使风机正常工作点远离风机的不稳定区,随着目前风机设计制造水平的提高,可以将风机跳闸保护中喘振保护取消,改为“发讯”,当出现旋转失速或喘振信号后运行人员通过调节动叶开度使风机脱离旋转脱流区或喘振区而保持风机连续稳定运行,从而减少风机的意外停运。
轴承温度超标,是使轴承损坏的重要因素之一。
引起轴承温度偏高的
主要原因有以下几点:
(1)滚动轴承装配质量不良。
如内套与轴的紧力不够,外套与轴承座间隙过大或过小。
(2)密封毛毡过紧而发热。
(3)轴承冷却水量不足或中断,影响热量的带出,而使轴承温度升高。
(4)润滑质量不良。
润滑的目的,是使动静部分不直接接触产生摩擦,。