苏科版七年级上册数学知识点整理
苏科版七年级数学上册全册知识点归纳
![苏科版七年级数学上册全册知识点归纳](https://img.taocdn.com/s3/m/11caa72b7fd5360cba1adbc0.png)
苏科版七年级数学上册全册知识点归纳第2章 有理数1.像10、13、155、117.3、0.55%这样的数是正数.它们都是比0大的数。
像-2、-13、-155、-117.3、0.55%这样的数是负数.它们都是比0小的数。
特别提醒:0既不是正数,也不是负数。
2.正整数,零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数。
3.有理数:能够写成分数形式nm 的数叫做有理数。
有限小数和循环小数都是有理数。
无理数:无限不循环小数叫做无理数。
实数:有理数和无理数统称为实数。
4.数轴:规定了原点、正方向和单位长度的直线叫作数轴;数轴有三要素:原点、单位长度和正方向,三者缺一不可 。
数轴上的点和实数具有一一对应的关系。
5.在数轴上表示的两个数,右边的数总比左边的大.正数都大于零,负数都小于零,正数大于负数.两个正数,绝对值大的正数大;两个负数,绝对值大的负数小。
6.绝对值:数轴上表示一个数的点与原点的距离叫做这个数的绝对值。
相反数:符号不同、绝对值相同的两个数互为相反数,其中一个数叫做另一个数的相反数。
7.绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
用字母表示:⎪⎩⎪⎨⎧-==)0()0(0)0(||<>a a a a a a8.有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加,(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,(3)一个数同0相加,仍得这个数。
有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c)9.有理数减法法则:减去一个数,等于加上这个数的相反数。
10.有理数的乘法法则:两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定。
苏科版数学教材七年级上学期知识点汇编
![苏科版数学教材七年级上学期知识点汇编](https://img.taocdn.com/s3/m/3cef444de418964bcf84b9d528ea81c758f52e5c.png)
苏科版数学知识点汇编(七年级上册)第二章:有理数一、实数与数轴1、整数分为正整数,0和负整数。
正整数和0统称自然数。
能被2整除的整数称为偶数,被2除余1的整数叫作奇数。
2、分数:可以写成两个整数之比的不是整数的数,叫做分数。
分数都可以转化为有限小数或循环小数。
反之,有限小数或循环小数都可以转化为分数。
3、有理数:整数和分数统称有理数。
4、无理数:无限不循环小数称为无理数。
5、实数:有理数和无理数统称为实数。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无理数负分数正分数分数负整数正整数整数有理数实数0 6、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
7、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
二、绝对值与相反数8、绝对值:在数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。
设数轴上原点为O ,点A 表示的数为a ,则a A =O ,设数轴上点A 表示的数为a ,点B 表示的数为b ,则b a -=AB9、一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值为0.反过来,绝对值等于它本身的数为非负数(正数或0),绝对值等于它的相反数为非正数(负数或0).10、相反数:符号不同,绝对值相等的两个数互为相反数。
0的相反数是0.在数轴上互为相反数的两个数表示的点,分居在原点两侧,并且到原点的距离相等。
相反数等于本身的数只有0.在一个数前面添上“+”号还表示这个数,在一个数前面添上“—”号,就表示求这个数的相反数。
二、实数大小的比较11、在数轴上表示两个数,右边的数总比左边的数大。
12、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
三、实数的运算13、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
苏科版数学七年级上学习笔记(有理数)(整章思维导图)
![苏科版数学七年级上学习笔记(有理数)(整章思维导图)](https://img.taocdn.com/s3/m/8342286e08a1284ac950433a.png)
苏科版数学七年级上学习笔记(有理数)
泗洪县龙集中学尹寒整理提供
思维导图
有理数:
绝对值性质
1.有关概念
倒数:
定义:
乘方性质
按定义分类:
2. 分类
按正、负分类
3. 大小比较利用数轴比较大小:在数轴上表示的两个数,右边的数总比
左边的数大
利用绝对值比较大:两个负数绝对值大的反而小。
加法:同号两数相加;异号两数相加;互为相反数的两数相加;与0相加
减法:减去一个数,等于加上这个数的相反数
乘法:两数相乘,同号得正,异号得负,并把绝对值相乘
法则除法:除以一个不为0的数,等于乘这个数的倒数
先乘方,再乘除,最后加减
混合运算同级运算按从左到右的顺序进行
如果有括号,先进行括号内的运算
4.运算
交换律加法交换律:a+b=b+a
乘法交换律:ab=ba
运算律结合律:加法结合律:(a+b)+c=a+(b+c)
乘法结合律:(ab)c=a(bc)
分配律: a(b+c)=ac+bc
数学知识:
毕达哥拉斯学派眼中的数:“l”是数的第一原则,万物之母,也是智慧;“2”是对立和否定的原则,是意见;“3’’毒万物的形体和形式;“4’’是正义,是宇宙创造者的象征;“5”是雄性与雌性的结合,也是婚姻;“6”是神的生命,是灵魂;“7”是机会;“8”是和谐,也是爱情和友谊;“9”是理性和强大:“10”包容了一切数目.是圆满和美好.。
苏教版七年级【数学】上册知识点归纳
![苏教版七年级【数学】上册知识点归纳](https://img.taocdn.com/s3/m/c037279acf2f0066f5335a8102d276a200296026.png)
苏教版七年级【数学】上册知识点归纳
- 单元一:数的基本概念
- 自然数
- 整数
- 有理数
- 实数
- 单元二:数的运算
- 加法
- 减法
- 乘法
- 除法
- 单元三:分数
- 分数的概念
- 真分数和假分数
- 分数的化简
- 分数的加减法
- 单元四:百分数
- 百分数的概念
- 百分数与分数的转化
- 百分数的加减法
- 百分数的乘除法
- 单元五:图形的认识
- 点、线、面的基本概念
- 直线、射线、线段
- 角度的认识
- 单元六:平面图形的性质
- 三角形的分类
- 正方形、长方形、平行四边形- 五边形、六边形
- 单元七:相似图形
- 相似图形的概念
- 相似图形的判定
- 相似图形的性质
- 单元八:比例
- 比例的概念
- 比例的性质
- 比例的简化与扩大
- 比例的应用
- 单元九:数的应用
- 实际问题的数学化
- 列方程解应用问题
- 一次函数关系
- 图表的读取和应用
以上是苏教版七年级【数学】上册的知识点归纳。
每个单元包含了数学的基本概念、运算方法以及相关应用。
通过学习这些知识点,同学们将建立起数学的基础,并能够应用于解决实际问题。
七年级上数学苏科版知识点
![七年级上数学苏科版知识点](https://img.taocdn.com/s3/m/cacac43903020740be1e650e52ea551811a6c970.png)
七年级上数学苏科版知识点苏科版七年级数学课程是初中数学学习的重要阶段,也是为后续数学学习奠定良好基础的阶段。
在七年级上,学生需要掌握以下数学知识点。
一、小数小数是指整数以后的数字,通常用小数点分割整数和小数部分。
比如2.5就是一个小数。
在学习小数的时候,需要注意以下几个方面:1.小数的基本概念:什么是小数,小数点的位置和读法。
2.小数的加减乘除运算。
3.小数与分数的转化,比如将0.5转化为分数1/2,将2/5转化为小数0.4等。
二、代数式代数式是由变量、数字和运算符号组成的符号集合。
代数式是代数运算的基础,学习代数式有助于提高学生的抽象思维能力和数学能力。
在学习代数式的时候,需要掌握以下知识点:1.变量和常数的概念。
2.代数式的加减乘除运算,以及含有括号的复杂代数式的运算。
3.代数式的应用,比如解一元一次方程。
三、平面图形平面图形是由各种线段和点组成的图形。
常见的平面图形包括三角形、四边形、圆等。
在学习平面图形的时候,需要掌握以下知识点:1.各种平面图形的名称和性质,比如三角形是由三条线段组成的图形,有三个内角等等。
2.平面图形的周长和面积的计算。
3.平面图形的分类和判断,比如判断一个四边形是否为矩形。
四、数据的统计和分析数据的统计和分析是对一组数据进行整理、分类、分析和展示。
在学习数据的统计和分析的时候,需要掌握以下知识点:1.数据的收集和整理,比如对一组数进行排序。
2.数据的处理和分析,比如计算数据的平均值和中位数等。
3.数据的展示,比如用图表展示一组数据的变化情况。
五、函数函数是一种数学关系,它把一个数集合映射到另一个数集合。
在学习函数的时候,需要掌握以下知识点:1.函数的基本概念和符号表示法。
2.函数的图像、定义域和值域等基本属性。
3.函数的应用,比如解实际问题时需要建立函数模型。
六、几何体几何体是空间中由各种平面图形组成的图形,在学习几何体的时候,需要掌握以下知识点:1.各种几何体的名称和性质,比如圆柱体、圆锥体、球体等。
苏教版七年级数学上册基本知识点
![苏教版七年级数学上册基本知识点](https://img.taocdn.com/s3/m/839e727d59fafab069dc5022aaea998fcc2240c2.png)
苏教版七年级数学学问点一、有理数1、正数:比0大的数是正数;2、负数:比0小的数是负数;3、0既不是正数也不是负数。
4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。
5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:1)数轴的三要素:原点、正方向和单位长度,缺一不行。
2)数轴是一条直线,可以向两边无限延长。
3)原点的选定、正方向的取向、单位长度大小的确定都是依据须要“规定〞的。
6、数轴的画法1)画:画一条程度直线。
2)取:在直线上选取一点为原点,并在原点的下面标上“0〞。
3)定:确定正方向,画上箭头〔向右为正〕。
4)选:依据须要选取适当的长度作为单位长度。
依据须要从原点右向左选取各点。
7、数轴上的点及有理数的关系1)任何一个有理数都可以数轴的一个点来表示。
2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。
3)数轴上的点右边的点总比左边的点表示的数大(右边为数轴正方向)。
8、最小的正整数是“1〞;最大的负正数是“-1〞;没有最大的正整数,也没有最小的负整数。
9、肯定值的概念1)肯定值的几何意义:一个数a的肯定值就是数轴上表示a的点及原点的间隔,数a的肯定值记作“│a│〞。
2)肯定值的代数意义:一个正数的肯定值是它本身;一个负数的肯定值是它的相反数;0的肯定值是0.也就是说:假如a>0那么│a│=a;假如a< 0那么│a│=-a;假如a=0那么│a│=03) 肯定值的非负性:任何一个有理数的肯定值都不行能是一个负数,即非负数。
│a│≥04〕要求一个数〔或一个代数式〕的肯定值,首先应推断这个数〔或这个代数式的值〕是正数、0,还是负数。
再依据肯定值的意义确定去掉肯定值符号后的形式。
如:是正数,就等于它的本身;是负数,就等于它的相反数。
是0,就等于0。
5〕0是肯定值最小的有理数;肯定值等于同一正数的有理数有两个,它们互为相反数。
苏教版七年级上册数学知识点整理
![苏教版七年级上册数学知识点整理](https://img.taocdn.com/s3/m/5511b61fa6c30c2259019e29.png)
《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
苏科版数学七年级上第3章 代数式知识点复习经典总结(全)
![苏科版数学七年级上第3章 代数式知识点复习经典总结(全)](https://img.taocdn.com/s3/m/a56f365ec8d376eeaeaa31fb.png)
用字母表示数一、字母表示数的意义:可以使问题中的数量关系表示的更明确,简洁,更具有一般性。
注意:(1)字母与字母相乘,字母与数字相乘时,“×”通常省略不写。
例如:a ×b 可以写成 a ·b 或ab ;(2)数字与字母相乘时,把数字放到字母的前面。
数字1可以省略不写。
例如:a 的9倍,可以写成9a ; (3)除法运算时通常要写成分数的形式。
例如:s ÷v ,可以写成vs ;(4)同一个问题中,相同的字母只表示相同的量,不同的量必须用不同的字母表示。
在不同的问题中,同一字母可以表示不同的量;(5)某些特定的字母表示特定的数,如:用π表示圆周率(不是字母);相关例题:十位数字是b,个位数字是c,则这个两位数是百位数字是a,十位数字是b,个位数字是c,则这个三位数是 (提示:456=4×100+5×10+6×1)如果n 表示任意一个整数,用含n 的式子, 表示三个连续的整数: 表示三个连续的偶数: 表示三个连续的奇数:m与n之和与10的商:m与n之和的平方:m与n两数的平方和:我校现有学生x人,预计明年将增加15%,则我校明年学生人数为?某数学考试,总人数为m人,不及格人数n人,则及格率为?某车间12小时加工x个零件,每小时加工多少零件?一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为?某超市进了一批商品,每件进价a元,若要获利25%,则每件商品的进价是?某种服装每件的标价是a元,按标价的七折出售时,仍可获利10%,则这件服装的进价为?代数式代数式的定义:用“+”“-”“ ×”“ ”和“乘方”“开方”等运算符号,用运算符号把数或表示数的字母连结而成的式子,叫代数式。
其中“=”“<”“>”“≠”等符号不是运算符号,因此含有这些符号的式子不是代数式)。
像a-1、a+6、40-m+n 、80%mn 、0.015m(n-20)、t s、2a 2,这样的式子都是代数式。
苏科版七年级数学上册第三章 代数式知识点归纳
![苏科版七年级数学上册第三章 代数式知识点归纳](https://img.taocdn.com/s3/m/3b8dd57fa5e9856a5712600f.png)
苏科版七年级数学上册第三章代数式知识点归纳(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。
b.确定按这个字母降幂排列,还是升幂排列。
3、整式: 单项式和多项式统称为整式。
4、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a ; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×211应写成23a ;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式;(6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .知识点二:整式的加减运算1.同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。
(同类项与系数无关,与字母排列的顺序也无关)。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
不能合并的项单独作为一项,不可遗漏3.整式加减实质就是去括号,合并同类项。
注:去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
4、几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b>0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是:-a2 .2018-2019学年七年级上数学《代数式》单元测试卷班级姓名一、选择题:(36分)1.计算-2x2+3x2的结果是()A.-5x2B.5x2C.-x2D.x22.足球每个m元,篮球每个n元,桐桐为学校买了4个足球,7个篮球共需要( )A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元3.已知代数式-3x m-1y3与y n x n+1是同类项,那么m,n的值分别是( )A. n=-3,m=-1B. n=-3,m=-3C. n=3,m=5D. n=2,m=3第11题图4.下列各组代数式中,是同类项的是( )A .5x 2y 与15xy B .-5x 2y 与15yx 2 C .5ax 2与15yx 2 D .83与x 35.下列式子合并同类项正确的是 ( )A .3x +5y =8xyB .3y 2-y 2=3C .15ab -15ba =0D .7x 3-6x 2=x 6.同时含有字母a 、b 、c 且系数为1的五次单项式有( )A .1个B .3个C .6个D .9个 7.右图中表示阴影部分面积的代数式是 ( )A .ab +bcB .c(b -d)+d(a -c)C .ad +c(b -d)D .ab -cd 8.圆柱底面半径为3 cm ,高为2 cm ,则它的体积为( )A .97π cm 3B .18π cm 3C .3π cm 3D .18π2 cm 39.下面选项中符合代数式书写要求的是( )A .213cb 2aB .ay·3C .24a bD .a×b+c10.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果 是( )A.1B.23b +C.23a -D.-111.在排成每行七天的月历表中取下一个33⨯方块(如图所示).若所有日期数之和为189,则n 的值为( )A.21B.11C.15D.912. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图 形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中 一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.30二、填空题:(30分)13.体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元,则代数式500-3a-2b 表示的意义为 。
(苏科版)初一年级上册数学知识点总结
![(苏科版)初一年级上册数学知识点总结](https://img.taocdn.com/s3/m/591b841071fe910ef02df803.png)
(苏科版)初一年级上册数学知识点总结一、:代数初步知识。
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、:几个重要的代数式(m、n表示整数)。
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.三、:有理数。
1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.四、:有理数法则及运算规律。
初一数学上册苏教版知识点
![初一数学上册苏教版知识点](https://img.taocdn.com/s3/m/5c68452ceef9aef8941ea76e58fafab069dc44d8.png)
初一数学上册苏教版知识点七年级数学知识点变量之间的关系一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。
⑤总价=单价×总量。
⑥平均速度=总路程÷总时间二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.初一数学知识点一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
苏教版七年级数学上册知识点总结(苏科版)
![苏教版七年级数学上册知识点总结(苏科版)](https://img.taocdn.com/s3/m/e808514b793e0912a21614791711cc7931b77800.png)
苏教版七年级数学上册知识点总结(苏科版)知识点总结第1章数学与我们同行一、生活数学1、生活中的数学观察、积累生活中常见的数学符号,了解它们表达的意义如:身份证号码、邮政编码……2、生活中的图形观察、认识生活中的图形,感知它们与数学知识的联系如:城市建筑群、超市的商品……二、活动思考1、数学活动——动手操作、探索新知数学活动包括观察、试验、操作、猜想、归纳等。
2、数学思考——规律探索数形结合、从特殊到一般的思想方法图形规律、数字规律三、思想方法转化思想、建模思想、归纳思想、从特殊到一般……四、常见题型探究数字、图形规律题实践操作题图案设想题简单的数字推理题第二章有理数1、正数和负数1、正数和负数的概念1)负数:比小的数。
2)正数:比大的数。
既不是正数,也不是负数。
3)注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示时,-a仍是。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)。
②正数偶然也能够在前面加“+”,偶然“+”省略不写。
所以省略“+”的正数的标记是正号。
2、具有相反意义的量若正数透露表现某种意义的量,则负数可以透露表现具有与该正数相反意义的量,比方:零上8℃透露表现为:+8℃;零下8℃透露表现为:-8℃。
3、透露表现的意义1)表示“ 没有”,如教室里有个人,就是说教室里没有人;(2)是正数和负数的分界线,既不是正数,也不是负数。
2、有理数1、有理数的概念1)正整数。
负整数统称为整数(和正整数统称为自然数)。
(2)正分数和负分数统称为分数。
3)正整数。
负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
2、理解:只有能化成分数的数才是有理数。
1)π是无限不循环小数,不能写成分数形式,不是有理数。
(2)②有限小数和无限循环小数都可化成分数,都是有理数。
3、注意:引入负数以后,奇数和偶数的规模也扩展了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
苏科版数学七年级上学习笔记(有理数)(有理数的乘方)
![苏科版数学七年级上学习笔记(有理数)(有理数的乘方)](https://img.taocdn.com/s3/m/05971515c77da26925c5b0fe.png)
苏科版数学七年级上学习笔记(有理数)
泗洪县龙集中学尹寒整理提供
有理数的乘方
教材知识全解
知识点一有理数乘法的意义
1.定义:求凡个相同因数a的积的运算叫做乘方,乘方运算的结果叫做幂.其中a叫做底数,n叫做指数
2 实质:求相同因数的积的运算
3.图示:
4.读法:看作运算读作:a的n次方
看做结果:读作a的n次幂
知识点二有理数的乘法运算和符号法则
知识点三科学计数法
经典例题全解
题型一有理数偶次幂的非负性的运用
提示:
题型二求用科学计数法表示的数的原数
提示:
易错题全解
易错点:对幂的相关定义理解不透彻而致错。
苏科版七年级数学上册第四章 一元一次方程章节知识点归纳复习
![苏科版七年级数学上册第四章 一元一次方程章节知识点归纳复习](https://img.taocdn.com/s3/m/f434657eccbff121dd3683e8.png)
1.定义:方程与一元一次方程
含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
题判断一元一次方程,确定一元一次方程中字母的值。
2.方程的解与解方程
使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
(6)按比例分配问题
甲:乙:丙=a:b:c,则设一份为x,甲为ax,乙为bx,丙为cx
全部的数量=各个份数之和
(7)若干应用问题等量关系的规律
(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。增长量=原有量×增长率现在量=原有量+增长量
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:
化简方程----------分数基本性质
去 分母----------同乘(不漏乘)最简公分母
去 括号----------注意符号变化
移 项----------变号
合并同类项--------合并后注意符号
等量关系_________________________
(4)行程问题
第四章一元一次方程知识点总结苏科版七年级数学上册
![第四章一元一次方程知识点总结苏科版七年级数学上册](https://img.taocdn.com/s3/m/b49b939bd05abe23482fb4daa58da0116c171f0f.png)
一元一次方程知识点总结1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就直接代入”!5.解方程:求方程解的过程叫做解方程.6.一元一次方程:只含有一个未知数,并且未知数的次数是方程,叫做一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0). 方程的解的讨论:(1)当0a ≠时,方程有唯一解b x a=; (2)当0,0a b =≠时,方程无解;(3)当0,0a b ==时,方程有无数个解。
8.一元一次方程解法的一般步骤:一元一次方程应用题:常用到的两个方法:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.解一元一次方程应用题的步骤分析:(1)审:仔细读题,理解题意,找到它们之间的关系,重点部分进行标注(可以画横线,画圈等)(2)设;设未知数,一般题目问什么就设什么,部分题目可以间接设,还有一些技巧:设比和是后面的为x,设小不设大,还有设而不求等(3)列:列方程,列方程几种思路;根据题意来列方程,例如行程问题中的线段图;“比”和“是”是“=”意思,可以帮助我们列等式;总结的一些常用公式,下面重点讲解,要背(4)解:解方程不要跳步骤容易出错,算出有问题的答案要去算一遍必要时质疑列的方程是否是正确的(5)检验:检验算出的答案是否符合题意,注意题目的单位是否统一(6)答:有始有终10.一元一次方程常用公式总结:知识点1:行程问题(1)基本量之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)相遇问题甲走的路程+乙走的路程=总路程相遇路程=速度和×相遇时间(3)追及问题追击路程=速度差×追击时间同地不同时出发:前者走的路程=追着走的路程同时不同地出发:前者走的路程+两者之间的距离=追着走的路程(4)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺水速度逆水速度=2×水速(5)环形跑道问题从同一地出发,反向而行,相遇一次,两者路程之和等于一圈路程从同一地出发,同向而行,相遇一次,速度快的路程速度慢的路程=一圈路程知识点2:工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=1(单位1)知识点3:分配问题这里的分配问题包括:和差倍分问题、配套问题、劳力调配问题、分配问题(1)和、差、倍、分问题(生产、做工等各类问题)比例分配问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
苏教版七年级上册数学知识点归纳总结
![苏教版七年级上册数学知识点归纳总结](https://img.taocdn.com/s3/m/7839aaa44bfe04a1b0717fd5360cba1aa8118cef.png)
一、整数1.1 整数的概念整数是由自然数、0以及它们的负数组成的数集,用来表示有向量的数量。
1.2 整数的比较与运算比较整数大小时,可以通过数轴上的位置来判断。
整数的加减法遵循符号相同则相加,符号不同则相减的规则。
二、有理数2.1 有理数的概念有理数包括整数和分数,是可以表示为两个整数之比的数。
2.2 有理数的加减乘除有理数的加减乘除遵循相同大小的数加减得到的结果仍然是同符号的数,相乘相同符号得正,相乘不同符号得负的规则。
有理数的除法可以转化为乘法运算。
三、代数3.1 代数表达式代数表达式是由数字、代数符号和运算符组成的式子,可以包括单项式、多项式等。
3.2 代数式的加减乘除代数式的加减乘除遵循相同项相加减、同底数指数相乘、指数相除的规则。
四、方程与方程组4.1 方程的概念方程是含有未知数的等式,通过求解可以得到未知数的值。
4.2 一元一次方程一元一次方程是形如ax+b=0的方程,可以通过逆运算求解出未知数的值。
4.3 解方程的基本原则解方程时,可以通过逐步化简、消去分母、合并同类项等步骤来求解未知数的值。
五、比例和比例方程5.1 比例的概念比例是两个等量的比值关系,可以表示为a:b=c:d。
5.2 比例的性质和运算比例的性质包括等比例和反比例,比例的运算包括比例乘除的运算法则。
六、百分数6.1 百分数的概念百分数是每百份之一的比例,可以表示为百分数/100=实际比例。
6.2 百分数的应用百分数可以用来表示比例关系、增减量等,应用广泛。
七、不等式7.1 不等式的概念不等式是含有大于、小于、大于等于、小于等于等符号的数学式子。
7.2 不等式的性质和解法不等式可以通过加减消去、移项、乘除等方法求解未知数的范围。
八、数据的收集和整理8.1 统计数据的方式统计数据可以通过调查、观察、抽样等方式进行收集。
8.2 统计数据的整理和分析统计数据可以通过频数、频率、累积频数等方式进行整理和分析。
九、图形的认识和绘制9.1 基本图形的认识和性质基本图形包括直线、线段、射线、角等,具有各自的特点和性质。
苏科版-数学-七年级上册-知识点解读:科学记数法和近似数
![苏科版-数学-七年级上册-知识点解读:科学记数法和近似数](https://img.taocdn.com/s3/m/dac684d8ddccda38366baf9b.png)
知识点解读:科学记数法和近似数要点梳理:科学记数法:一般地,一个数可以表示成a×10n的形式,其中1≤a<10,n是整数,这种记数方法叫做科学记数法.准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等.近似数是与实际非常接近的数,但与实际数还有差别.如我国有12亿人口,地球半径为6.37×106m等.注意:1.对于数目很大的数用科学记数法的形式表示起来又科学、又简单。
2.科学记数法的形式是由两个数的乘积组成的。
其中一个因数为a(1≤a<10),另一个因数为10n(n是比A的整数部分少1的正整数)。
3.用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。
当有了负整数指数幂的时候,小于1的正数也可以用科学记数法表示。
例如:0.00001=10的负5次方,即小于1的正数也可以用科学记数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
4.在a×10n中,a的范围是1≤a<10,即可以取1但不能取10.而且在此范围外的数不能作为a.如:1300不能写作0.13×104.5.有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。
举几个例子:3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。
6.精确度:即数字末尾数字的单位。
比如说:9800.8精确到十分位(又叫做小数点后面一位),80万精确到万位。
9×105精确到10万位(总共就9一个数字,10n看作是一个单位,就和多少万是一个概念)。
例1 填空:(1)地球上的海洋面积为36100000千米2,用科学记数法表示为__________.(2)光速约3×108米/秒,用科学记数法表示的数的原数是__________.点拨:(1)用科学记数法写成a×10n,注意a的范围,原数共有8位,所以n=7.原数有单位,写成科学记数法也要带单位.(2)由a×10n还原,n=8,所以原数有9位.注意写单位.解:(1)3.61×107千米2. (2)300000000米/秒.注意:1.科学记数法形式与原数互化时,注意a 的范围,n 的取值.2.转化前带单位的,转化后也要有单位,一定不能漏.例2 分别用科学记数法表示下列各数.(1)100万;(2)10000;(3)44;(4)0.000128-.点拨:(1)1万=10000,可先把100万写成数字再写成科学记数法的形式.(2)(3)(4)直接写成科学记数法形式即可.解:(1)100万=1000000=1×106=106.(2)10000=104.(3)44=4.4×10.(4)40.000128 1.2810--=-⨯说明:1.在a ×10n 中,当a =1时,可省略,如:1×105=105.2.对于44和4.4×101虽说数值相同,但写成4.4×10并非简化.所以科学记数法并非在所有数中都能起到简化作用,数位较少的数,用原数较方便.3.对于10n ,n 为几,则10n 的原数就有几个零.例3 设n 为正整数,则10n 是 ( )A .10个n 相乘B .10后面有n 个零C .a =0D .是一个(n +1)位整数点拨:A 错,应是10n 表示n 个10相乘;B 错,10n 共有n 个零,10中已有一个零,故10后面有(n -1)个零;C 当a =1时,a ×10n =1×10n =10n ,可有1.若a =0,a ×10n =0;D 在10n 中,n 是用原数的整数位数减1得来的,故原数有(n +1)位整数.解答:D.例4 判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm 的圆的周长是31.4cm ;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长7.8%.解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以82.5一般是近似数;(2)一万二千是近似数;(3)10是准确数,因为3.14是π的近似值,所以31.4是近似数;(4)80000万是近似数;(5)1999是准确数,7.8%是近似数.说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.2.产生近似数的主要原因:(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数.例5下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)38200;(2)0.040;(3)20.05000;(4)4×104分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象0.040有三位小数就精确到千分位;像20.05000就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.(2)0.040精确到千分位(即精确到0.001)有两个有效数字4、0.(3)20.05000精确到十万分位(即精确到0.00001),有七个有效数字2、0、0、5、0、0、0.(4)4×104精确到万位,有一个有效数字4.说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例6下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?(1)70万;(2)9.03万;(3)1.8亿;(4)6.40×105.分析:因为这四个数都是近似数,所以(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.解:(1)70万. 精确到万位,有2个有效数字7、0;(2)9.03万.精确到百位,有3个有效数字9、0、3;(3)1.8亿.精确到千万位,有2个有效数字1、8;(4)6.40×105.精确到千位,有3个有效数字6、4、0.说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90300,因为“3”在百位上,所以9.03万精确到百位.。
苏科版七年级上下册数学知识点总结
![苏科版七年级上下册数学知识点总结](https://img.taocdn.com/s3/m/ee64e484227916888586d75e.png)
第二章有理数一、正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:二、有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三、数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。
化简得-5a-b);⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)6.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
绝对值⒈绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。
)②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。
)3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以,a取任何有理数,都有|a|≥0。
即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0;⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;⑶任何数的绝对值都不小于原数。
即:|a|≥a;⑷绝对值是相同正数的数有两个,它们互为相反数。
即:若|x|=a(a>0),则x=±a;⑸互为相反数的两数的绝对值相等。
即:|-a|=|a|或若a+b=0,则|a|=|b|;⑹绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b或a=-b;⑺若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且b=0。
(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)4.有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
5.绝对值的化简①当a≥0时, |a|=a ;②当a≤0时, |a|=-a6.已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
有理数的加减法1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。
即:⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-b=a+(-b)。
5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”6.有理数加减混合运算中运用结合律时的一些技巧:Ⅰ.把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)=-33+18-15-1+23 (省略加号和括号)=(-33-15-1)+(18+23) (把符号相同的加数相结合) =-49+41 (运用加法法则一进行运算) =-8 (运用加法法则二进行运算)Ⅱ.把和为整数的加数相结合 (凑整法) (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法)=6.6-5.2+3.8-2.6-4.8 (省略加号和括号)=(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合) =4-10+3.8 (运用加法法则进行运算)=7.8-10 (把符号相同的加数相结合,并进行运算) =-2.2 (得出结论)Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)-53-21+43-52+21-87 原式=(-53-52)+(-21+21)+(+43-87)=-1+0-81=-181Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-343)+(-381)-(-1032)-(+1.25) 原式=(+81)+(+343)+(-381)+(+1032)+(-141)=81+343-381+1032-141 =(343-141)+(81-381)+1032=221-3+1032 =-3+1361=1061Ⅴ.把带分数拆分后再结合(先拆分后结合) -351+10116-12221+4157原式=(-3+10-12+4)+(-51+157)+(116-221)=-1+154+2211=-1+308+3015-307Ⅵ.分组结合2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0Ⅶ.先拆项后结合(1+3+5+7...+99)-(2+4+6+8 (100)有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三) 法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a ·a1=1(a ≠0),就是说a 和a 1互为倒数,即a 是a 1的倒数,a1是a 的倒数。