诱变育种

合集下载

诱变育种

诱变育种

3 )营养器官照射:用枝条、块茎、鳞茎、球茎
、块根、幼芽等进行辐射处理。
照射处于活跃状态的新生组织,效果较好; 受照射器官内芽原基所含的细胞越少越好;
组织充实、生长健壮、芽眼饱满的芽条,照
射后易于成活。
4 )花粉照射
先将花粉收集于容器内,经照
射后立即授粉(适合花粉生活
力强,寿命长,花粉量大);
或者直接照射植株上的花粉( 田间照射、上盆后进行室内照 射、切花照射)。 优点:很少产生嵌合体
病性、枝型、叶形、果色、果形等大量的变异。诱变频
2、育种程序简单,变异稳定快,育种年限短 诱变多为一个主基因的改变,后代稳定快。 如一、二年生草花, F3 可稳定,3-4年即可出 品种。 园林植物多数采用无性繁殖,变异易固定。
3、可有效改良品种的单一性状,保持其它优
良特性
原因:诱发突变多为点突变。 4 、打破原有的基因连锁,有利于基因重组 5、克服远缘杂交不亲和性,改变植物育性
一、射线的种类
物理诱变
x 射线 射线 中 子 射线 射线 紫外光 激光
各种射线的特性 射线 紫外 线 源 低压水银灯 性质 低能非电 离辐射 不带电荷 不带电荷 带负电荷 不带电荷 危险性 危险性较小 必须的屏蔽 玻璃即可 透入组织的深度 很浅 很多厘米 几毫米到很多厘米 几个毫米 很多厘米
6、诱发突变的方向和性质难以掌握,有利突变频率较低
突变位点随机;突变方向偶然(有益或无益)
7、改良的性状有限 诱变往往是点突变,对某些受多基因控制的数量性状改 良作用不大。 8、变异性状具不稳定性 诱发的突变有时会发生逆突变,使已产生的突变又恢 复成原来的性状。 容易产生嵌合体,不利于性状的稳定。
近年来,诸如激光、电子束、微波等新的诱变 剂也开始在育种上应用。 激光:是20世纪60年代发展起来的一种新光源,

诱变育种的方法

诱变育种的方法

诱变育种的方法引言:诱变育种是指通过诱变剂引起植物或动物基因发生变异,从而产生新的有用性状的育种方法。

诱变育种可以提高作物的抗病性、适应性和产量等特性,对农业生产和人类生活具有重要意义。

本文将介绍几种常用的诱变育种方法。

一、物理诱变方法:物理诱变方法是利用物理因素对生物体的基因产生变异的方法。

常用的物理诱变方法有辐射诱变和化学诱变。

1. 辐射诱变:辐射诱变是指利用电离辐射对生物体进行诱变。

常用的辐射诱变方法包括γ-射线辐射和X射线辐射。

辐射诱变可以产生大量的突变体,通过对突变体的筛选和评价,可以选育出具有优良特性的新品种。

2. 化学诱变:化学诱变是指利用化学诱变剂对生物体进行诱变。

常用的化学诱变剂有EMS(乙基甲磺酸甲酯)和NaN3(氮化钠)。

化学诱变剂可以引发DNA的突变,从而产生新的基因型和表型。

二、生物诱变方法:生物诱变方法是利用生物因素对生物体的基因产生变异的方法。

常用的生物诱变方法有基因工程技术和细胞诱变技术。

1. 基因工程技术:基因工程技术是指通过改变生物体的基因组成,从而产生新的有用性状的育种方法。

常用的基因工程技术包括基因克隆、基因转移和基因编辑等。

通过基因工程技术,可以将具有有益特性的基因导入到目标生物体中,从而实现育种目标。

2. 细胞诱变技术:细胞诱变技术是指通过处理植物细胞或动物细胞,使其发生基因突变,从而产生新的有用性状的育种方法。

常用的细胞诱变技术包括化学诱变、辐射诱变和基因转化等。

细胞诱变技术可以提高诱变效率,加快育种进程。

三、化学诱变方法:化学诱变方法是利用化学品对生物体的基因产生变异的方法。

常用的化学诱变方法有化学诱变剂和化学物质处理。

1. 化学诱变剂:化学诱变剂是指通过处理生物体,使其基因发生突变的化学物质。

常用的化学诱变剂有EMS(乙基甲磺酸甲酯)、NTG(亚硝酸乙酯)和NaN3(氮化钠)等。

化学诱变剂可以改变DNA的结构,引发基因突变。

2. 化学物质处理:化学物质处理是指利用化学物质对生物体进行处理,使其基因发生变异。

简述诱变育种的典型流程及步骤

简述诱变育种的典型流程及步骤

简述诱变育种的典型流程及步骤一、诱变育种的概述诱变育种是通过人为手段诱导植物基因发生突变,进而筛选出具有理想性状的新品种。

它可以通过物理、化学或生物学方法对植物进行诱变,使植物基因发生突变,产生新的遗传变异。

通过筛选和选择,最终获得具有经济和农艺价值的新品种。

二、诱变育种的典型流程及步骤1. 选择育种材料:选择适合诱变的育种材料是诱变育种的第一步。

通常选择普通品种、自交系或近缘种作为育种材料,以确保诱变后能够产生有用的突变体。

2. 诱变处理:诱变处理是诱变育种的核心步骤。

诱变处理可以采用物理、化学或生物学方法进行。

常见的物理方法包括辐射诱变和离子束诱变,化学方法包括化学诱变剂处理,生物学方法包括基因工程技术等。

3. 突变体筛选:在诱变处理后,需要对诱变体进行筛选,以筛选出具有目标性状的突变体。

通常可以通过形态学、生理学、生物化学等多种方法进行筛选。

例如,通过观察植株生长状况、花期、产量等形态指标,或通过测定植株的生理指标如抗病性、耐逆性等,以及通过分析植物的化学成分等来筛选突变体。

4. 突变体鉴定:在突变体筛选后,需要对突变体进行鉴定。

鉴定的目的是确定突变体的突变类型和突变位点。

常用的鉴定方法包括遗传分析、分子标记和基因组测序等。

通过鉴定突变体的突变类型和突变位点,可以更好地理解突变体的性状变化,为后续的育种工作提供依据。

5. 基因型固定:在鉴定突变体后,需要进行基因型固定。

基因型固定是指将突变体与优良品种进行杂交,通过连续的自交和选择,逐步固定突变体的基因型,同时消除不良性状和杂质基因。

这一步骤是为了确保突变体的稳定性和纯度,为后续的品种选育奠定基础。

6. 品种选育:在基因型固定后,可以进行品种选育。

根据突变体的优良性状,结合农业生产的需求,选择具有经济和农艺价值的突变体进行品种选育。

通过连续的选育和筛选,最终可以获得具有理想性状的新品种。

7. 品种测试:在品种选育后,需要对新品种进行测试。

测试的目的是评估新品种的农艺性状、适应性、产量等。

诱变育种名词解释

诱变育种名词解释

诱变育种名词解释
诱变育种是指用物理、化学因素诱导植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株,进而培育成新的品种或种质的育种方法。

利用理化因素诱发变异,再通过选择而培育新品种的育种方法。

诱变育种是指利用人工诱变的方法获得生物新品种的育种方法原理:基因突变
方法:辐射诱变,激光、化学物质诱变,太空(辐射、失重)诱发变异→选择育成新品种
优点:能提高变异频率,加速育种过程,可大幅度改良某些性状;变异范围广。

缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制。

改良数量性状效果较差。

诱变育种

诱变育种

3 )放射性强度
用来衡量辐射源的辐射强度,以放射性物质在单位 时间内发生的核衰变数目来表示。 SI 单位: Bq (贝克),常用单位: Ci (居里)。
4 )剂量率:单位时间内被照射植物材料所受的照射 剂量或吸收剂量。 照射量率:单位时间内的照射量。单位: R/min 。
适宜诱变剂量与剂量率的确定
1 .种子诱变后代的选择
M 1 (指处理的种子长成的植株或蕾期前处理的植 株):常表现复杂的突变嵌合体,一般不作选择; 采取密植,多收种子。 M 2 (指 M 1 所结的种子及由它长成的植株):主
要的分离、选择世代
M 3 及以后各代:从 M 2 选出优良突变体,每株种
一小区。若 M 3 稳定,进入品种试验;如 M 3
需要专门的田间辐射场。
根据辐射材料的类型主要有:
1 )植株照射:对完整植株进行辐射,如盆栽苗、田 间苗等。 2 )种子照射:可采用干种子、湿种子或萌动种子进 行照射。多用干种子,并在干燥有氧条件下进行。
优点:可同时处理大量种子;操作方便;便于贮藏、
运输;受环境条件的影响较小。 要求:种子预先精选,不含杂物;照射后及时播种, 以免产生贮存效应。
死亡(与对照相比)的辐射剂量。 • 临界剂量( LD 60 ):辐射后成活率为对照 40% 的辐射剂量
3 .影响辐射敏感性的因素
1 ) 遗传因素:不同的科、属、种及品种,敏感性 有差异。 豆科植物 > 禾本科 > 十字花科 二倍体植物比多倍体敏感。 2 ) 不同的器官组织和不同分裂时期的细胞 分生组织 > 其它组织;性细胞 > 体细胞;卵细胞
3 .无性繁殖器官诱变后代的选择 无性繁殖的园林植物在遗传上大多是异质的,辐射 后发生的变异,通常在当代就可表现出来,后代 选择可从 M 1 开始。

诱变育种相关知识点总结

诱变育种相关知识点总结

诱变育种相关知识点总结1. 什么是诱变育种诱变育种是通过化学物质或辐射来诱发植物遗传变异,达到变异性状的目的,然后再通过选择和育种方法来固定和优化这些性状,从而获得具有新性状的植物种质资源。

诱变育种是一种以人为手段来诱发植物遗传变异的育种方法,与传统的育种方法相比,具有变异程度大、种质资源丰富、育种速度快等优点。

2. 诱变种类根据诱变的方法和途径不同,可以将诱变分为两种类型:化学诱变和辐射诱变。

化学诱变是利用化学物质来诱发植物遗传变异的方法。

这种方法主要是通过化学物质对植物体内生成物质代谢和遗传物质的变异,从而诱发植物的新性状。

具体的化学诱变剂包括EMS(乙基甲磺酸甲酯)、DEPC(二乙醇二氯甲烷)、MNU(N- 亚硝基-N-甲基脲)、DMC(二甲胺)等。

辐射诱变是利用辐射来诱发植物遗传变异的方法。

这种方法主要是通过辐射对植物细胞的核酸、酶系、蛋白质等生物大分子的损伤和变异,从而诱发植物的新性状。

具体的辐射诱变包括X射线、γ射线、紫外线、中子射线等。

3. 诱变方法诱变育种的主要方法包括传统育种方法、分子育种方法和生物技术育种方法。

传统育种方法是指通过遗传资源的收集、鉴定以及杂交和选育等方式来获得植物品种的育种方法。

这种方法主要是通过选择和育种的方式来固定和优化诱变得到的新性状,最终获得具有新性状的植物品种。

分子育种方法是指通过对植物基因组的解析和改良等方式来获得植物品种的育种方法。

这种方法主要是通过对植物基因组的修改和介入来获得具有新性状的植物品种。

生物技术育种方法是指通过生物技术手段来获得植物品种的育种方法。

这种方法主要是通过生物技术手段来获得具有新性状的植物品种。

4. 诱变机理诱变发生的机理主要包括两个方面:一是遗传物质的突变,二是染色体的不稳定性。

(1)遗传物质的突变:遗传物质的突变是指植物遗传物质DNA序列的变化。

这种变化可以通过点突变、基因缺失、重复序列、整个染色体的遗传变异等多种方式来实现,从而使植物出现新的性状。

诱变育种

诱变育种
• 按射线性质可分为:电磁辐射和粒子辐射 。
• 射线作用方式分成:电离辐射和非电离辐 射。
2. 化学诱变 是应用有关化学物质诱发基因和染色体变 异。
第二节 辐射诱变育种
一、射线的种类及其特性 1. γ射线 2. X射线 3. β射线 4. α射线 5. 中子 6. 激光 7. 紫外线
二、辐射剂量和剂量单位
③处理方法: ❖浸泡法。 ❖注射或涂抹法。 ❖饲喂法(施肥法)
第三节 化学诱变育种
一、化学诱变育种的概念及其特点 1. 概念:应用特殊的化学物质诱发基因突变和染色体变异,
从而获得突变体,进而选择出符合育种目标的新品种的育 种方法。 2. 特点: ❖ 穿透性差,对于有鳞片和茸毛包裹严密的芽,诱变效果往 往不理想。 ❖ 能诱发更多的基因点突变。 ❖ 不同药剂对不同植物、组织或细胞甚至染色体节段或基因 的诱变作用有一定的专一性。 ❖ 变异频率高于辐射诱变3~5倍。 ❖ 使用方便、成本低廉。
二、化学诱变剂的种类及其作用 机理
1. 烷化剂
• 借助于磷酸基、嘌呤、嘧啶基的烷化而与 DNA或RNA起作用,进而导致遗传密码的 改变。
(1)烷基磺酸盐和烷基硫酸盐类 (2)亚硝基烷基化合物 (3)次乙亚胺和环氧乙烷类 (4)芥子气类
2. 核酸碱基类似物
①在不妨碍DNA复制的情况下,作为组成 DNA的成分而掺入DNA中,由于其与正常 碱基不同,造成碱基错配,而引起突变。
第四节 空间诱变及离子注入
一、概念: 空间诱变育种,简称空间育种,又称太空 育种、航天育种,是利用卫星飞船等返回 式航天器将植物的种子、组织、器官或个 体(如试管苗)搭载到宇宙空间,在太空 诱变因子的作用下,使植物材料发生有益 的遗传变异,经地面繁殖、栽培、测试、 筛选新种质,培育新品种的育种技术。

诱变育种

诱变育种

多倍体育种
• 定义:
– 通过增加染色体组数以改造生物遗传基础,从而培育出符合人类 需要新品种的方法
• 最常用、最有效的多倍体育种方法是用秋水仙素或低温诱 导来处理萌发的种子或幼苗。秋水仙素能抑制细胞有丝分 裂时形成纺锤体,但不影响染色体的复制,使细胞不能形 成两个子细胞,而染色数目加倍。属于染色体组工程的研 究范畴。 • 多倍体产生机制:通过卵细胞第二极体的保留或受精 卵早期有丝分裂的抑制而实现。[1]
辐射育种
• 生物育种的一种方法,利用电离辐射处理 生物,以诱发突变,从中选出优良变异个 体,通过一系列育种程序,培育出新品种。 可利用的电离辐射有X射线、紫外线、中子 及质子等。

辐射育种与其他方法不同,它们有的是 与细胞中的原子、分子发生冲撞、造成 电离或激发;有的则是以能量形式产生 光电吸收或光电效应;还有的能引起细 胞内的一系列理化过程。这些都会对细 胞产生不同程度的伤害。对染色体的数 目、结构等都会产生影响,使有的染色 体断裂了;有的丢失了一段,有的断裂 后在“自我修复”的过程中头尾接倒了 或是“张冠李戴”分别造成染色体的倒 位和易位。当然射线也可作用在染色体 核苷酸分子的碱塞上,从而使基因(遗 传密码)发生突变。
人工诱变 + 单倍体育种
幼苗 秋水仙 (A) 素处理 早熟 品种 (AA) 早熟 品种 (aa)
迟熟 人工 品种 (AA)
诱变
杂合 花药离 子 (Aa)
体培养
幼苗 秋水仙 (a) 素处理




离体诱导 植物细胞具有潜在的再生性和全能性,能发育为完整植株,故应用组 织培养技术对特定组织进行离体培养,可诱导产生单倍体。方法是将一 定发育阶段的花药、子房或幼胚,通过无菌操作接种在培养基上,使单倍体 细胞分裂形成胚状体或愈伤组织,然后由胚状体发育成小苗或诱导愈伤 组织发育为植株。 此外对大麦、小麦还可利用染色体消失法。即将球茎大麦 (Hordeum bulbosum)花粉授予普通大麦或小麦,授粉两周后将幼胚 置于培养基上进行离体培养。在胚胎发育的早期,球茎大麦的染色体消 失,从而获得大麦或小麦单倍体植株。 离体培养用的人工培养基,除含无机盐、蔗糖、维生素和水等外, 还需加入植物激素和其他有机物作诱导物质。诱导出的愈伤组织或胚状 体要转移到含量减少或无诱导物质、蔗糖浓度降低的分化培养基上,才 能分化出根、芽以至长成小苗。以上过程都在试管内进行。再生单倍体 植株的培养则须将小苗从试管取出移栽到小盆中。培养基的成分、培养 的方法和条件(如温度、光照等)、供体的基因型和生理状态以及大、 小孢子的发育时期等,是影响诱导频率的主要因素。植株经用秋水仙碱 溶液处理等方法,使染色体数加倍后,即成为能结实的纯合二倍体(见倍 数性育种)。在离体培养过程中,也会自交产生一些二倍体,但数量很少。

诱变育种

诱变育种
B.吸收剂量
拉特(Rad)1g受照射物质吸收100尔格的能量
(3)中子流量
每平方厘米的中子数 n/cm2
(4)剂量率
单位时间内所受的剂量。伦/小时、伦/秒
辐射作用机理
电离射线对机体的作用有两种解释:
(1)直接作用 “靶学说”为代表,细胞内有一定的对辐射作用敏感的区 域——“靶”区。只有当射线击中细胞的靶区时,才能引起分子损伤的 辐射效应。 (2)间接作用 生物效应是有机体的水被电离和激发产生自由基作用在 生物分子上所引起的结果。
诱变源的种类及特性
X射线:辐射源是X光机。X射线又称阴极射线,
分为软Χ射线和硬Χ射线,诱变育种一般用硬Χ射线
γ射线:辐射源是60Co和137Cs及核反应堆。
γ射线是一种是一种高能电磁波,穿透力强, 目前常用的照射装置有:钴室,钴圃,钴人工气候辐照室 。
β射线:辐射源为32P和35S。β射线
能量较Χ、γ射线低,不宜作外照射的射线源 。
一、化学诱变的特点
• 使用经济方便 • 有一定的专一性
有些化学诱变只限于的特定部位发生变异
二、化学诱变剂的种类
• 烷化剂:
甲基磺酸乙酯(EMS),硫酸二乙酯(DES), 甲基磺 酸甲酯(MMS),异丙基甲烷磺酸酯(iPMS),芥子气 类。
另外,亚硝基乙基脲烷(NEU),亚硝基乙基脲 (NEH),亚硝基甲基脲烷(NMU),乙烯亚胺(EI), 1,4-双重氮乙酰丁烷,也是有效的诱变剂,但是是潜在致 癌物质,应用危险。
辐射对遗传物质的作用——对染色体的作用
染色体在射线作用下,断裂的频率增加,断裂后的染色体重新连接,产生 四种染色体结构变异 缺失 染色体丢失了带有基因的片段; 重复 染色体个别节段的增加; 倒位 正常染色体上的某一节段发生断裂后,倒转180°又重新连结起来; 易位 非同源染色体之间交换片段的结构变异。 同时,辐射也可引起染色体数量变异,产生非整倍体。

诱变育种

诱变育种

7.2.5 物理诱变处理的方法
物理诱变处理的方法分外照射和内照 射两种。
外照射指种子等所受的辐射来自外部 的辐射源。
内照射是利用放射性同位素32P、35S 、 14C 的化合物, 配成溶液浸渍种子或使作 物吸收, 或注射茎部。
7.2.6 诱变处理的剂量
各种诱变处理以采用中等到低的剂 量为好。对于多倍体的小麦应该避免采 用高剂量的诱变,以使处理后代中有更 多的单一位点突变体, 各种诱变因素的 适宜诱变剂量如表7-2、表7-3
第七章 诱变育种
§7.1 诱变育种的概念和特点 7.1.1 诱变育种的概念
诱变育种(induced mutation breeding) 是指用物理或化学因素诱发染色体畸变、基因 突变、组跑质突变等改良作物品种。
诱变育种特别适宜改良作物的某些单一性 状,例如变高秆为矮秆,提早成熟期,提高抗病性 和蛋白质含量等。
பைடு நூலகம்
除了诱发和鉴定筛选有利用价值的突 变体外,作物诱变育种的其他方法程序基 本上与常规育种相同。诱变育种技术包括 诱变因素的利用、供诱变育种材抖的选择、 诱变剂量的大小、 M1及 M2 群体大小、突 变体的筛选等环节。
7.1.2 诱变育种的特点
(1)突变频率高,变异谱广 (2)可有效的改良作物的个别单一性状 (3)能打破性状间的紧密连锁,促进基因
M2 按照M1代收获种子的方式 ( 单株、单 穗 )以及处理材料和剂量的不同顺序种成株行或
穗行。M2代是诱变处理后分离最大、变异类型最多 的一个世代,为使突变体得到充分表现, 应有一定
的行距和株距,并要求地力均匀、精细管理。M2代 应具有较大的群体。M2代是选择的关键世代, 这一 世代即可出现大突变 ( 如早熟性、矮杆性),又可

诱变育种的方法

诱变育种的方法

诱变育种的方法诱变育种是一种通过诱变剂来诱发植物或动物遗传物质发生突变,从而产生新的性状或变异体的育种方法。

诱变育种可以为农业、园艺和畜牧业的发展提供新的遗传资源,为作物品种改良和新品种选育提供更多的选择。

下面将介绍几种常见的诱变育种方法。

一、化学诱变化学诱变是利用化学物质诱导植物或动物的遗传物质发生突变的方法。

常用的化学诱变剂包括亚硝基脲、乙烯亚胺、氮芥等。

这些化学物质可以通过直接处理植物种子或动物胚胎来诱导突变。

化学诱变的优点是操作简单、成本低廉,但副作用较大,有可能引起不可逆的基因突变或致死。

二、辐射诱变辐射诱变是利用辐射(如X射线、γ射线、中子射线等)照射植物或动物的遗传物质,诱发突变的方法。

辐射诱变可以引起遗传物质的DNA链断裂、碱基对突变等,从而产生新的性状或变异体。

辐射诱变的优点是突变频率较高,可以诱发大量的突变体,但也存在一定的风险,如辐射剂量过大可能导致致死或致畸。

三、基因工程诱变基因工程诱变是利用基因编辑技术(如CRISPR/Cas9等)对植物或动物的遗传物质进行定点编辑,诱发突变的方法。

通过基因工程诱变可以精确地修改目标基因,实现有针对性的遗传改良。

基因工程诱变的优点是操作灵活、可控性强,但需要较高的技术水平和设备支持。

四、诱变体库筛选诱变体库筛选是利用大量的诱变体进行筛选,寻找具有目标性状的突变体的方法。

诱变体库是一种包含大量突变体的资源库,可以通过对这些突变体进行高通量筛选,快速寻找到具有目标性状的突变体。

诱变体库筛选的优点是可以大规模筛选突变体,提高筛选效率,但也需要大量的突变体资源和筛选条件的优化。

诱变育种方法的选择取决于具体的育种目标和条件。

不同的诱变方法有着各自的优缺点,适用于不同的育种需求。

在进行诱变育种时,需要根据具体情况综合考虑,选择最合适的方法。

同时,诱变育种也需要结合其他育种方法,如杂交育种、选择育种等,进行综合利用,以实现更好的育种效果。

诱变育种是一种重要的育种方法,可以为农业、园艺和畜牧业的发展提供新的遗传资源和选择。

诱变育种

诱变育种

(二)常用化学诱变剂
常用的化学诱变剂有烷化剂、碱基 类似物、抗生素、叠氮化物、亚硝 酸、羟胺和吖啶等。
按其诱变机制则可分为 :
1 直接诱变 DNA 结构的变异
如各种烷化剂( 甲基磺酸乙酯( EMS)、乙基磺酸 乙酯( EES) 、硫酸二乙酯( DES) 、硫酸二酯( DM S) ) 、亚硝酸等, 这类诱变剂是化学诱变剂 中应用最广的一类化合物。
1 外照射:指被照射的种子或植株所受的辐射来自外部某 一辐射源。 2 慢照射:低剂量长时间(几天至整个生育期)的照射 3 急照射:高剂量短时间内完成 处理对象:植株,种子,组织,器官,愈伤组织,花粉
(4)β 射线:带电粒子,质量小速度快,可 以穿透几毫米的组织。育种上常用的β 射 线由放射性同位素32P、35S产生。 32P、 35S必须进入植物组织和细胞后作为内照射 才能产生诱变作用。 (5)中子: 不带电粒子,穿透力强,可直接 进入细胞核内,适于处理种子、植株的外 照射。 (6)其它物理诱变因素 激光、电子束、等
物理诱变:利用辐射,诱发基因突变和染色体变异
化学诱变:应用化学物质诱发基因和染色体变异
特点
(一)优点: 1.提高突变率,变异范围广。 突变率可达3%,比自然突变高100-1000倍。突 变类型多,还可能产生新基因。 2.对单一性状改良有效。如早熟性、株高。 3.多为点突变和隐性突变,易稳定,育种年限短。 热中子,极早熟大豆哈75-222,比原品种早32天
剂量率:单位时间内被照射植物所受的剂量 R/h、R/min或R/S 辐射诱变效果与剂量大小有关,也与“剂 量率”有关。一般情况下,剂量率过高, 会显著影响幼苗成活率和生长速度。通常 干种子剂量率为60-100R/min,花粉 10R/min左右。

诱变育种的方法

诱变育种的方法

诱变育种的方法引言:诱变育种是一种通过人为诱导生物体遗传物质的突变来改变其性状的育种方法。

它在农业、植物育种、动物育种等领域都有广泛应用。

本文将介绍诱变育种的基本原理、常用方法以及其在农业生产中的应用。

一、诱变育种的基本原理诱变育种的基本原理是通过诱导生物体的遗传物质发生突变,从而改变其性状。

突变是指基因发生改变,导致生物体的某些特征发生明显变化。

诱变育种利用这种突变来创造新的优良品种,以满足人们对农作物产量、品质、抗病性等方面的需求。

二、诱变育种的常用方法1. 辐射诱变法:辐射诱变法是最常见的诱变育种方法之一。

它通过使用不同类型的辐射源(如X射线、γ射线、紫外线等)照射生物体,使其遗传物质发生突变。

这种方法简单易行,广泛应用于农作物、家禽、家畜等的育种中。

2. 化学诱变法:化学诱变法是利用化学物质诱导生物体遗传物质发生突变的方法。

常用的化学诱变剂有EMS(乙基甲磺酸甲酯)、NMU (亚硝基甲基脲)等。

这些化学物质能够与DNA分子发生反应,导致碱基的改变,从而引发突变。

3. 基因工程诱变法:基因工程诱变法是近年来发展起来的一种新型诱变育种方法。

它利用基因工程技术,通过直接改变生物体的基因序列来诱导突变。

这种方法具有高效、精确的特点,可用于特定基因的定向突变。

三、诱变育种在农业生产中的应用1. 提高产量:诱变育种可以通过诱导农作物的突变,改变其生长发育过程中的关键基因,从而提高产量。

例如,通过诱变使水稻产生更多的穗粒,或使玉米产生更大的穗子,从而提高农作物的产量。

2. 改良品质:诱变育种还可以改良农作物的品质,使其具有更好的口感、营养价值或抗病性。

例如,通过诱变使水果的口感更甜、更脆,或使蔬菜的抗病能力增强,从而提高产品的市场竞争力。

3. 培育新品种:诱变育种可以创造出新的品种,满足市场需求。

通过诱变,育种者可以获得具有新颖特征的作物品种,如颜色、形状、味道等方面的变化,从而开拓市场。

结论:诱变育种是一种有效的育种方法,通过诱导生物体遗传物质的突变,改变其性状,以满足人们对农作物产量、品质、抗病性等方面的需求。

《诱变育种》课件

《诱变育种》课件

04 诱变育种的挑战与前景
面临的挑战
突变频率低
自然突变或诱变处理的 突变频率通常较低,需
要处理大量材料。
突变的不定向性
突变通常是不定向的, 可能涉及多个基因位点, 难以实现精确的基因改
造。
突变的有害性
突变可能导致产生新的 有害基因或丧失原有优 良性状,影响突变体的
筛选和利用。
突变后处理难度
突变后处理工作量大, 需要大量的人力和时间 进行突变体的筛选、鉴
定和繁殖。
发展前景
提高突变频率
通过改进诱变方法和技术,提高突变 频率,加速育种进程。
定向突变
利用现代基因编辑技术,实现定向突 变,提高育种精度和效率。
拓展应用领域
诱变育种不仅应用于植物,还可应用 于动物、微生物等领域,具有广阔的 应用前景。
与其他育种方法的结合
结合传统育种方法和现代生物技术, 提高育种效率和成功率。
物的生产菌种的改良。
THANKS FOR WATCHING
感谢您的观看
诱变育种的历史与发展
历史
自1927年缪勒发现X射线能诱发果蝇变异后,诱变育种逐渐 成为一种重要的育种方法。随着科技的发展,诱变育种技术 不断改进和完善,现已成为创造新种质和培育新品种的重要 手段之一。
发展
随着基因工程、细胞工程等生物技术的不断发展,诱变育种 与这些新技术相结合,如转基因技术、基因编辑技术等,使 得诱变育种更加高效、精准。
案例三:生物诱变育种在微生物育种中的应用
总结词
利用某些具有诱变作用的微生物或其代谢产物处理微生物细胞,诱发基因突变,进而筛 选有益突变体。
详细描述
生物诱变育种常用的微生物包括某些细菌、放线菌等,这些微生物能够产生一些具有诱 变作用的代谢产物。在微生物育种中,生物诱变育种常用于抗生素、酶制剂等工业微生

诱变育种

诱变育种

(3)碱基类似物:与 DNA 中碱基化学 )碱基类似物: 结构类似的物质, 结合, 结构类似的物质,能与 DNA 结合,导 致错误配对,碱基置换,产生突变。 致错误配对,碱基置换,产生突变。 (4)其他化学诱变剂:如抗菌素、亚 )其他化学诱变剂:如抗菌素、 硝酸、 硝酸、羟胺等
3.生物诱变 生物诱变
混合法
每株主穗上混收几粒种子, M1 每株主穗上混收几粒种子,混合 种植成M2 从中选择单株,测产。 种植成M2 ,从中选择单株,测产。 优缺点: 方法简单省工;选择突变体较困 优缺点: 方法简单省工; 难,尤其是微突变。 尤其是微突变。
诱变育种取得成效,应考虑以下几点: 诱变育种取得成效,应考虑以下几点: 选择亲本要恰当。 选择亲本要恰当。 选择群体应尽可能大些。 选择群体应尽可能大些。 选择适当的诱变剂。 选择适当的诱变剂。 避免异花授粉, 避免异花授粉,避免发生非诱变产生的变 异。 适当提高选择强度。 适当提高选择强度。
六、航天育种
航天育种也称空间诱变育种、太空育种, 航天育种也称空间诱变育种、太空育种,是指利用返回式 航天器和地面模拟空间环境装置, 航天器和地面模拟空间环境装置,通过空间环境对植物发 生诱变作用,致使种子产生变异, 生诱变作用,致使种子产生变异,再通过严格的地面选育 过程,获得优良的农作物品种。 过程,获得优良的农作物品种。
(3)γ射线 特点:核内电磁辐射,波长短(0.001nm) 特点:核内电磁辐射,波长短(0.001nm)穿 透力更强。育种常用辐射诱变剂。 透力更强。育种常用辐射诱变剂。 射线辐射装置包括: 照射室、照射圃、 γ射线辐射装置包括:γ照射室、照射圃、 人工气候室。 人工气候室。 (4)粒子辐射 带电粒子辐射: 射线β a 中子 b 带电粒子辐射:α 射线β 射 线 (5)其它物理诱变剂 a 电子束 b 激光 c 离子注入 航天育种: (6)航天育种:利用返回式卫星进行农作物新品 种的选育的一种方法。 种的选育的一种方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诱变育种第一节诱变育种的概念、意义和特点诱变育种是人为地采用物理、化学的因素,诱发有机体产生遗传性的变异,并经过人工选择、鉴定、培育新品种的途径。

诱变育种的目标是改变或增加一个满意品种的某一特性,而在其他方面保持品种不变。

如果需要一个适应性好、独特的、非常合意的和受欢迎的品种,这种方法特别吸引人。

诱变育种的特点:1)提高突变率,扩大变异谱;2)适于进行个别性状的改良;3)育种程序简单,年限短;4)变异的方向和性质不定(已有人把人工合成低聚核苷酸片段引入基因组中,以一定方式改变某一基因,进行定向诱变)。

作为一种育种方法,诱发突变技术在培育那些在种内有足够的遗传变异和由显性基因确定其特性的作物,是可有可无的或无前途的。

但是,显性突变型曾被诱发,特别是抗病型,部分由于寄生植物的基因与病原体的基因之间的相互作用。

在完全不育或无性繁殖的植物中,诱变育种是品种改良的唯一方法,例如专性无融合生殖植物,它不产生有合子胚的种子。

无融合生殖在柑橘类和某些苹果属、树莓属的种中是普通的。

诱变育种是常规育种的一个补充或在园艺植物育种某些方面潜在替代者:1)在适应性广泛的种中诱发变异性,假若进一步的杂交提供有限的变异性和改良,而品种已接近选择的极限;2)诱发一个新的特性,如果没有通过杂交能传递的已知基因源,例如抗病性、企望的生长型或自交亲和性;3)在有性繁殖中将会消失的特定突变,通过营养繁殖产生和保存;4)打破与不良的特性或基因多效影响的连锁;5)使现存的嵌合体显露和均质化,并使突变型获得稳定;6)在远缘亲本之间杂交中遏制不亲和性;7)诱发单倍体;8)在无融合生殖植物中产生过渡性有性状态。

成功的诱变育种需要:1)处理可用于筛选的大的植物群体;2)预期的特性突变率高;3)可以用视力诊断或简单测定鉴别突变的有效方法。

第二节诱变因素在诱发突变中,有两类诱变剂被使用:物理的和化学的。

物理的诱变剂有:1)紫外灯发出的紫外线(UV)照射;2)电磁辐射:X射线发生器发出的X射线;从放射性同位素钴60或铯137发出的ϒ射线;3)微粒辐射:从核反应堆发出的热中子或慢中子;从放射性同位素磷32或硫35发出的β粒子(电子)。

化学诱变剂主要用于种子繁殖植物。

较常用的有:叠氮化物、秋水仙碱、烷化剂、碱基类似物等。

1.物理的诱变因素物理诱变因素的辐射能对植物诱发化学反应,结果造成DNA结构的变化。

这些变化如果在DNA中保持重复,证明是突变。

1.1紫外线的能量和穿透力低,能成功地用于处理花粉粒。

1.2电磁辐射和中子容易穿透植物组织。

1.3X射线:辐射源是X光机。

X射线又称阴极射线,是一种电磁辐射,它不带电核,是一种中性射线。

一大部分的栽培作物用物理诱变剂诱发的突变是X射线辐射的结果。

X射线的反应在有氧时会加强。

1.4ϒ射线:辐射源是60Co和137Cs及核反应堆。

ϒ射线也是一种不带电荷的中性射线。

应用于植物育种的ϒ射线照射装置有ϒ照射室和ϒ圃场,前者用于急性照射,后者用于慢性照射。

1.5中子:辐射源为核反应堆、加速器或中子发生器。

根据中子能量大小分为超快中子、快中子、中能中子、慢中子、热中子。

在生物研究中,通常用慢中子或热中子。

热中子处理比用X射线照射更少受干扰因素的影响,如氧的浓度或温度。

对多数作物来说,包括苹果,中子是比X或ϒ射线更有效的诱变剂。

高密度中子主要造成氧独立的不可挽回的损害,包括染色体畸变。

1.6β射线:辐射源为32P和35S。

β射线是一束电子流,产生与X或ϒ射线相似的作用。

32P和35S比X射线或ϒ射线射出较快的电子。

这些放射性同位素的半衰期32P为14.3天,35S为87天。

这些同位素作为化学溶液应用时,可以在生长期树的流液中诱变。

1.7近年来,诸如激光、电子束、微波等新的诱变剂也开始在果树育种上应用。

尤其是离子辐射,诱变频率约在6.8~12.0%之间,高于ϒ射线,且能诱导几个以上的性状同时突变,应用前景广阔。

1.7.1激光辐照诱变育种激光和普通光相比,具有高方向性、高单色性和高亮度等基本特征。

因此,一旦某种激光的频率和生物体内某种物质分子振动频率相等,就会产生很强的共振,使该物质分子对这种激光产生吸收高峰。

能量的积累,引起分子内化学键断裂。

当这一分子与其它分子相互作用时,就会产生新的化学键,从而使化学性质发生改变,引起生物体性状的变异。

利用激光进行诱变育种研究,处理材料可以是植物的干种子或剥去种皮的裸胚、幼苗、根尖,也可以是未成熟的花器官、花粉及离体花药等。

常用的激光器有CO2激光、He-Ne激光、N2激光、红宝石激光等,照射剂量一般采用1~50J/cm2,时间可以短到1秒,长至数小时不等。

由于激光微束具有方向性好、光色单一、高亮度和高能量密度等特点,能准确地照射到事先选择好的细胞的某一特定部位或某一细胞器,使其产生选择性损伤,或进行显微手术,且不损伤邻近部位的细胞器或组织,从而达到某一特定的研究目的。

据报道,中科院遗传所利用激光微束把外源Gus基因导入水稻细胞,并得到瞬时表达。

王兰岚等利用激光微束切割染色体,成功地把蚕豆、小麦、玉米、大麦等的一条染色体切割成2~12个片段。

这一实验结果创建了激光显微切割高等植物染色体的技术,为进一步应用于植物染色体工程、基因定位及植物染色体片段DNA微克隆提供了可能。

可以预见,激光生物工程的崛起与发展,将有力推动植物基因工程的育种应用,使植物育种工作提高到一个新的阶段。

1.7.2离子注入诱变育种离子注入是80年代初广泛应用于金属材料表面改性的一项高新技术。

1986年中科院等离子体研究所等单位在我国率先将此项技术应用于植物育种。

能量为几十至几百keV的核能离子通过发生器注入生物体内,在其到达终位前,将同靶材料中的分子、原子发生一系列的碰撞。

通过碰撞、级联和反冲碰撞,导致靶原子移位,留下断链或缺陷。

目前,离子注入植物品种改良已涉及几乎所有主要的粮食和经济作物。

据悉,育成的两个水稻新品种晚粳D9905和S9042米质优、抗性好,至1994年累计推广3万多公顷。

由于离子注入具有刻蚀作用,可以引起细胞膜透性和跨膜电场的改变,因此离子束介导的植物转基因技术一经建立,便初获成功。

安徽农科院等单位利用该法已Gus基因导入水稻和棉花带壁细胞,并将外源潮霉素抗性基因(hph)导入水稻种胚细胞,获得了转基因植株。

低能离子束介导外源基因转移直接利用种胚做外植体,省去了原生质体制备和再生植株的麻烦,便于大量操作和取材,为植物,尤其是农作物基因工程注入了新的活力。

1.7.3空间诱变育种空间环境的显著特点是高真空、微重力和强辐射。

研究表明,植物种子由卫星、高空气球搭载经空间飞行后会发生遗传性变异,而且这种诱变作用具有普遍性。

我国自1987年以来7次利用返回式卫星搭载植物种子,从中获得了大量的变异类型,涉及到主要粮食及蔬菜作物,并已培育出一些新的突变类型和具有优良农艺性状的新品系。

利用高空气球搭载植物种子在海拔30~40千米高空滞留,同样可以获得优良的种质。

以上这几种新的诱变手段的研究与应用的时间不长,因此能否最终成为新的诱变因素或诱变源,不仅需要进一步验证其所依赖的理论机制,而且更需要从植物育种实践中进行鉴定,尤其是看能否高效率诱变出使用传统因素难以获得的突变体,或者迄今自然界罕见的种质材料。

物理诱变剂应用最广泛的是X射线、ϒ射线、β射线和中子等。

研究证明,果树方面按突变频率的大小,其顺序为中子>ϒ射线(或X射线)>β射线(Bender,1970)。

如改良苹果杂种时中子处理比X射线产生更大比例的二叉枝,用中子处理科兰特苹果得到全红突变体,X射线处理只能得到扇形变异。

据统计国际上育成的果树新品种中, 射线育成的占67.6%,X 射线育成的占14.8%,中子育成的占5.9%,其他物理诱变剂育成的占2.9%。

1.化学诱变剂化学诱变剂在染色体中通过直接的化学作用发挥它们的功能。

2.1秋水仙碱是由百合科的秋水仙的营养器官和种子中提取出来的一种药剂。

它的作用在于细胞分裂时可以抑制微管的聚合过程,阻止纺锤丝的形成,使染色体不能分向两极,从而产生染色体数目加倍的细胞。

主要用于诱变多倍体。

秋水仙碱处理草莓和杏曾诱发了多倍体、非整倍体和形态变异。

2.2烷化剂:烷化剂是诱发突变最重要的一类突变剂。

它具有一个或多个活性烷基,这些烷基能置换DNA分子内的氢原子,在鸟嘌呤上最容易发生于N7位上置换,腺嘌呤则在N3位上置换,从而引起突变。

但也可能通过丢失嘌呤或更厂的断片,这样在DNA模板上就留下一个缺位,在复制时可能错误地选择一个碱基而产生异构型,导致性状突变。

法国L.Decourtye等用0.1%EMS 处理苹果生长的枝条,获得早熟、果大、颜色好的新品种Belrene。

越南育种学家佣.02~0.04的MNH处理种子,获得2个枣子的变异种Daotien和Mahong。

常用的烷化剂有硫酸二乙脂(DES)、甲基磺酸乙酯(EMS)、甲基磺酸甲酯(MMS)、异丙基甲烷磺酸酯(iPMS)、芥子气类。

另外,亚硝基乙基脲烷(NEU)、亚硝基乙基脲(NEH)、亚硝基甲基脲烷(NMU)、乙烯亚胺(EI)、1,4-双重氮乙酰丁烷,也是有效的诱变剂,但是有毒,应用危险,是潜在致癌物质。

2.3核酸碱基类似物:这一类化学物质具有与DNA碱基类似的结构,它们可以在不妨碍DNA复制的情况下,作为组成DNA的成分渗入到DNA分子中去,使DNA复制时发生偶然的配对上的错误,从而引起有机体的变异。

常用的有5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BUdR)、2-氨基嘌呤(AP)马来酰肼(MH)等。

2.4其它诱变剂:报道过的药剂种类很多,如亚硝酸在pH5以下的缓冲液中,能使DNA分子的嘌呤和嘧啶基脱去氨基,使核酸碱基发生结构和性质改变,造成DNA复制紊乱。

此外尚有报道羟胺(NH2OH)、氮蒽、叠氮化钠(NaN3)等物质,均能引起染色体畸变和基因突变。

尤其是叠氮化物在一定条件下可获得较高的突变频率,而且相当安全,无残毒。

化学诱变剂与辐射的作用不同。

辐射可以产生较大的染色体突变,而化学诱变剂引起的染色体断裂局限于某些部位,较高的断裂出现在异染色质位置上。

某些化学诱变剂能产生更多的可见突变。

如用乙烯亚胺和环氧乙烷处理后,有价值的突变比射线处理出现的多,对一般作物其诱变效果有时甚至高于电离射线,因此有“辐射类似物”或超诱变剂之称。

但化学诱变剂的效应比较迟缓,诱发的断裂有时保持一个较长的潜伏期,特别是应用到植物的营养部分作用不明显。

其原因可能是药剂处理不是在分生细胞发育的最适合的时期,且突变体中大多是由染色体畸变引起的,从而使化学诱变剂在果树上的应用远不如物理诱变剂广泛。

近年来,随着离体培养技术的发展,化学诱变剂的应用逐渐受到重视,尤其在培养基中加入化学诱变剂能增加遗传变异这一特点,引起育种学家的关注。

相关文档
最新文档