初中数学典型例题100道资料

合集下载

中考数学计算题100道(58页)

中考数学计算题100道(58页)

中考数学计算题100道(58页)一、选择题1. 如果一个数是偶数,那么它的平方根也是偶数吗?A. 是的B. 不是C. 不一定2. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 03. 下列哪个数不是素数?A. 2B. 3C. 44. 如果一个数是奇数,那么它的平方是奇数吗?A. 是的B. 不是C. 不一定5. 下列哪个数是质数?A. 4B. 6C. 76. 如果一个数的平方是正数,那么这个数是什么?B. 负数C. 07. 下列哪个数是合数?A. 2B. 3C. 58. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 09. 下列哪个数是素数?A. 4B. 6C. 710. 如果一个数的平方是负数,那么这个数是什么?A. 正数B. 负数C. 011. 下列哪个数不是素数?A. 2B. 3C. 412. 如果一个数是偶数,那么它的平方根也是偶数吗?B. 不是C. 不一定13. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 014. 下列哪个数是质数?A. 4B. 6C. 715. 如果一个数是奇数,那么它的平方是奇数吗?A. 是的B. 不是C. 不一定16. 下列哪个数是合数?A. 2B. 3C. 517. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 018. 下列哪个数是素数?A. 4B. 6C. 719. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 020. 下列哪个数不是素数?A. 2B. 3C. 421. 如果一个数是偶数,那么它的平方根也是偶数吗?A. 是的B. 不是C. 不一定22. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 023. 下列哪个数是质数?A. 4B. 6C. 724. 如果一个数是奇数,那么它的平方是奇数吗?B. 不是C. 不一定25. 下列哪个数是合数?A. 2B. 3C. 526. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 027. 下列哪个数是素数?A. 4B. 6C. 728. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 029. 下列哪个数不是素数?A. 2B. 3C. 430. 如果一个数是偶数,那么它的平方根也是偶数吗?B. 不是C. 不一定31. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 032. 下列哪个数是质数?A. 4B. 6C. 733. 如果一个数是奇数,那么它的平方是奇数吗?A. 是的B. 不是C. 不一定34. 下列哪个数是合数?A. 2B. 3C. 535. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 036. 下列哪个数是素数?A. 4B. 6C. 737. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 038. 下列哪个数不是素数?A. 2B. 3C. 439. 如果一个数是偶数,那么它的平方根也是偶数吗?A. 是的B. 不是C. 不一定40. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 041. 下列哪个数是质数?A. 4B. 6C. 742. 如果一个数是奇数,那么它的平方是奇数吗?B. 不是C. 不一定43. 下列哪个数是合数?A. 2B. 3C. 544. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 045. 下列哪个数是素数?A. 4B. 6C. 746. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 047. 下列哪个数不是素数?A. 2B. 3C. 448. 如果一个数是偶数,那么它的平方根也是偶数吗?B. 不是C. 不一定49. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 050. 下列哪个数是质数?A. 4B. 6C. 751. 如果一个数是奇数,那么它的平方是奇数吗?A. 是的B. 不是C. 不一定52. 下列哪个数是合数?A. 2B. 3C. 553. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 054. 下列哪个数是素数?A. 4B. 6C. 755. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 056. 下列哪个数不是素数?A. 2B. 3C. 457. 如果一个数是偶数,那么它的平方根也是偶数吗?A. 是的B. 不是C. 不一定58. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 059. 下列哪个数是质数?A. 4B. 6C. 760. 如果一个数是奇数,那么它的平方是奇数吗?B. 不是C. 不一定61. 下列哪个数是合数?A. 2B. 3C. 562. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 063. 下列哪个数是素数?A. 4B. 6C. 764. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 065. 下列哪个数不是素数?A. 2B. 3C. 466. 如果一个数是偶数,那么它的平方根也是偶数吗?B. 不是C. 不一定67. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 068. 下列哪个数是质数?A. 4B. 6C. 769. 如果一个数是奇数,那么它的平方是奇数吗?A. 是的B. 不是C. 不一定70. 下列哪个数是合数?A. 2B. 3C. 571. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 072. 下列哪个数是素数?A. 4B. 6C. 773. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 074. 下列哪个数不是素数?A. 2B. 3C. 475. 如果一个数是偶数,那么它的平方根也是偶数吗?A. 是的B. 不是C. 不一定76. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 077. 下列哪个数是质数?A. 4B. 6C. 778. 如果一个数是奇数,那么它的平方是奇数吗?B. 不是C. 不一定79. 下列哪个数是合数?A. 2B. 3C. 580. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 081. 下列哪个数是素数?A. 4B. 6C. 782. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 083. 下列哪个数不是素数?A. 2B. 3C. 484. 如果一个数是偶数,那么它的平方根也是偶数吗?B. 不是C. 不一定85. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 0. 下列哪个数是质数?A. 4B. 6C. 787. 如果一个数是奇数,那么它的平方是奇数吗?A. 是的B. 不是C. 不一定88. 下列哪个数是合数?A. 2B. 3C. 589. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 090. 下列哪个数是素数?A. 4B. 6C. 791. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 092. 下列哪个数不是素数?A. 2B. 3C. 493. 如果一个数是偶数,那么它的平方根也是偶数吗?A. 是的B. 不是C. 不一定94. 如果一个数的立方是负数,那么这个数是什么?A. 正数B. 负数C. 095. 下列哪个数是质数?A. 4B. 6C. 796. 如果一个数是奇数,那么它的平方是奇数吗?A. 是的B. 不是C. 不一定97. 下列哪个数是合数?A. 2B. 3C. 598. 如果一个数的平方是正数,那么这个数是什么?A. 正数B. 负数C. 099. 下列哪个数是素数?A. 4B. 6C. 7100. 如果一个数的立方是正数,那么这个数是什么?A. 正数B. 负数C. 0中考数学计算题100道(58页)二、填空题1. 一个正方形的边长是5厘米,那么它的面积是多少平方厘米?2. 一个长方形的长是8厘米,宽是4厘米,那么它的面积是多少平方厘米?3. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?4. 一个三角形的底是6厘米,高是4厘米,那么它的面积是多少平方厘米?5. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?6. 一个正方体的边长是4厘米,那么它的体积是多少立方厘米?7. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?8. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?9. 一个球的半径是4厘米,那么它的体积是多少立方厘米?10. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?11. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?12. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?13. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?14. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?15. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?16. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?17. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?18. 一个球的半径是4厘米,那么它的体积是多少立方厘米?19. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?20. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?21. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?22. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?23. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?24. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?25. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?26. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?27. 一个球的半径是4厘米,那么它的体积是多少立方厘米?28. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?29. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?30. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?31. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?32. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?33. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?34. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?35. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?36. 一个球的半径是4厘米,那么它的体积是多少立方厘米?37. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?38. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?39. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?40. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?41. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?42. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?43. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?44. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?45. 一个球的半径是4厘米,那么它的体积是多少立方厘米?46. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?47. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?48. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?49. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?50. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?51. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?52. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?53. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?54. 一个球的半径是4厘米,那么它的体积是多少立方厘米?55. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?56. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?57. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?58. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?59. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?60. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?61. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?62. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?63. 一个球的半径是4厘米,那么它的体积是多少立方厘米?64. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?65. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?66. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?67. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?68. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?69. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?70. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?71. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?72. 一个球的半径是4厘米,那么它的体积是多少立方厘米?73. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?74. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?75. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?76. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?77. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?78. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?79. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?80. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?81. 一个球的半径是4厘米,那么它的体积是多少立方厘米?82. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?83. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?84. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?85. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?87. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?88. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?89. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?90. 一个球的半径是4厘米,那么它的体积是多少立方厘米?91. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?92. 一个等腰三角形的底是6厘米,腰是5厘米,那么它的面积是多少平方厘米?93. 一个直角三角形的两条直角边分别是3厘米和4厘米,那么它的面积是多少平方厘米?94. 一个菱形的对角线分别是8厘米和6厘米,那么它的面积是多少平方厘米?95. 一个梯形的上底是5厘米,下底是8厘米,高是3厘米,那么它的面积是多少平方厘米?96. 一个正方体的对角线长是10厘米,那么它的体积是多少立方厘米?97. 一个长方体的长是8厘米,宽是4厘米,高是2厘米,那么它的体积是多少立方厘米?98. 一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?99. 一个球的半径是4厘米,那么它的体积是多少立方厘米?100. 一个圆锥的底面半径是3厘米,高是5厘米,那么它的体积是多少立方厘米?。

初中数学100道最值问题经典

初中数学100道最值问题经典

初中数学100道经典最值题1.如图1所示,在Rt △ABC 中,∠A =30°,AB =4,D 为边AB 的中点,P 为边AC 上的动点,则PB+PD 的最小值为( )B. C. D.2.如图2所示,在矩形ABCD 中,AB =5,AD =3,动点P 满足13PAB ABCD S S =矩形 ,则点P 到AB 两点距离之和PA+PB 的最小值为 。

3.如图3所示,在矩形ABCD 中,AD =3,点E 为边AB 上一点,AE =1,平面内动点P 满足13PAB ABCD SS =矩形,则|DP -EP|的最大值为 。

4.已知y ,则y 的最小值为 。

5.已知y =,则y 的最大值为 。

6.如图4所示,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =,D 是边AB 上一动点,连接CD ,以AD 为直径的圆交CD 于点E ,则线段BE 长度的最小值为 。

7.如图5所示,正方形ABCD 的边长是4,点E 是边AB 上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 时边AB 上另一动点,则PD+PG 的最小值为 。

8.如图6所示,在矩形ABCD 中,AB =2,AD =3,点E 、F 分别为边AD 、DC 上的点,且EF =2,点G 为EF 的中点,点P 为边BC 上一动点,则PA+PG 的最小值为 。

9.在平面直角坐标系中,A(3,0),B(a,2),C(0,m),D(n,0),且m2+n2=4,若点E为CD 的中点,则AB+BE的最小值为。

A.3B.4C.5D.2510.如图7所示,AB=3,AC=2,以BC为边向上构造等边三角形BCD,则AD的取值范围为。

11.如图8所示,AB=3,AC=2,以BC为腰(点B为直角顶点)向上构造等腰直角三角形BCD,则AD的取值范围为。

12.如图9所示,AB=4,AC=2,以BC为底边向上构造等腰直角三角形BCD,则AD的取值范围为。

初中数学100题

初中数学100题

初中数学100题1. 简答题1. 两个数的和是30,差是10,求这两个数分别是多少?2. 在一组数据中,50%的数小于等于50,25%的数大于等于80,求这组数据的中位数和最大值。

3. 一个长方形的长是12米,宽是8米,求它的面积和周长。

4. 判断以下哪些数是素数:23,35,42,55,61。

5. 已知一个脸6个面、12个棱、8个顶点的立方体,求其体积和表面积。

2. 计算题1. 一个长方形的长是5米,宽是3米,求它的面积和周长。

2. 设直角三角形的斜边长为5,一条直角边长为3,求另外一条直角边长。

3. 一张纸的尺寸是20cm×25cm,现在要把这张纸等分成相等的小正方形,每个小正方形的边长是2cm,请问能等分出多少个小正方形?4. 现在有一组数:12,19,7,23,9,17,15,8,5。

请你将这些数从小到大排序。

5. 某书店打五折促销,一本原价80元的书现在卖多少钱?3. 应用题1. 一辆车以每小时60公里的速度行驶,行驶10小时后,行驶了多少公里?2. 一张纸的长度是30cm,宽度是20cm,现在要用这张纸制作一个长方体的盒子,求这个盒子的体积。

3. 如图所示,矩形ABCD的长是10cm,宽是8cm。

其中一条对角线AC的长度为12cm。

求另一条对角线BD的长度。

4. 甲、乙、丙三个人在一起走了一段路,甲走了3小时,乙走了4小时,丙走了5小时,他们一共走了30公里。

求甲、乙、丙三人每小时的平均行走速度。

5. 如图所示,ABCD是一个矩形,AD是一条直线,P是ABCD的内部一点,PC的长度为5cm,PB的长度为2cm。

求角CPD的度数。

4. 解答题1. 一辆汽车以10m/s的速度行驶了15秒后突然刹车停下来,求汽车刹车过程中的减速度。

2. 如图所示,正方形ABCD的边长为10cm,M是AB的中点,N是BC的中点。

求过M、N两点的直线与BC的交点P的坐标。

3. 一张纸从剪下一个等腰直角三角形,切去其中的1/4部分,剩下的部分的面积是多少?4. 如图所示,矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接EG,FH,求证:EH=FG。

七年级数学常考100题

七年级数学常考100题

七年级常考100题1、笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对【分析】利用点动成线,线动成面,面动成体,进而得出答案.【答案】解:笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为点动成线.故选:A.【点睛】此题主要考查了点、线、面、体,正确把握它们之间的关系是解题关键.2、如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A.B.C.D.【分析】根据面动成体结合常见立体图形的形状解答即可.【答案】解:根据面动成体结合常见立体图形的形状得出只有A选项符合,故选:A.【点睛】本题考查了点、线、面、体的知识,是基础题,熟悉常见几何体的形成是解题的关键.3、下列各个平面图形中,属于圆锥表面展开图的是()A.B.C.D.【分析】由圆锥的展开图特点:侧面是扇形,底面是个圆.【答案】解:因为圆锥的展开图为一个扇形和一个圆形.故选:D.【点睛】本题考查了几何体的展开图,熟悉圆锥的展开图特点,是解答此题的关键.4、如图,在数学活动课上,同学们用一个平面分别去截下列四个几何体,所得截面是三角形的是()A.B.C.D.【分析】观察截面的图形,即可得出答案.【答案】解:A、截面是三角形,故这个选项符合题意;B、截面是圆,故这个选项不符合题意;C、截面是五边形,故这个选项不符合题意;D、截面是长方形,故这个选项不符合题意.故选:A.【点睛】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.5、如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是()A.B.C.D.【分析】从左面看得到从左往右3列,正方形的个数依次为3,2,1,依此画出图形即可.【答案】解:从左面看这个几何体得到的平面图形是:故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.6、如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,在这个几何体中,小正方体的个数是()A.7B.6C.5D.4【分析】根据三视图的知识,该几何体共有两列两行组成,底面有4个正方体,第二层有1个.【答案】解:综合主视图,俯视图,左视图底面有3+1=4个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5,故选C.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.7、如图,这是一个由小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面、从左面看到的形状图.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【答案】解:如图所示:.【点睛】此题主要考查了作三视图,正确想象出立体图形的形状是解题关键.8、下列说法中,不正确的是()①符号不同的两个数互为相反数②所有有理数都能用数轴上的点表示③绝对值等于它本身的数是正数④两数相加和一定大于任何一个加数⑤有理数可分为正数和负数A.①②③⑤B.③④C.①③④⑤D.①④⑤【分析】根据有理数的加法、相反数、绝对值判断即可.【答案】解:①只有符号不同的两个数互为相反数,错误;②所有有理数都能用数轴上的点表示,正确;③绝对值等于它本身的数是非负数,错误;④两数相加和不一定大于任何一个加数,错误⑤有理数可分为正数、0和负数,错误;故选:C.【点睛】此题考查有理数的加法,关键是根据有理数的加法、相反数、绝对值解答.9、数轴上一动点A向左移动3个单位长度到达点B,再向右移动6个单位长度到达点C,若C表示的数为3,则点A表示的数为()A.6B.0C.﹣6D.﹣2【分析】根据数轴上的点左移减,右移加,可得答案.【答案】解:3﹣6+3=0故选:B.【点睛】本题考查了数轴,注意C点左移6个单位再右移3个单位,得A 点.10、下列比较有理数的大小,正确的是()A.﹣105>0B.﹣0.0001<−1 10C.−12019>−12020D.−20192018<−20202019【分析】根据有理数比较大小的法则负数都小于零;两个负数相比较,绝对值大的反而小可得答案.【答案】解:A.∵负数都小于零,∴﹣105<0,故本选项不合题意;B.∵|﹣0.0001|<−110,∴﹣0.0001>−110,故本选项不合题意;C.∵|−12019|>|−12020|,∴−12019<−12020,故本选项不合题意;D.∵|−20192018|>|−20202019|,∴−20192018<−20202019,故本选项符合题意.故选:D.【点睛】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.11、随着环境污染整治的逐步推进,某经济开发区的40家化工企业已关停、整改38家,每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167×103B.16.7×104C.1.67×105D.0.167×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【答案】解:167000=1.67×105,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、下列说法正确的是()A.0.750精确到百分位B.3.079×104精确到千分位C.38万精确到个位D.2.80×105精确到千位【分析】根据近似数的精确度分别进行判断,即可得出答案.【答案】解:A、0.750精确到千分位,故本选项错误;B、3.079×104精确到十位,故本选项错误;C、38万精确到万位,故本选项错误;D、2.80×105精确到千位,故本选项正确;故选:D.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.13、把(−12)×(−12)×(−12)×(−12)×(−12)写成幂的形式(不用计算)为【分析】求n个相同因数积的运算,叫做乘方,据此把(−12)×(−12)×(−12)×(−12)×(−12)写成幂的形式即可.【答案】解:把(−12)×(−12)×(−12)×(−12)×(−12)写成幂的形式(不用计算)为(−12)5.故答案为:(−12)5.【点睛】此题主要考查了有理数的乘方的运算方法,以及有理数的乘法的运算方法,要熟练掌握.14、对于有理数a、b,定义一种新运算“※”如下:a※b=ab−b2a,则(﹣3)※(−34)=.【分析】根据a※b=ab−b2a,可以求得所求式子的值.【答案】解:∵a※b=ab−b 2a,∴(﹣3)※(−3 4)=(−3)×(−34)−(−34)2×(−3)=94 +34−6=3−6=−1 2,故答案为:−1 2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15、计算:(1)﹣5﹣(﹣4)+(﹣3)﹣[﹣(﹣2)] (2)2×(﹣5)+23﹣3÷12(3)(14−59−13+712)÷(−136)(4)﹣12﹣2×(﹣3)2﹣(﹣2)2+[313÷(−23)×15]4【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加法可以解答本题; (3)先把除法转化为乘法,然后根据乘法分配律即可解答本题; (4)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【答案】解:(1)﹣5﹣(﹣4)+(﹣3)﹣[﹣(﹣2)] =﹣5+4+(﹣3)+(﹣2) =﹣6;(2)2×(﹣5)+23﹣3÷12=(﹣10)+8﹣3×2 =(﹣10)+8﹣6 =﹣8; (3)(14−59−13+712)÷(−136) =(14−59−13+712)×(﹣36)=(﹣9)+20+12+(﹣21) =2;(4)−12−2×(−3)2−(−2)2+[313÷(−23)×15]4=﹣1﹣2×9﹣4+(103×32×15)4=﹣1﹣18﹣4+14 =﹣1﹣18﹣4+1 =﹣22.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16、某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15﹣8+6+12﹣4+5﹣10(1)巡逻车在巡逻过程中,第次离A地最远.(2)B地在A地哪个方向,与A地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?【分析】(1)根据有理数的加法运算,分别计算出每次距A地的距离,可得离A地最远距离;(2)根据有理数的加法运算,可得正数或负数,根据向东记为正,向西记为负,可得答案;(3)根据行车就耗油,可得耗油量,再根据总价=单价×数量即可求解.【答案】解:(1)第一次距A地:15千米,第二次距A地:15﹣8=7千米,第三次距A地:7+6=13千米,第四次距A地:13+12=25千米,第五次距A地:25﹣4=21千米,第六次距A地:21+5=26千米,第七次距A地:26﹣10=16千米,26>25>21>16>15>13>7,答:巡逻车在巡逻过程中,第6次离A地最远;(2)15﹣8+6+12﹣4+5﹣10=16(千米),答:B地在A地东方,与A地相距16千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60(千米),60×0.2=12(升),12×7=84(元).答:这一天交通巡逻车所需汽油费84元.故答案为:6.【点睛】本题考查了正数和负数,有理数的加法运算是解题关键.17、一件羽毛球拍先按成本价提高50%标价,再将标价打8折出售,若这件羽毛球拍的成本价是x元,那么售价可表示为.【分析】直接利用成本与原价以及售价与打折的关系进而得出答案.【解答】解:由题意可得:(1+50%)x×0.8=1.2x(元).故答案为:1.2x元.【点评】此题主要考查了列代数式,正确理解打折与售价的关系是解题关键.18、某校去年初一招收新生a人,今年比去年增加x%,今年该校初一学生人数用式子表示为()A.(a+x%)人B.ax%人C.a(1+x)100人D.a(1+x%)人【分析】根据今年招收的新生人数=去年初一招收的新生人数+x%×去年初一招收新生人数,即可得出答案.【解答】解:∵去年初一招收新生a人,∴今年该校初一学生人数为:a(1+x%)人.故选:D.【点评】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意今年比去年增加x%和今年是去年的x%的区别.19、东西湖区域出租汽车行驶2千米以内(包括2千米)的车费是10元,以后每行驶1千米,再加0.7元.如果某人坐出租汽车行驶了m千米(m是整数,且m≥2),则车费是()A.(10﹣0.7m)元B.(11.4+0.7m)元C.(8.6+0.7m)元D.(10+0.7m)元【分析】根据题意,可以用含m的代数式表示出需要付的车费,本题得以解决.【解答】解:由题意可得,车费是:10+(m﹣2)×0.7=(0.7m+8.6)元,故选:C.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.20、已知代数式x﹣2y的值是3,则代数式4y+1﹣2x的值是()A.﹣5B.﹣3C.﹣1D.0【分析】直接将原式变形进而把已知代入求出答案.【解答】解:∵x﹣2y=3,∴4y+1﹣2x=﹣2(x+2y)+1=﹣6+1=﹣5.故选:A.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.21、根据以下程序,当输入x=﹣2时,输出结果为()A.﹣5B.﹣16C.5D.16【分析】首先求出当x=﹣2时,9﹣x2的值是多少,然后把所得的结果和1比较大小,判断是否输出结果即可.【解答】解:当x=﹣2时,9﹣x2=9﹣(﹣2)2=9﹣4=5>1,当x=5时,9﹣x2=9﹣52=9﹣25=﹣16<1,∴当输入x=﹣2时,输出结果为﹣16.故选:B.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.22、4πx2y4z9的系数是,次数是.【分析】直接利用单项式的系数与次数确定方法得出答案.【解答】解:4πx2y4z9的系数是:4π9,次数是:7.故答案为:4π9,7.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.23、关于多项式5x4y﹣3x2y+4xy﹣2,下列说法正确的是()A.三次项系数为3B.常数项是﹣2C.多项式的项是5x4y,3x2y,4xy,﹣2D.这个多项式是四次四项式【分析】根据多项式的项、次数的定义逐个判断即可.【解答】解:A、多项式5x4y﹣3x2y+4xy﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B、多项式5x4y﹣3x2y+4xy﹣2的常数项是﹣2,正确,故本选项符合题意;C、多项式5x4y﹣3x2y+4xy﹣2的项为5x4y,﹣3x2y,4xy,﹣2,错误,故本选项不符合题意;D、多项式5x4y﹣3x2y+4xy﹣2是5次四项式,错误,故本选项不符合题意;故选:B.【点评】本题考查了多项式的有关概念,能熟记多项式的次数和项的定义是解此题的关键.24、从2开始,连续n个偶数相加的合计为S,它们和的情况如下表:(1)若n=8时,则S的值为.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=.加数的个数n S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.【分析】(1)根据题意,可以求得当n=8时,对应的S的值;(2)根据表格中的数据,可以写出S的值;(3)根据(2)中的结论,可以求得所求式子的值.【解答】解:(1)当n=8时,S=2+4+6+…+16=(2+16)×4=18×4=72,故答案为:72;(2)由表格中的数据可知,S=2+4+6+8+…+2n=n(n+1),故答案为:n(n+1);(3)2+4+6+8+10+…+2018+2020=(2020÷2)×(2020÷2+1)=1010×1011=1021110.【点评】本题考查数字的变化类、列代数式,解答本题的关键是明确题意,发现题目中数字的变化规律,求出相应的数据.25、如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【分析】设第n个图形中一共有a n个菱形(n为正整数),根据各图形中菱形个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=6即可求出结论.【解答】解:设第n个图形中一共有a n个菱形(n为正整数),∵a1=12+2=3,a2=22+3=7,a3=32+4=13,a4=42+5=21,…,∴a n=n2+n+1(n为正整数),∴a6=62+7=43.故选:B.【点评】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化,找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.26、下列各组式子中是同类项的是()A.2x3与3x2B.12ax与8bx C.x4与a4D.23与32【分析】根据同类项的概念判断即可.【解答】解:A、2x3与3x2,所含字母相同,但相同字母的指数不相同,不是同类项;B、12ax与8bx,所含字母不相同,不是同类项;C、x4与a4,所含字母不相同,不是同类项;D、23与32,是同类项,故选:D.【点评】本题考查的是同类项的概念,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.27、若代数式x2﹣2kxy+y2﹣6xy+9不含xy项,则k的值为()A.3B.−12C.0D.﹣3【分析】将含xy的项进行合并,然后令其系数为0即可求出k的值.【解答】解:x2﹣2kxy+y2﹣6xy+9令﹣2k﹣6=0,k=﹣3.故选:D.【点评】本题考查多项式的概念,涉及一元一次方程的解法.28、先化简,再求值:2ab+6(12a2b+ab2)﹣[3a2b﹣2(1﹣ab﹣2ab2)],其中a为最大的负整数,b为最小的正整数.【分析】直接去括号进而合并同类项,再得出a,b的值代入求出答案.【解答】解:原式=2ab+3a2b+6ab2﹣3a2b+2﹣2ab﹣4ab2=(2ab﹣2ab)+2+(3a2b﹣3a2b)+(6ab2﹣4ab2)=2ab2+2,∵a为最大的负整数,b为最小的正整数,∴a=﹣1,b=1,∴原式=2×(﹣1)×1+2=0.【点评】此题主要考查了整式的加减﹣化简求值,正确合并同类项是解题关键.29、已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy(1)求A﹣3B的值.(2)当x+y=56,xy=﹣1,求A﹣3B的值.(3)若A﹣3B的值与y的取值无关,求x的值.【分析】(1)把A与B代入A﹣3B中,去括号合并即可得到结果;(2)把已知等式代入计算即可求出所求;(3)把A﹣3B结果变形后,根据其值与y的取值无关,确定出x的值即可.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy,∴A﹣3B=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy=5x+5y﹣7xy;(2)∵x+y=56,xy=﹣1,∴A﹣3B=5(x+y)﹣7xy=256+7=676;(3)由A﹣3B=5x+(5﹣7x)y的值与y的取值无关,得到5﹣7x=0,解得:x=5 7.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30、下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象个数有()A.1B.2C.3D.4【分析】直接利用直线的性质和线段的性质分别判断得出答案.【解答】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:B.【点评】此题主要考查了直线的性质和线段的性质,正确掌握相关性质是解题关键.31、如图,C,D是线段AB上的两点,已知M,N分别为AC,DB的中点,AB=18cm,且AC:CD:DB=1:2:3,求线段MN的长.【分析】根据题意分别求出AC、CD、DB的长,根据中点的性质计算即可.【解答】解:设AC,CD,DB的长分别为xcm,2xcm,3xcm∵AC+CD+DB=AB,AB=18cm∴x+2x+3x=18解得x=3∴AC=3cm,CD=6cm,DB=9cm∵M,N为AC,DB的中点,∴MC=12AC=1.5,DN=12BD=4.5∴MN=MC+CD+DN=12cm,∴MN的长为12cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.32、在直线l上有A、B、C三个点,已知BC=3AB,点D是AC中点,且BD=6cm,求线段BC的长.【分析】分为两种情况,画出图形,求出线段AB的长,即可得出答案.【解答】解:(1)当C在AB的延长线上时,∵BC=3AB,∵AC=4AB,∵点D是AC中点,∴AD=CD=2AB,∵BD=6cm,∴2AB﹣AB=6cm,∴AB=6cm,∴AC=4AB=24cm,∴BC=AC﹣AB=24cm﹣6cm=18cm;(2)当C在BA的延长线上时,∵BC=3AB,∵AC=2AB,∵点D是AC中点,∴AD=CD=AB,∵BD=6cm,∴AB=3cm,∴BC=3AB=9cm.【点评】本题考查了求两点之间的距离,能求出符合的所有情况是解此题的关键.33、(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,若C为线段AB上任意一点,满足AC+CB=acm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上的一点,且满足AC﹣BC=bcm,M、N 分别为AC、BC的中点,你能猜想MN的长度吗?并说明理由.【分析】(1)根据“点M是AC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可,(2)当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=12a,(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.【解答】解:(1)因为M是AC的中点,AC=6,所以MC=12AC=6×12=3,又因为CN:NB=1:2,BC=15,所以CN=15×13=5,所以MN=MC+CN=3+5=8,所以MN的长为8 cm;(2)MN=12a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=12a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=12AC,∵点N是BC的中点,∴CN=12BC,∴MN=CM﹣CN=12(AC﹣BC)=12b.【点评】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.34、如图,AB=10cm,C是线段AB上一个动点,沿A→B→A以2cm/s 的速度往返运动一次,D是线段BC的中点,设点C的运动时间为t秒(0≤t ≤10).(1)当t=2时,求线段CD的长.(2)当t=6时,求线段AC的长.(3)求运动过程中线段AC的长.(用含t的代数式表示)(4)在运动过程中,设AC的中点为E,线段DE的长是否发生变化?若不变,直接写出DE的长;若发生变化,请说明理由.【分析】(1)t=2,AC=4cm,得到CB=6cm;(2)t=6,由题可知A点从B点返回,AC=10﹣2=8cm;(3)当0≤t≤5时,AC=2tcm,当5≤t≤10时,AC=(20﹣2t)cm;(4)DE=EC+CD=12AC+12CB=12(AC+CB)=12AB=5cm.【解答】解:(1)∵t=2,∴AC=4cm,∵AB=10cm,∴CB=6cm,∵D是线段BC的中点,∴CD=3cm;(2)∵t=6,∴AC=10﹣2=8cm,(3)当0≤t≤5时,AC=2tcm,当5≤t≤10时,AC=(20﹣2t)cm;(4)DE=EC+CD=12AC+12CB=12(AC+CB)=12AB=5cm,∴线段DE的长不发生变化.【点评】本题考查两点间的距离;熟练掌握线段的和与差的关系,列出代数式进行运算是解题的关键.35、如图,OC平分∠AOB,∠AOD:∠BOD=3:5,已知∠COD=15°,求∠AOB的度数.【分析】根据角平分线的意义和∠AOD:∠BOD=3:5,设未知数表示∠COD进而求出答案.【解答】解:设∠AOD=3x,则∠BOD=5x.∴∠AOB=∠AOD+∠BOD=3x+5x=8x.∵OC平分∠AOB,∴∠AOC=12∠AOB=12×8x=4x.∴∠COD=∠AOC﹣∠AOD=4x﹣3x=x.∵∠COD=15°,∴x=15°.∴∠AOB=8x=8×15°=120°.【点评】考查角平分线的意义,用方程思想解决几何图形问题是常用方法.36、在直线AB上任取一点O,过点O作射线OC,OD,使∠COD=90°,当∠AOC=50°时,∠BOD的度数是.【分析】分射线OC、OD在直线AB的两侧两种情况作出图形,在同一侧时,根据平角等于180°列式计算即可得解,在两侧时,先求出∠AOD,再根据邻补角的定义列式计算即可得解.【解答】解:如图,射线OC、OD在直线AB的同一侧时,∵∠COD=90°,∴∠BOD=180°﹣90°﹣∠AOC=180°﹣90°﹣50°=40°,射线OC、OD在直线AB的两侧时,∵∠COD=90°,∴∠AOD=90°﹣∠AOC=90°﹣50°=40°,∴∠BOD=180°﹣∠AOD=180°﹣40°=140°.综上所述,∠BOD的度数是40°或140°.故答案为:40°或140°.【点评】本题考查了余角和补角,难点在于考虑射线OC、OD在直线AB 的两侧两种情况,作出图形更形象直观.37、如图1,已知∠AOB=150°,∠COE与∠EOD互余,OE平分∠AOD.(1)在图1中,若∠COE=32°,则∠DOE=;∠BOD=;(2)在图1中,设∠COE=α,∠BOD=β,请探索α与β之间的数量关系;(3)在已知条件不变的前提下,当∠COD绕点O逆时针转动到如图2的位置时,(2)中α与β的数量关系是否仍然成立?若成立,请说明理由;若不成立,直接写出α与β的数量关系.【分析】(1)根据互为余角的两个角的和等于90°列式计算即可得解;根据角平分线的定义求出∠AOD,再根据∠BOD=∠AOB﹣∠AOD计算即可得解;(2)先表示出∠DOE,然后表示出∠AOD,再根据∠AOB=∠BOD+∠AOD整理即可得解;(3)思路同(2).【解答】解:(1)∵∠COE与∠EOD互余,∴∠DOE=90°﹣∠COE=90°﹣32°=58°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2×58°=116°,∴∠BOD=∠AOB﹣∠AOD=150°﹣116°=34°;故答案为:58°,34°;(2)∵∠COE与∠EOD互余,∴∠DOE=90°﹣∠COE=90°﹣α,∵OE平分∠AOD,∴∠AOD=2∠DOE=2(90°﹣α),∵∠AOB=150°,∠BOD=β,∴2(90°﹣α)+β=150°,整理得,2α﹣β=30°;(3))∵∠COE与∠EOD互余,∴∠DOE=90°﹣∠COE=90°﹣α,∵OE平分∠AOD,∴∠AOD=2∠DOE=2(90°﹣α),∵∠AOB=150°,∠BOD=β,∴2(90°﹣α)﹣150°=β,整理得2α+β=30°.【点评】本题考查了余角和补角,角平分线的定义,角的计算,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.38、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.【分析】(1)利用∠AOB=180°﹣∠AOM﹣∠BON,即可求出结论;(2)利用∠AOM+∠BON=180°+∠AOB,即可得出关于t的一元一次方程,解之即可得出结论;(3)分0≤t≤18及18≤t≤60两种情况考虑,当0≤t≤18时,利用∠AOB =180°﹣∠AOM﹣∠BON=90°,即可得出关于t的一元一次方程,解之即可得出结论;当18≤t≤60时,利用∠AOM+∠BON=180°+∠AOB(∠AOB =90°或270°),即可得出关于t的一元一次方程,解之即可得出结论.综上,此题得解.【解答】解:(1)当t=3时,∠AOB=180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t+6t=180+72,解得:t=126 5.答:当∠AOB第二次达到72°时,t的值为126 5.(3)当0≤t≤18时,180﹣4t﹣6t=90,解得:t=9;当18≤t≤60时,4t+6t=180+90或4t+6t=180+270,解得:t=27或t=45.答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9、27或45.【点评】本题考查了一元一次方程的应用以及角的计算,找准等量关系,正确列出一元一次方程是解题的关键.39、小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有条.(2)总结规律:一条直线上有n个点,线段共有条.(3)拓展探究:具有公共端点的两条射线OA、OB形成1个角∠AOB(∠AOB<180°);在∠AOB内部再加一条射线OC,此时具有公共端点的三条射线OA、OB、OC共形成3个角;以此类推,具有公共端点的n条射线OA、OB、OC…共形成个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?【分析】(1)根据图形的变化寻找规律即可求解;(2)根据(1)总结规律即可;(3)结合(2)所得规律即可得结论;(4)根据以上所得规律运用规律即可求解.【解答】解:(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有10×92=45.故答案为45;(2)总结规律:一条直线上有n个点,线段共有n(n−1)2;故答案为:n(n−1)2;(3)根据(2)具有公共端点的n条射线OA、OB、OC…共形成n(n−1)2个角,故答案为:n(n−1)2;(4)解:45(45−1)2+1=991,45×(45﹣1)+1×45=2025.答:共需拍照991张,共需冲印2025张纸质照片.【点评】本题考查了角的概念,解决本题的关键是根据图形的变化寻找规律.40、解方程:(1)3(2x+5)=2(4x+3)+1;(2)x−32−2x+13=1.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6x+15=8x+6+1,移项得:6x﹣8x=6+1﹣15,合并得:﹣2x=﹣8,解得:x=4;(2)去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:3x﹣4x=6+9+2,合并得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握解方程的步骤是解本题的关键.41、如果关于x的方程4x﹣2m=3x+2和x=2x﹣3的解相同,那么m =.【分析】先求出方程x=2x﹣3的解,再把方程的解代入方程4x﹣2m=3x+2中,求出m.【解答】解:方程x=2x﹣3的解为x=3,∵方程4x﹣2m=3x+2和x=2x﹣3的解相同,∴方程4x﹣2m=3x+2的解为x=3,当x=3时,12﹣2m=9+2,解得m=1 2.故答案为:1 2.【点评】本题考查了一元一次方程的解法及方程的同解的含义.理解同解方程是解决本题的关键.42、若关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,则m的值是()A.14或134B.14C.54D.−12或54【分析】解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.【解答】解:因为方程|x−12|=1,所以x−12=±1,解得x=32或x=−12,因为关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,所以解方程x+2=2(m﹣x)得,m =3x+22, 当x =32时,m =134, 当x =−12时,m =14. 所以m 的值为:134或14. 故选:A . 【点评】本题考查了含绝对值符号的一元一次方程,解决本题的关键是解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论.43、我们规定,若关于x 的一元一次方程ax =b 的解为x =b ﹣a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4﹣2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5 差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.【分析】(1)检验方程的解是否是常数项与未知数的之差,进而进行判断便可;(2)先解含已知字母方程得出方程的解,再根据差解方程的定义列出关于m 的方程,进行解答便可.【解答】解:(1)∵方程3x =4.5的解为x =1.5=4.5﹣3,∴方程3x =4.5是差解方程,故答案为:是;(2)∵方程4x =m +3的解是x =m+34,又∵方程4x =m +3是差解方程,∴m+34=m +3﹣4, ∴m =73.【点评】本题是一个新定义题,主要考查了新定义,一元一次方程的解法与应用,关键是根据新定义,把题目转化为常规题进行解答.。

初一数学基础题100道

初一数学基础题100道

1.一个数除以3的余数是2,那么这个数可能是哪些?答案:可能是3n+2的形式,其中n是任意整数。

2.一个长方形的长是10厘米,宽是4厘米,求它的周长和面积。

答案:周长是28厘米,面积是40平方厘米。

3.解方程:2x + 3 = 7。

答案:x = 2。

4.一个三角形的三个角的度数比是2:3:4,求每个角的度数。

答案:最小的角是30度,第二个角是45度,最大的角是60度。

5.一个班级有40名学生,其中有20名女生,求男生的人数。

答案:男生有20名。

6.一个数的2倍加上5等于17,求这个数。

答案:这个数是6。

7.一个圆的直径是14厘米,求它的半径和周长。

答案:半径是7厘米,周长是44厘米(使用π≈3.14)。

8.一个数乘以自己等于81,求这个数。

答案:这个数是9或-9。

9.一个数的1/3减去4等于-2,求这个数。

答案:这个数是6。

10.一个数的5倍减去10等于30,求这个数。

答案:这个数是8。

11.一个数的3倍加上2等于17,求这个数。

答案:这个数是5。

12.一个数的4倍减去3等于19,求这个数。

答案:这个数是5。

13.一个数的2倍加上1等于11,求这个数。

答案:这个数是5。

14.一个数的3倍减去5等于10,求这个数。

答案:这个数是5。

15.一个数的4倍加上2等于18,求这个数。

答案:这个数是4。

16.一个数的5倍减去1等于14,求这个数。

答案:这个数是3。

17.一个数的6倍加上3等于39,求这个数。

答案:这个数是6。

18.一个数的7倍减去4等于45,求这个数。

答案:这个数是7。

19.一个数的8倍加上5等于69,求这个数。

答案:这个数是9。

20.一个数的9倍减去6等于78,求这个数。

答案:这个数是9。

21.一个数的10倍加上7等于107,求这个数。

答案:这个数是10。

22.一个数的11倍减去8等于119,求这个数。

11答案:这个数是12。

24.一个数的13倍减去10等于153,求这个数。

答案:这个数是12。

七年级数学题100道

七年级数学题100道

七年级数学题100道一、有理数运算相关题目。

1. 计算:(-2)+3-(-5)- 解析:- 去括号法则为:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前是“ - ”,把括号和它前面的“ - ”去掉后,原括号里各项的符号都要改变。

- 所以(-2)+3 - (-5)= - 2+3 + 5。

- 接着按照从左到右的顺序计算:-2 + 3=1,1+5 = 6。

2. 计算:-3×(-4)÷(-2)- 解析:- 根据有理数的乘除法运算法则,先计算乘法-3×(-4) = 12。

- 再计算除法12÷(-2)= - 6。

3. 计算:((1)/(2)-(2)/(3))×(-6)- 解析:- 先计算括号内的式子(1)/(2)-(2)/(3)=(3)/(6)-(4)/(6)=-(1)/(6)。

- 再计算乘法-(1)/(6)×(-6)=1。

二、整式相关题目。

4. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

- 对于3a和-5a是同类项,2b和-b是同类项。

- 合并得(3a - 5a)+(2b - b)= - 2a + b。

5. 先化简,再求值:(2x^2-3xy + 4y^2)-3(x^2-xy+(5)/(3)y^2),其中x = - 1,y = 2- 解析:- 先去括号:- 2x^2-3xy + 4y^2-3x^2+3xy - 5y^2。

- 再合并同类项:(2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2-y^2。

- 当x=-1,y = 2时,代入式子得-(-1)^2-2^2=-1 - 4=-5。

三、一元一次方程相关题目。

6. 解方程:2x+3 = 5x - 6- 解析:- 移项,把含有x的项移到等号一边,常数项移到等号另一边,移项要变号。

初二数学经典题100道

初二数学经典题100道

答案:42.一个三角形的两个内角分别是35度和65度,求第三个内角的度数。

答案:80度3.解方程:2x - 5 = 15。

答案:x = 104.一个长方形的长是10厘米,宽是4厘米,求它的面积。

答案:40平方厘米5.一个圆的半径是7厘米,求它的周长(取π=3.14)。

答案:43.96厘米6.一个数除以4余2,这个数可能是多少?答案:10,14,18,22等7.一个班级有40名学生,其中女生占全班的55%,求女生的人数。

答案:22人8.一个数的1/3加上10等于20,求这个数。

答案:309.一个三角形的底是8厘米,高是5厘米,求它的面积。

答案:20平方厘米10.一个数的5倍减去15等于30,求这个数。

答案:911.一个圆的直径是14厘米,求它的面积(取π=3.14)。

答案:153.86平方厘米12.一个数的2/5是12,求这个数。

答案:3013.一个数的3倍减去18等于9,求这个数。

答案:914.一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,求它的体积。

答案:192立方厘米15.一个数的4倍加上20等于60,求这个数。

答案:1016.一个数的1/4加上5等于10,求这个数。

答案:1517.一个数的3/5是18,求这个数。

答案:3018.一个数的2倍减去10等于14,求这个数。

答案:1219.一个数的5倍加上10等于40,求这个数。

答案:620.一个数的1/2加上12等于22,求这个数。

答案:2021.一个数的3倍加上15等于30,求这个数。

答案:522.一个数的4倍减去20等于20,求这个数。

10答案:4524.一个数的2倍加上6等于18,求这个数。

答案:625.一个数的5倍减去25等于25,求这个数。

答案:1026.一个数的1/4加上10等于15,求这个数。

答案:2027.一个数的3倍减去9等于15,求这个数。

答案:828.一个数的4倍加上12等于36,求这个数。

答案:629.一个数的1/5加上4等于6,求这个数。

初中数学经典试题100题

初中数学经典试题100题

FG BDCBAGECDABCA初中数学经典试题荟萃1、如图,在正方形ABCD 中,6AB =,点E 在边AD 上,1=3DE AD ,连接BE ,将ABE ∆沿BE翻折,点A 落在点F 处,BF 与AC 交于点H ,点 O 是AC 中点,连接OF 并延长交CD 于点G , 求四边形GFHC 的面积。

2、如图,ABC ∆中,点D 、E 为BC 的三等分点, 点J 、K 为AC 的三等分点,若42ABC S ∆=, 求阴影部分面积S3、如图,任意凸四边形ABCD 中,E H 、三等分AD ,F G 、三等分BC ,P S 、三等分AB ,Q R 、 三等分DC ,求证:19TVNMABCD S S =4、如图,等边ABC ∆内一点P ,使得3PA =,4PB =,5PC =,求:ABC S ∆5、如图,在ABC ∆中,3AB =,2AC =, 以BC 为边在ABC ∆外作正方形BCDE , 连接,BD CE 交于点O , 求线段AO 的最大值。

D EFADEFABAB CDBAC6、如图,等边ABC ∆中,120BDC ∠=︒, DC GD =,AG 交CD 延长线于点E 。

求证:AE EG =7、如图,分别以锐角ABC ∆的三边为斜边 向外作等腰Rt DAB ∆、等腰Rt EBC ∆、 等腰Rt FAC ∆。

求证:①AE DF = ②AE DF ⊥8、如图,四边形ABCD 中,E F 、分别 是AB CD 、的中点,P 为对角线AC 延长线上任意一点,PF 交AD 于M ,PE 交BC 于N ,EF 交MN 于K ,求证:K 点平分线段MN9、如图,ABCD 中,E F 、分别是AB BC 、上 的点,DE 交AC 于M ,AF 交BD 于N ,若AF 平分BAC ∠,DE AF ⊥,DE 与AF 交于P ,记BE x OM =,BN y ON =,CF z BF =,试比较x y z 、、的大小关系。

(完整版)中考经典计算题100道

(完整版)中考经典计算题100道

一、解不等式1. 8223-<+x x 2。

x x 4923+≥-3。

2x-19<7x+31. 4.-2x+1>0;5.x+8≥4x-1; 6. )1(5)32(2+<+x x7。

0)7(319≤+-x 8. 3(2x+5)<2(4x+3);9 10-4(x —3)≤2(x-1) 10. )1(281)2(3--≥-+y y11.2(x -4)-3<1-3(x -2) 12。

1213<--m m13.31222+≥+x x 14。

223125+<-+x x15.0≤523x -≤1. 16.-1<213-x ≤4二 、解下列关于x 的不等式组 17。

1+2x >3+x 5x £4x -1ìíî , 18314,2 2.x x x ->⎧⎨<+⎩19。

512,324.x xx x->+⎧⎨+<⎩2021,24 1.x xx x>-⎧⎨+<-⎩21.3(1)5412123x xx x+>+⎧⎪⎨--⎪⎩ ①≤ ②22⎪⎩⎪⎨⎧-≥-->+356634)1(513xxxx23251,3311.48x xx x⎧+>-⎪⎪⎨⎪-<-⎪⎩24.()324,121.3x xxx--≥⎧⎪⎨+>-⎪⎩25。

253(2)123x xx x+≤+⎧⎪-⎨<⎪⎩26.⎪⎪⎩⎪⎪⎨⎧-<-+<-.3212112)2(31xxxx27。

. 28。

.三、解二元一次方程组29.30.31.32..3334.35; 36.37。

38.39.40。

41。

42。

43.; 44..45.46.;47。

. 48.四、先化简,再求值:49、 先化简,再求值:(x -1x-错误!)÷错误!,其中x 满足x 2-x -1=0.50、先化简,再求值:211(1)(2)11x x x -÷+-+-,其中6x =。

初中数学专项练习《实数》100道计算题包含答案

初中数学专项练习《实数》100道计算题包含答案

初中数学专项练习《实数》100道计算题包含答案一、解答题(共100题)1、已知x,y都是有理数,且满足方程:2x﹣y=6y+ ﹣20,求x与y 的值.2、求下列各式中x的值:(1)(x﹣1)2=9(2)(x﹣1)3=8.3、把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来:3 ,﹣2.5,|﹣2|,0,,(﹣1)2.4、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.5、计算:..6、任意找一个非零数,利用计算器对它不断进行开立方计算,你发现了什么?7、已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.8、计算:.9、已知a+3的立方根是2,3a+b﹣1的平方根是±6,则a+2b的算术平方根是多少?10、座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为,其中T表示周期(单位:秒),h表示摆长(单位:米),g=10米/秒.假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分内该座钟大约发出了多少次滴答声?(已知≈2.236,π取3)11、交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16 ,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦因数.在某次交通事故中,测得d=6m,f=1.5,求肇事汽车的车速.12、求下列各式中的x.(1)4x2﹣16=0(2)27(x﹣3)3=﹣64.13、计算:()﹣1+(+1)2﹣.14、计算:.15、某小区有一块面积为196m2的正方形空地,开发商计划在此空地上建一个面积为100m2的长方形花坛,使长方形的长是宽的2倍.请你通过计算说明开发商能否实现这个愿望?(参考数据:≈1.414,≈7.070)16、已知实数、、在数轴上的对应点为、、,如图所示:化简:.17、计算:﹣12011++()﹣1﹣2cos60°.18、对于任意数a,一定等于a吗?请举例说明.19、已知正数x的两个不同的平方根分别是a+3和2a﹣15,且=4.求x﹣2y+2的值.20、已知a+7的立方根是2,一个正数b的平方根分别是5x﹣2和4﹣6x,求3b+4a的平方根.21、解方程或方程组:(1)(1﹣2x)2﹣36=0(2)2(x﹣1)3=﹣.22、把下列各数填在相应的大括号里:,﹣2,﹣,3.020020002…,0,,﹣(﹣3),0.333正数集合:{ …}分数集合:{ …}有理数集合:{ …}无理数集合:{ …}.23、小丽想在一块面积为640cm2的正方形纸片中,沿着边的方向裁出一块面积为420cm2的长方形的纸片,使它的长与宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?请简要说明理由.24、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件;若前面每人分4件,则最后一人能得到的玩具不足3件,求小朋友的人数及玩具数.25、求式中x的值:3(x﹣1)2+1=28.26、已知2a-1的算术平方根是3,3a+b+4的立方根是2,求a-b的平方根。

初三数学典型题精选(50页)

初三数学典型题精选(50页)

初三数学典型题精选一、选择题1. 下列哪个数是质数?A. 21B. 29C. 33D. 392. 若一个三角形的两边长分别为5厘米和12厘米,则第三边的长度可能是多少?A. 7厘米B. 13厘米C. 18厘米D. 20厘米3. 下列哪个图形的面积最大?A. 一个半径为2厘米的圆B. 一个边长为2厘米的正方形C. 一个长为4厘米,宽为2厘米的长方形D. 一个直径为4厘米的圆4. 下列哪个数是平方数?A. 15B. 16C. 17D. 185. 若一个等腰三角形的底边长为8厘米,腰长为5厘米,则该三角形的周长是多少?A. 18厘米B. 20厘米C. 22厘米D. 24厘米二、填空题1. 下列哪个数是质数?A. 21B. 29C. 33D. 392. 若一个三角形的两边长分别为5厘米和12厘米,则第三边的长度可能是多少?A. 7厘米B. 13厘米C. 18厘米D. 20厘米3. 下列哪个图形的面积最大?A. 一个半径为2厘米的圆B. 一个边长为2厘米的正方形C. 一个长为4厘米,宽为2厘米的长方形D. 一个直径为4厘米的圆4. 下列哪个数是平方数?A. 15B. 16C. 17D. 185. 若一个等腰三角形的底边长为8厘米,腰长为5厘米,则该三角形的周长是多少?A. 18厘米B. 20厘米C. 22厘米D. 24厘米三、解答题1. 设函数 $ f(x) = x^3 3x^2 + 2 $,求 $ f(x) $ 在 $ x =1 $ 处的切线方程。

2. 设函数 $ f(x) = e^x $,求 $ f(x) $ 在 $ x = 0 $ 处的切线方程。

3. 设函数 $ f(x) = \sin x $,求 $ f(x) $ 在 $ x =\frac{\pi}{2} $ 处的切线方程。

4. 设函数 $ f(x) = \ln x $,求 $ f(x) $ 在 $ x = 1 $ 处的切线方程。

5. 设函数 $ f(x) = x^2 $,求 $ f(x) $ 在 $ x = 2 $ 处的切线方程。

初一数学百题经典

初一数学百题经典

18 则 m+n 等于( )
A.36
B.37
C.38
D.39
发现数学本质,直取提分真谛
10
(1)如图,已知 ∠AOB = 90° , ∠BOC = 30° ,OM 平分 ∠AOC ,ON 平分 19 ∠BOC ,求 ∠MON 的度数;
A M
O
B
N
C
(2) 如果(1)中 ∠AOB = α ,其他条件不变,求∠MON 的度数.
D
C
我的锦囊
B
O
A
发现数学本质,直取提分真谛
14
如图,M、N、P、R 分别是数轴上四个整数所对应的点,其中有一点 25 是原点,并且 M= N N=P P=R 1 ,数 a 对应的点在 M 和 N 之间,数 b
对应的点在 P 与 R 之间,若 a + b = 3 ,则原点可能是( )
a
M
N
b
P
R
A.M 或 R C.M 或 N
(2)当 A、B 两点都不在原点时,
①点 A、B 都在原点的右边,
AB = OB − OA = b − a = b − a = a − b ;
②点 A、B 都在原点的左边,
AB =OB − OA =b − a =−b − (−a) =a − b =a − b ;
突破口 我的锦囊
(3) 如果(1)中 ∠BOC = β (β 为锐角),其他条件不变,求∠MON 的度数.
(4) 从(1)、(2)、(3)的结果中能得出什么结论?
(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴 解法,请你模仿(1)~(4)设计一道以线段为背景的计算题,写出其中的 规律,并给出解答

初一上下册初中数学应用题100题练习与答案

初一上下册初中数学应用题100题练习与答案

列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。

解:(多位数表示) 设后两位数(即十位与个数)为x ,100+x+234=10x+12、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。

解:(多位数表示)设十位数字为x,则百位数字为x+1,个位数字为3x-2100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的和为72,求这两个两位数。

解:(多位数表示)设大的两位数为x ,小的两位数为y大○小y x +⇒1000, 小大○x y 101000+⇒∴⎩⎨⎧=+++=+7232599)101000(21000y x x y y x 4、有一个三位数,各数位上的数字的和是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,则所用到的新数比原数的3倍少39,求这个三位数。

解:(多位数表示) 百 十 个X+5 10-2x x原数=100(x+5)+10(10-2x)+x , 新数=100x+10(10-2x)+x+5∴3[100(x+5)+10(10-2x)+x]-39=100x+10(10-2x)+x+55、两个三位数,它们的和加1得1000,如果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。

解:(多位数表示+已知和)设大三位数=x ,小三位数为999- x.9991000x x -•=+大小 999-1000x x •=+小大 9996(999)10001000x x x x -∴+=-+ 6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。

中考数学经典试题100例答案)

中考数学经典试题100例答案)

中考数学经典试题100例参考答案1.D设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,∵圆锥的主视图是边长为4cm的正三角形,∴圆锥的母线长为4cm,底面圆的半径为2cm,故圆锥底面圆的周长为4πcm,故圆锥侧面展开图的面积为S=×4×4π=8π(cm2).故选C.3.C设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°。

解得n=6.故选C.4.B由被开方数越大算术平方根越大,得2<<3,由不等式的性质得:-1<2-<0.故选B.5.B解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=∠BOD.6.Cy=-2(x-3)2-4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,-4).7.C解:将数据从小到大排序为:173,176,178,180,181,所以中位数为178.8.A 由题意得:=,解得:a=6,9.A∵点A(2,3)与点B关于y轴对称,∴点B的坐标为(-2,3),10.C解:如图,∵DE//BC,∴∠2+∠B=180°,∵∠2=∠1=70°,∴∠B=180°-70°=110°,故选C.【点睛】11.D解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.12.C科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:4 400 000 000=4.4×109,故选B.13.B 解:∵()×()=1,∴的倒数是,14.D由图知A(4,4),B(6,2)根据旋转中心P点,旋转方向顺时针,旋转角度90°,画图如下,从而得A′点坐标为(5,-1).15.B解:AB=AC,,16.D连接OB,∵点B是弧AC的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°17.C【详解】(a2)3-5a3•a3=a6-5a6=-4a6.18.A作CH⊥AB于H交⊙O于E、F.连接BC.∵A(4,0),B(0,3),∴OA=4,OB=3,AB=5.∵S△ABC= AB•CH=AC•OB,∴AB•CH=AC•OB,∴5CH=(4+1)×3,解得:CH=3,∴EH=3﹣1=2.当点P与E重合时,△PAB的面积最小,最小值5×2=5.19.C【详解】∵∠AOD=130°,∴∠BOD=50°,∴∠C=25°.故选C.20.C∵抛物线开口向上,∴a>0,①是真命题;对称轴为直线x=1,②是真命题;当x>1时,y随x的增大而增大,∴抛物线经过(2,y1),(4,y2)两点,则y1<y2,③是假命题;顶点坐标是(1,﹣3),④是真命题;∴真命题的概率.21.B【详解】∵AB∥CD,∴∠EHD=∠EGB=25°.又∵∠PHD=60°,∴∠PHG=60°﹣25°=35°.22.D该空心圆柱体的俯视图是:23.C16.2亿=162000 0000=1.62×109.24.CA.x2+x2=2x2,故本选项不符合题意;B.x2•x3=x5,故本选项不符合题意;C.(x2)3=x6,故本选项符合题意;D.(2x2)3=8x6,故本选项不符合题意.25.A根据三角形数阵可知,第n行奇数的个数为n个,则前n-1行奇数的总个数为1+2+3+…+(n-1)=个,则第25行(n≥3)从左向右的第20个数为为第=320个奇数,所以此数是:320×2-1=639.26.D如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.,,,在Rt△ADB中,,∴AC=BC=2,,∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵,.27.B解之即可得出答案.【详解】根据题意画出图如图所示:作BD⊥AC,取BE=CE,∵AC=30,∠CAB=30°∠ACB=15°,∴∠ABC=135°,又∵BE=CE,∴∠ACB=∠EBC=15°,∴∠ABE=120°,又∵∠CAB=30°∴BA=BE,AD=DE,设BD=x,在Rt△ABD中,∴AD=DE= x,AB=BE=CE=2x,∴AC=AD+DE+EC=2x+2x=30,∴x== ≈5.49,28.A设底面圆的半径为R,则,解得R=5,圆锥的母线长,所以圆锥的侧面积;圆柱的侧面积,所以需要毛毡的面积=(30+5) πm2.29.B如图,分别过A、B作x轴的垂线,垂足分别为C、D,∵A(3,4),∴OC=3,AC=4,∵把点A(3,4)逆时针旋转90°得到点B,∴OA=OB,且∠AOB=90°,∴∠BOD+∠AOC=∠AOC+∠CAO=90°,∴∠BOD=∠CAO,在△AOC和△OBD中,∴△AOC≌△OBD(AAS),∴OD=AC=4,BD=OC=3,∴B(-4,3),【点睛】30.D、不是中心对称图形,故此选项错误;、不是中心对称图形,故此选项错误;、不是中心对称图形,故此选项错误;、是中心对称图形,故此选项正确;31.CA、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;32.C∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,33.D(﹣2018)0=1,故选D.34.C ∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=->1,∴b<0,b<-2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∵x=1时,y<0,∴a+b+c<0.35.B解:∵半径OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4 ∴OD=OC-CD=3,∵AO=OE,AD=DB, ∴BE=2OD=636.A解:当1<x<3时,y1>y2.37.C解:该扇形的面积.故选:C.38.B解:A、有两条边和一个角对应相等的两个三角形全等,错误,必须是两边及其夹角分别对应相等的两个三角形全等;B、正方形既是轴对称图形又是中心对称图形,正确;C、矩形的对角线相等且互相平分,故此选项错误;D、六边形的内角和是720°,故此选项错误.故选:B.39.B,①+②得:3x=6,即x=2,把x=2代入①得:y=0,则方程组的解为,40.C解:A、x2+3x2=4x2,故此选项错误;B、0.00028=2.8×10-4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(-a+b)(-a-b)=a2-b2,故此选项错误;41.B设EF=a,BC=b,AB=c,则PQ=a-c,RQ=b-a,PQ=RQ∴a=,∵▱ALMN的面积为50,∴bc+a2+(a-c)2=50,把a=代入化简求值得b+c=10, ∴a=5, ∴正方形EFGH的边长为5,∴正方形EFGH的面积为25,42.A解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.43.C解:∵△ABC绕点A逆时针旋转60°得到△AB1C1,∴∠BAC1=∠BAC+∠CAC1=30°+60°=90°,AC1=AC=6,在RtBAC1中,∠BAC=90°,AB=8,AC1=6,∴,44.由题意可知:△=4m2−2(1−4m)=4m2+8m−2=0,∴m2+2m=,∴(m−2)2−2m(m−1)=−m2−2m+4=−+=,45.②解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.46.130∵∠AOB=40°,OP平分∠AOB,∴∠AOC=∠BOC=20°,又∵CD⊥OA于点D,CE∥OB,∴∠DCP=90°+20°=110°,∠PCE=∠POB=20°,∴∠DCE=∠DCP+∠PCE=110°+20°=130°.47.【详解】连接OD,AD,∵BC=CD,BO=DO,∴∠1=∠2,∠3=∠DBO,∴∠1+∠3=∠2+∠DBO,∴∠CDO=∠CBO,∵OC=OB=OD,∴∠BCO=∠DCO,∴CO为等腰△BCD的角平分线,∴CO⊥BD,∵AB为直径,∴∠ADB=90°,∴∠3+∠5=∠3+∠4=90°,∴∠4=∠5,∴AD//CO,∵AE=AO=2,∴AD=CO=1,在Rt△ABD中,BD=.【点睛】48.解:∵点A,B的坐标分别为(3,5),(6,1),∴C的坐标为(4,2.5),则直线l经过点C.设直线l的函数解析式为y=kx,依题意有 2.5=4k,解得k=.故直线l的函数解析式为y=x.故答案为:y=x.49.2或2.5解:如图∵AB=2,AD=7,∴BD=BC+CD=AD-AB=5,∵AB,BC,CD可构成以BC为腰的等腰三角形,∴BC=AB或BC=CD,∴BC=2或BC=2.5,50.3解:原式=,∵m+n=3mn,∴原式==3.51.∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OAD中,∵OD=3,OA=4,∴AD==5,∵OE⊥AD,∴OE•AD=OA•OD,∴OE==.∴EF=2OE=.52.k<0解:∵一次函数y=kx-2的函数值y随自变量x的增大而减小,∴k<0,故答案为:k<0.53.π∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π54.甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:,故答案为:.55.22﹣1×+2cos30°==+=2,56.∵第一个图形有2+1×2=4个,第二个图形有2+2×3=8个,第三个图形有2+3×4=14个,第四个图形有2+4×5=22个,…∴第n个图形共有:2+n×(n+1)=n2+n+2.故答案为:n2+n+2.57.2∵▱ABCD的面积为16cm2,∴S△PBC S▱ABCD=8.∵E、F分别是PB、PC的中点,∴EF∥BC,且EF BC,∴△PEF∽△PBC,∴)2,即,∴S△PEF=2.58.,由图象,得:y=﹣x+b与反比例函数y(k≠0)的图象相交于点P(1,2),把P点坐标带入函数解析式,得:﹣1+b=2,k=1×2=2,解得:b=3,k=2.关于x的方程﹣x+b,即﹣x+3,解得:x1=1,x2=2.59.设底面圆的半径为r.∵半径为10cm的半圆围成一个圆锥,∴圆锥的母线l=10cm,∴,解得:r=5(cm),∴圆锥的高h(cm).故答案为:5.60.3∵一组数据:﹣1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为﹣1,2,3,3,5,∴这组数据的中位数为3.故答案为:3.61.解:∵AD、BE为AC,BC边上的中线,∴BD=BC=2,AE=AC=,点O为△ABC的重心,∴AO=2OD,OB=2OE,∵BE⊥AD,∴BO2+OD2=BD2=4,OE2+AO2=AE2=,∴BO2+AO2=4,BO2+AO2=,∴BO2+AO2=,∴BO2+AO2=5,∴AB==.62.y(x++2y)(x-2y)原式.故答案是:y(x+2y)(x-2y).63.(,0)解:作点A关于x轴的对称点A',连接A'B,则A'B与x轴的交点即为所求,∵抛物线y=ax2-4x+c(a0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C (0,6),∴点B(3,3),∴解得,∴y=x2-4x+6=(x-2)2+2 ∴点A的坐标为(2,2),∴点A'的坐标为(2,-2),设过点A'(2,-2)和点B(3,3)的直线解析式为y=mx+n∴∴直线A'B的函数解析式为y=5x-12,令y=0,则0=5x-12得x=,64.(2,6)∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,∴在Rt△CMF中,∴点C的坐标为(2,6).65.﹣4≤m≤4解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,66.(1)证明见解析;(2);(3)【详解】(1)证明:如图1,由旋转得:,,四边形是正方形,,,,即,,在和中,,,;(2)解:如图2,过作的垂线,交的延长线于,是的中点,且,,,三点共线,,由勾股定理得:,,,由(1)知:,,,,,,,,,设,则,由勾股定理得:,或(舍,,,由勾股定理得:,(3)解:如图3,由于,所以点可以看作是以为圆心,2为半径的半圆上运动,延长到点,使得,连接,,,,,当最小时,为、、三点共线,,,的最小值是.【点睛】67.(1);(2)k>1;(3)1或3.解:(1)把点代入抛物线,得解得(2)把点代入抛物线,得把点代入抛物线,得解得(3)抛物线解析式配方得将抛物线向右平移1个单位长度得到新解析式为当时,对应的抛物线部分位于对称轴右侧,随的增大而增大,时,,,解得,都不合题意,舍去;当时,,解得;当时,对应的抛物线部分位于对称轴左侧,随的增大而减小,时,,解得,(舍去)综上,或3.68.(1)A种商品的单价为20元,B种商品的单价为15元;(2) 当a=8时所花钱数最少,即购买A商品8件,B商品4件.解:(1)设种商品的单价为元,种商品的单价为元,根据题意可得:,解得:,答:种商品的单价为20元,种商品的单价为15元;(2)设第三次购买商品种件,则购买种商品件,根据题意可得:,得:,当时所花钱数最少,即购买商品8件,商品4件.69.(1)证明见解析;(2)10.(1)证明:,,,,,,;(2)为的直径,,,四边形是矩形,,,,,,,设的为,,,即,解得,,,70.(1)-8;(2)解:(1)原式;(2)原式.71.(1);(2)△BCD为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t的值为1或4.(1)将、代入,得:,解得:,二次函数解析式为.(2)为直角三角形,理由如下:,顶点的坐标为.当时,,点的坐标为.点的坐标为,,,.,,为直角三角形.(3)设直线的解析式为,将,代入,得:,解得:,直线的解析式为,将直线向上平移个单位得到的直线的解析式为.联立新直线与抛物线的解析式成方程组,得:,解得:,,点的坐标为,,点的坐标为,.点的坐标为,,,.为直角三角形,分三种情况考虑:①当时,有,即,整理,得:,解得:,(不合题意,舍去);②当时,有,即,整理,得:,解得:,(不合题意,舍去);③当时,有,即,整理,得:.,该方程无解(或解均为增解).综上所述:当为直角三角形时,的值为1或4.72.(1)证明见解析;(2证明见解析;(3)BD=1.(1)证明:如图1中,,,,,,,,.(2)解:结论:.理由:如图2中,在上取一点,使得,连接..,.,,,,,,,,.(3)如图3中,过点作交于点.,,,设,则,,,.,在中,,解得或(舍弃)73.(1)见解析;(2)AC=2.(1)是的直径;,,,,,点在上,是的切线(2),,,,,,,,,.74.(1)y=x+2;(2)6.(1)反比例函数y=,x=2,则y=4,∴点A的坐标为(2,4);反比例函数y=中y=-2,则-2=,解得:x=-4,∴点B的坐标为(-4,-2).∵一次函数过A、B两点,∴解得:.∴一次函数的解析式为y=x+2.(2))令y=x+2中x=0,则y=2∴点C的坐标为(0,2),∴S△AOB=OC•(x A-x B)=×2×[2-(-4)]=6.75.(1)50,18;(2)选择的市民均来自甲区的概率为.(1)解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数为:20÷40%=50(人);此次调查中结果为非常满意的人数为:50×36%=18(人);(2)画树状图得:共有12种等可能的结果,选择的市民均来自甲区的有2种情况,选择的市民均来自甲区的概率为:=.76.m<1.解:∵方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4×1×m=4-4m>0,解得:m<1.77.(1)AP= 10﹣2t;(2)S=t2﹣12t+78;(3)当t=s时,PQ⊥BD;(4)存在.当t=s时,点E在∠ABD的平分线.理由见解析.【详解】(1)如图作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD==10,BD==10,由题意AP=AD﹣DP=10﹣2t.(2)作PN⊥AB于N.连接PB.在Rt△APN中,PA=10﹣2t,∴PN=PA•sin∠DAH=(10﹣2t),AN=PA•cos∠DAH=(10﹣2t),∴BN=16﹣AN=16﹣(10﹣2t),S=S△PQB+S△BCP=•(16﹣2t)•(10﹣2t)+×6×[16﹣(10﹣2t)]=t2﹣12t+78(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90∴∠QPN=∠DBA,∴tan∠QPN==,∴=,解得t=,经检验:t=是分式方程的解,∴当t=s时,PQ⊥BD.(4)存在.理由:连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,∴BF=16﹣[(10﹣2t)﹣2t],∵KH∥EF,∴=,∴=,解得:t=,经检验:t=是分式方程的解,∴当t=s时,点E在∠ABD的平分线.本78.(1)W1=﹣x2+32x﹣236;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.79.(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.80.(1)m=1;(2)点P坐标为(﹣2m,0)或(6m,0).(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1;(2)设BD与x轴交于点E.∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=.∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).81.(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.(1)参与问卷调查的学生人数为(8+2)÷10%=100人,(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.82.(1)﹣1<x<5;(2).(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组的解集为﹣1<x<5;(2)原式=(﹣)•=•=.83.(1)2;(2)DM=DN;(3)(1)如图1.在Rt△ABC中,∵BC=2,∠B=60°,∴AC=BC•tan60°=6,AB=2BC=4.∵DF是线段AB的垂直平分线,∴AD=BD=2.在Rt△ADG中,AG4,∴CG=AC=AG=6﹣4=2.(2)如图2中,结论:DM=DN.理由:∵△ABC为直角三角形,D为斜边AB的中点,∴CD=BD=AD.又∠B=60°,∴△BDC为等边三角形,∴∠CDB=60°.又∠EDF=90°,∴∠HDA=30°.∵∠A=90°﹣∠B=30°,∴AH=HD,又HM⊥AD,∴MD=AM.在等边三角形BCD中,CN⊥BD,∴ND=NB.又AD=BD,∴MD=ND.(3)如图3中,作GK∥DE交AB由K.在△AGK中,AG=GK=4,∠A=∠GKD=30°,作GH⊥AB于H.则AH=AG•cos30°=2,可得AK=2AH=4,此时K与B重合,∴DD′=DB=2.84.(1);(2)△ABC是直角三角形;(3)存在,、、.(1)将该抛物线向上平移2个单位,得:y x2x+2.故答案为:y x2x+2;(2)当y=0时,x2x+2=0,解得:x1=﹣4,x2=1,即B(﹣4,0),A(1,0).当x=0时,y=2,即C(0,2).AB=1﹣(﹣4)=5,AB2=25,AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20.∵AC2+BC2=AB2,∴△ABC是直角三角形;(3)y x2x+2的对称轴是x,设P(,n),AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=5.分三种情况讨论:①当AP=AC时,AP2=AC2,n2=5,方程无解;②当AP=CP时,AP2=CP2,n2(2﹣n)2,解得:n=0,即P1(,0);③当AC=CP时,AC2=CP2,(2﹣n)2=5,解得:n1=2,n2=2,P2(,2),P3(,2).综上所述:在抛物线对称轴上存在一点P,使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(,0),(,2),(,2).85.(1)证明见解析(2)(1)连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(2)连接OE,OE交AD于K.∵,∴OE⊥AD.∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE22.86.(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件(1)观察表格数据,可知:第三次购买的A、B两种商品均比头两次多,总价反而少,∴第三次购买有折扣.故答案为:三.(2)设A商品的原价为x元/件,B商品的原价为y元/件,根据题意得:解得:.答:A商品的原价为30元/件,B商品的原价为40元/件.(3)设折扣数为z,根据题意得:5×307×40258 解得:z=6.(4)设购买A商品m件,则购买B商品(10﹣m)件,根据题意得:30m+40(10﹣m)≤200 解得:m.∵m为整数,∴m的最小值为7.87.(1)答案见解析(2)95% (3)(1)∵被调查的总户数为60÷60%=100,∴C类别户数为100﹣(60+20+5)=15,补全图形如下:(2)贫困户对扶贫工作的满意度(A、B、C类视为满意)是100%=95%.故答案为:95%;(3)画树状图如下:由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为.88.(1);(2)P点坐标为(4,6)或(,- );(3)Q点坐标(3,0)或(-2,15)(1)把,和点,代入抛物线得:,解得:,,则抛物线解析式为;(2)当在直线上方时,设坐标为,则有,,当时,,即,整理得:,即,解得:,即或(舍去),此时,;当时,,即,整理得:,即,解得:,即或(舍去),此时,;当点时,也满足;当在直线下方时,同理可得:的坐标为,,综上,的坐标为,或,或,或;(3)在中,,,根据勾股定理得:,,,,边上的高为,过作,截取,过作,交轴于点,如图所示:在中,,即,过作轴,在中,,,即,,设直线解析式为,把坐标代入得:,即,即,联立得:,解得:或,即,或,,则抛物线上存在点,使得,此时点的坐标为,或,.89.(1)证明见解析;(2)sin∠ACO=.(1)证明:连接,如图,、为的切线,,,,,,,,,,;(2)解:作于,如图,设的半径为,,,四边形为矩形,而,四边形为正方形,,易得和都为等腰直角三角形,,,在中,,在中,,即的值为.【90.(1)y=;(2)最小值即为,P(0,).(1)反比例函数的图象过点,过点作轴的垂线,垂足为,面积为1,,,,故反比例函数的解析式为:;(2)作点关于轴的对称点,连接,交轴于点,则最小.由,解得,或,,,,最小值.设直线的解析式为,则,解得,直线的解析式为,时,,点坐标为.91.(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).(1)抛物线的对称轴是直线,,解得:,抛物线的解析式为.当时,,解得:,,点的坐标为,点的坐标为.(2)当时,,点的坐标为.设直线的解析式为.将、代入,,解得:,直线的解析式为.假设存在,设点的坐标为,过点作轴,交直线于点,则点的坐标为,如图所示.,.,当时,的面积最大,最大面积是 16 .,存在点,使的面积最大,最大面积是 16 .(3)设点的坐标为,则点的坐标为,.又,.当时,有,解得:,,点的坐标为或;当或时,有,解得:,,点的坐标为,或,.综上所述:点的坐标为,、、或,.92.(1)全班学生总人数为40人;(2)补全图形见解析;(3)全是B类学生的概率为.(1)全班学生总人数为(人;(2)类人数为,类所占百分比为,类百分比为,补全图形如下:(3)列表如下:A B B CA AB AB ACB BA BB BCB BA BB BCC CA CB CB由表可知,共有12种等可能结果,其中全是类的有2种情况,所以全是类学生的概率为.93.(1)见解析;(2)CM=2.(1)中,点是半圆的中点,,,又,,,即;(2)连接、,是的切线,,又,设的半径为,,,解得:,又是直径,,,是等腰直角三角形,在中,由勾股定理得,即,则,.94.(1);(2)当点E(0,8)或(0,5)或(0,-5)或(0,)时,△AOE是等腰三角形.(1)一次函数与反比例函数图象交于与,且轴,,在中,,,,即,根据勾股定理得:,,代入反比例解析式得:,即,把坐标代入得:,即,代入一次函数解析式得:,解得:,即;(2)当,即,;当时,得到,即;当时,由,,得到直线解析式为,中点坐标为,垂直平分线方程为,令,得到,即,综上,当点或或或时,是等腰三角形.95.该一元二次方程有两个实数根,△,解得:,由韦达定理可得,,,,解得:,.96.证明:四边形是平行四边形,,,,,,四边形是平行四边形,,四边形是菱形.97.-3.当,时,原式98.(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(,)或(,).(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).99.(1)证明见解析;(2)证明见解析;(3)n=4.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BEN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,100.(1)地(市)属项目投资额为830亿元;补全图形见解析;(2)m=18,对应的圆心角为65°. (1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:(2)县(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°.答案第41页,总41页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学典型例题100道(二)
选择填空题150道
一.选择题:
7,如图,直线,点A1坐标为(1,0),过点A1作x的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(,).
8,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴
重合,使点A或点B刚好在反比例函数(x>0)的图象上时,设△ABC在第一象限部分的面
积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小.
9,若不论k为何值,直线y=k(x﹣1)﹣与抛物线y=ax2+bx+c有且只有一个公共点,求a、b、c的值。

10,如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.
上述4个判断中,正确的是()
A.①②B.①④C.①③④ D.②③④
二,解答题
4,如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(﹣3,0)及y轴上的C点.若抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的右侧),且经过点C,其对称轴与直线BC交于点E,与x轴交于点F.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,若∠APD=∠ACB,求点P的坐标;
(3)在抛物线上是否存在点M,使得直线CM把四边形EFOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理
由.
5,如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.
(1)求抛物线的解析式及点A、B的坐标;
(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.
6,平面直角坐标系中,抛物线y=ax2+bx+c交x轴于点A、B(点A在点B左侧),与y轴交于点C,点A、C的坐标分别为(﹣3,0),(0,3),对称轴直线x=﹣1交x轴于点E,点D为顶点.
(1)求抛物线的解析式;
(2)点P是直线AC下方的抛物线上一点,且S△PAC=2S△DAC,求点P的坐标;
(3)点M是第一象限内抛物线上一点,且∠MAC=∠ADE,求点M的坐标.。

相关文档
最新文档