大学物理(下册)知识要点说明

合集下载

大学物理下册知识点总结

大学物理下册知识点总结

大学物理下册学院:姓名:班级:第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。

气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。

垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。

单位 Pa(2)体积V:从几何角度来描写状态。

分子无规则热运动所能达到的空间。

单位m 3(3)温度T:从热学的角度来描写状态。

表征气体分子热运动剧烈程度的物理量。

单位K。

二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV RTM'=;P nkT=8.31JR k mol=g;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=g四、理想气体压强公式:23ktp nε=212ktmvε=分子平均平动动能五、理想气体温度公式:21322ktmv kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。

2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。

5.一个分子的平均动能为:2kikTε=五. 理想气体的内能(所有分子热运动动能之和)1.1mol理想气体2iE RT=5.一定量理想气体(2i mE RTMνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。

大学物理下知识点总结

大学物理下知识点总结

电流分布 直 无限长 电 流 半无限长
导线所在直线上
圆 圆心处 电 流 弧电流圆心 长直载流密绕螺线管 载流密绕细螺绕环
磁场分布
B μ0 I 2πa
B 0I 4 a
B0
BO
0 I
2R
BO
0 I
2R
2
B内 0nI B内 0nI
B外 0 B外 0
1、B 、H 关系:
磁介质概要
对各向同性磁介质: B H
L L
di dt
(1)自感磁能:Wm
1 2
LI 2
(2)磁能密度:wm
1 2
B2
1 H 2
2
1 BH 2
磁能:Wm wmdV V
6、Maxwell位移电流假说: 实质:变化电场→ 磁场
平板电容器中总位移电流:
Jd
D t
Id
C dU dt
0 S板
dE dt
全电流定律:
H dl
L
Ic Id
n
点电荷系场: u ui 无连限续大带或电无体限场长: 带ui电1 体q du不能q 使4d用q0r该(方u法 0)
计算量
q
E
4
r2
0
r0
E
i
qi
40ri2
r0i
dq
E 40r 2 r0
1
S
E dS
0
qi
s内
Up
U0 E dl p
q U
4 0r
U
i
qi
4
0
ri
U
dq
40r
Q1 ,R1 Q2 ,R2 R1 R2
场强分布
E 2 0a

《大学物理下》重要知识点归纳

《大学物理下》重要知识点归纳

《大学物理下》重要知识点归纳第一部分一、简谐运动的运动方程: 振幅A : 取决于初始条件 角频率ω:反映振动快慢,系统属性。

初相位ϕ: 取决于初始条件二、简谐运动物体的合外力: (k : 比例系数) 简谐运动物体的位移:简谐运动物体的速度: 简谐运动物体的加速度: 三、旋转矢量法(旋转矢量端点在x 轴上投影作简谐振动)矢量转至一、二象限,速度为负矢量转至三、四象限,速度为正四、振动动能: 振动势能: 简谐振动总能量守恒.....: 五、平面简谐波波函数的几种标准形式:][)(cos o u x t A y ϕω+= ][2 cos o x t A ϕλπω+=0ϕ:坐标原点处质点的初相位 x 前正负号反映波的传播方向六、波的能量不守恒...! 任意时刻媒质中某质元的 动能 = 势能 !)(cos ϕω+=t A x202)(ωv x A +=Tπω2=mk =2ω)(cos ϕω+=t A x )(sin ϕωω+-==t A dtdxv )(cos 222ϕωω+-==t A dtx d a kxF -=221kx E p=)(cos 21 22 ϕω+=t A k pk E E E +=2 21A k =)(sin 2121 222ϕω+==t kA mv E ka,c,e,g 点: 能量最大! b,d,f 点: 能量最小!七、波的相干条件:1. 频率相同;2. 振动方向相同;3.相位差恒定。

八、驻波:是两列波干涉的结果波腹点:振幅最大的点 波节点:振幅最小的点相邻波腹(或波节)点的距离:2λ相邻波腹与波节的距离:λ九、光程:nr L = n:折射率 r :光的几何路程光程是一种折算..,把光在介质中走的路程折算成相同时间....光在真空中走的路程即光程,所以,与光程或光程差联系在一起的波长永远是真空..中的波长0λ。

十、光的干涉:光程差:),2,1,0(2)12(⋅⋅⋅=⎪⎩⎪⎨⎧→+±→±=∆k k k 干涉相消,暗纹干涉相长,明纹λλ十一、杨氏双缝干涉相邻两条明纹(或暗纹)的间距:λndd x '=∆ d ´: 缝与接收屏的距离 d : 双缝间距 λ:光源波长 n :介质的折射率十二、薄膜干涉中反射光2、3的光程差:*22122)2(sin 2λ+-=∆i n n dd : 膜的厚度等号右侧第二项*)2(λ由半波损失引起,当2n 在三种介质中最大或最小时, 有这一项,否则没有这一项。

大一基础物理下册知识点总结

大一基础物理下册知识点总结

大一基础物理下册知识点总结大一基础物理下册共包括了诸多重要的物理概念和知识点,下面将对其中的一些关键知识进行总结。

本文所涉及的知识点包括:牛顿运动定律、机械能守恒、动量守恒和热力学等内容。

一、牛顿运动定律牛顿运动定律是力学中最基本的定律之一,它包括了三个部分:1. 第一定律(惯性定律):物体如果不受外力作用,将保持静止或匀速直线运动。

2. 第二定律(动力学定律):物体的加速度与作用在其上的合力成正比,反比于物体的质量。

3. 第三定律(作用反作用定律):任何两个物体之间的相互作用力都是大小相等、方向相反的一对力。

牛顿运动定律对于解决各种力学问题起到了重要的指导作用,帮助我们理解物体的运动规律。

二、机械能守恒机械能守恒是一个重要的物理定律,它指出在没有非弹性力的情况下,系统的机械能保持不变。

机械能包括了势能和动能两个部分:1. 势能是由于物体所处的位置而具有的能量,包括重力势能和弹性势能等。

2. 动能是由于物体运动而具有的能量,包括平动动能和转动动能等。

在没有摩擦和耗散的理想情况下,机械能守恒可以很好地描述物体的运动情况,并用于解决各种与能量转换相关的问题。

三、动量守恒动量守恒是指在没有外力作用的情况下,系统的总动量保持不变。

动量是物体运动的特性,它是质量与速度的乘积。

按照动量守恒定律,两个物体发生碰撞时,它们的总动量在碰撞前后保持不变。

动量守恒定律在解决碰撞问题、爆炸等动力学问题中起到了重要的作用。

四、热力学热力学是研究热能和与之相关的现象的学科。

下面将介绍两个与热力学密切相关的知识点。

1. 热传导:热传导是指热能从高温物体传递到低温物体的过程。

热传导的速率取决于物体的热导率、温度差和物体的尺寸等因素。

2. 热容与热量:热容是物体对热量变化的敏感程度,它与物体的质量、材料的特性以及温度变化有关。

热量是单位时间内传递的热能量,单位为焦耳。

热力学知识在能源利用、热工学等领域有广泛的应用。

总结:本文主要总结了大一基础物理下册的一些重要知识点,包括牛顿运动定律、机械能守恒、动量守恒和热力学等内容。

大学物理下册知识要点-PPT

大学物理下册知识要点-PPT

八. 四个量子数 1.主量子数 n ( 1 , 2 , 3, …)
大体上决定了电子能量 2. 角量子数 l ( 0,1,2,…, n -1 )
决定电子的轨道角动量大小。
3. 磁量子数 ml ( 0,±1, ± 2,…, ± l ) 决定电子轨道角动量空间取向
4.自旋磁量子数 ms ( 1/2 , -1/2 ) 决定电子自旋角动量空间取向
2
中央明纹线宽度 x0 2 f tan1 2 f1 2 f λ a
其他暗纹位置
f
xk k a
2.光栅衍射
其他明纹线宽度
f xk a
光栅方程 d sin k k 0,1,2,3,
d sin k
缺级条件
asin k
k k d k 1,2,3, a
六.光的偏振
1.马吕斯定律 I I0 cos2
hh
2.估算电子的波长
1 2
me0v 2
eU
h me0
h h 1 1.225 nm
m0v 2m0e U U
六.不确定关系
不确定关系(测不准关系): 粒子在同一方向上的坐标和 动量不能同时确定。
x px 2
七.氢原子的量子力学结论
1. 能量量子化
3. 角动量空间量子化
能量
En
1 n2
主量子数 n =
激发态能量 (n 1) En E1 n2 能量是量子化的。
五.微观粒子的波粒二象性
1.一个能量为E、动量为 p 的实物粒子,同时也具有波动性, 它的波长、频率 和 E、p的关系与光子一样:
系德 布
p mv h

意 关
E mc2 h
h h ─ 德布罗意波长。 p m

大学物理下学期知识点总结

大学物理下学期知识点总结

大学物理下学期知识点总结.docx恒定磁场一、基本公式1)毕奥-萨伐尔定律dB=2)磁场叠加原理3)磁场中高斯定理(S是闭合曲面)4)安培环路定律(真空中)(介质中)H=BrB=HH=B=r-真空磁导率(4_10-7N/A2)r介质磁导率5)安培定律dF=IdlBsin方向判断:右手四指由Idl的方向经小于角转向B的方向,右螺旋前进的方向即为dFma_的方向6)磁通量匀强磁场中通过平面:7)磁矩若多匝线圈8)磁力矩M=PmBsin=BISsin9)洛伦兹力公式带电粒子受电磁力10)运动电荷产生的磁场二、典型结果1、有限长载流直导线在距其为r的一点产生的磁场2、无限长载流直导线在距其为r的一点产生的磁场3、半限无长载流直导线在距其一端距离为r的一点产生的磁场4、载流圆环在环心产生的磁场5、载流圆弧(已知弧长L和圆心角)在弧心产生的磁场6、长直密绕螺线管内磁场第十一章电磁感应电磁场一、基本公式1)电动势定义2)法拉第电磁感应定律作用:计算闭合回路上的大小和方向方向的判断:首先确定回路绕行方向,如果dBdt0,0,则i=-ddt=-SdBdt0,则表明积分路径是沿着非静电性场强的方向进行的,因此B点电势比A点电势低。

4)感生电动势:产生根源(非静电力)为涡旋电场力或感生电场力公式5)自感:自感系数,若为长l,横截面为S,N匝,介质磁导率为的螺线管,B=NlI;L=N2V(其中V为螺线管体积)感生电动势6)互感:互感系数M,互感磁通量,互感电动势21=-d21dt=-MdI1dt12=-d12dt=-MdI2dt7)磁场能量密度磁场能量一个自感为L,通过电流为I的线圈,其中所储存的磁能为Wm=12LI2=12n2I2V(其中V表示长直螺线管的体积)第十二章机械振动1)谐振动方程:谐振子:,,的求解方法:解析法和旋转矢量法2)同方向同频率简谐振动的合成总位移,合振动解析法,3)振动总能量,振动势能振动动能Ek=12mv2=13kA2sin2(t+)第十章机械波1)若已知波源O点振动方程yo=Acos(t+),则该波的波动方程为2)体积元的能量平均能量密度平均能流密度(波动强度)(u 为波速)平均能流(V为介质体积,为介质长度,S为介质侧面积)3)波的干涉条件:振动方向相同,频率相同和位相差恒定=2干涉加强22r2-r1=2kk=0、1、2A=A1+A2干涉减弱22r2-r1=2k+1k=0、1、2A=A1-A24)驻波含义:振幅相同,沿同一直线上相向传播的两列相干波产生的干涉5)以丛波为例,设两列相干波的波动方程为6)相邻波节间各点位相相同,波节两侧点位相相反。

大一下大学物理知识点总结

大一下大学物理知识点总结

大一下大学物理知识点总结一、力学1. 牛顿运动定律牛顿第一定律:物体静止或匀速直线运动时,合外力为零。

牛顿第二定律:物体加速度与所受合外力成正比,与物体质量成反比。

牛顿第三定律:相互作用力两两相等、方向相反、作用在不同物体上。

2. 动量与能量动量:动量是物体质量和速度乘积,描述物体运动状态的物理量。

动量守恒定律:在没有合外力作用下,系统的总动量保持不变。

动能:物体由于运动而具有的能量,动能与物体质量和速度的平方成正比。

动能定理:物体所做的功等于其动能的增量。

3. 万有引力与运动万有引力定律:两个物体之间的引力与它们质量成正比,与它们距离的平方成反比。

开普勒定律:行星绕太阳运动的轨道呈椭圆形。

水平抛体运动:物体以一定速度和角度从斜面抛出,形成抛体运动。

二、热学1. 热力学基本概念温度、热量、热容、比热容等基本概念的介绍与计算公式。

2. 热传递热传递方式:传导、对流、辐射。

热传导方程:导热系数、温度梯度对热传导的影响。

3. 热力学定律第一定律:能量守恒定律,能量不能被创造或破坏,只能从一种形式转化为另一种形式。

第二定律:热永远不会自发地从热量低的物体传递到热量高的物体。

第三定律:绝对零度无法达到,任何物质在温度接近绝对零度时都会趋于零熵。

三、电磁学1. 电场与电势电荷与电场:电荷间通过电场相互作用。

高斯定律:电场穿过一个闭合曲面的电通量与内部电荷代数和成正比。

电势能:带电粒子在电场中具有的能量。

2. 电流与电阻电流:单位时间内通过导体截面的电荷量。

欧姆定律:电流与电压成正比,与电阻成反比。

电阻:导体阻碍电流通过的程度,与导体材料、形状、长度有关。

3. 磁场与电磁感应磁场:由电荷的运动产生的区域。

洛伦兹力:带电粒子在磁场中受到的力。

法拉第电磁感应定律:磁场的变化会在电路中产生感应电动势。

四、光学1. 几何光学光的反射与折射:根据光的传播规律,解释光的反射与折射现象。

成像:透镜和球面镜成像规律的介绍。

2. 光的波动性光的干涉与衍射:光的波动性引起的干涉和衍射现象。

大一物理下册知识点总结

大一物理下册知识点总结

大一物理下册知识点总结物理作为一门基础学科,对大一学生来说是一门重要的课程。

下面将对大一物理下册的知识点进行总结,帮助学生复习和理解这些内容。

1. 力学1.1 运动学运动学研究运动的规律和变化情况,主要涉及以下内容:- 位移、速度和加速度的关系- 平均速度和瞬时速度的区别- 加速运动和匀速运动的区别- 自由落体和斜抛运动1.2 动力学动力学研究力与物体运动的关系,包括以下内容:- 牛顿三定律- 力的合成与分解- 动量和动量守恒- 动能和功- 机械能和机械能守恒- 摩擦力和滑动摩擦和静摩擦的区别2. 热学2.1 热力学基础热力学是研究热现象和能量转化的学科,包括以下内容:- 温度和热平衡- 热量和热容- 相变和相变潜热- 理想气体状态方程2.2 热传导热传导是热量在物体内部传播的方式,主要涉及以下内容:- 热传导的基本规律- 热传导的计算方法- 热传导系数和导热物质的选择2.3 热辐射热辐射是物体由于温度而发射出的能量,包括以下内容:- 黑体辐射和斯特藩-玻尔兹曼定律- 灰体和白体的辐射能力- 辐射的探测和利用3. 光学3.1 光的传播光学研究光的传播和光现象,主要包括以下内容:- 光的直线传播和折射定律- 光的反射和折射- 光的波动和粒子性质- 光的颜色和色散3.2 光的成像光学研究光的成像和光学仪器,包括以下内容:- 凸透镜和凹透镜- 球面镜和反射成像- 成像公式和放大倍数- 光学仪器的使用和调节4. 电学4.1 电荷和电场电学研究电荷和电场的基本性质,包括以下内容:- 电荷的性质和守恒定律- 电场的概念和特性- 电场力和电势能- 电场与导体和介质的相互作用4.2 电路电路学研究电流和电路的基本规律,包括以下内容:- 电流和电压的关系- 电阻和电阻定律- 并联和串联电路- 电功和功率- 戴维南和诺特定理4.3 磁学磁学研究磁场和磁性物质的性质,主要包括以下内容:- 磁场的概念和特性- 磁场中带电粒子的受力- 磁感应强度和磁感线- 电流产生的磁场- 磁场对导电线圈的作用以上是大一物理下册的知识点总结,希望对大一学生的复习和理解有所帮助。

大学物理下知识点总结

大学物理下知识点总结

电磁:第一章 库仑定律,点电荷场强及场强叠加原理;电通量;具有对称性的带电体利用高斯定理求场强。

第二章 电势,电势能,静电力做功,点电荷电势及电势叠加原理计算任意带电体的电势,利用电势的定义⎰⋅=电势零点所求点r d E ϕ求解电势问题 。

第三章 静电平衡导体的电荷分布,有导体时电场和电势的计算。

第四章 介质中的高斯定理求解场强、电位移矢量、极化强度、极化面电荷密度;电容器的电容计算,平行板电容器的电容公式一定要掌握,电容器能量,电场能量的计算。

第五章和第六章 磁通量,利用毕奥-萨伐尔定律计算载流导线在周围产生的磁感应强度,另外还需要掌握一些结论,例如:一段载流直导线、无限长直导线、圆弧在圆心处;具有对称性的载流导线利用安培环路定理求解场强。

第七章 磁力,带电粒子在匀强磁场中的圆周运动,带电粒子的螺线型运动规律;霍尔效应;磁场对载流导线的作用力;磁矩,磁场对载流线圈的磁力矩。

第八章 磁介质中的安培环路定律及“磁场强度与磁感应强度的关系”。

第九章 法拉第电磁感应定律求解感应电动势,动生电动势及其计算,感生电动势和感生电场;互感系数和自感系数的计算,自感线圈的能量,磁场的能量的计算。

第十章 位移电流,麦克斯韦方程组的积分形式。

近代物理:第十一章 狭义相对论基本假设--相对性原理和光速不变原理;洛仑兹变换;长度收缩效应、时间延缓和同时性的相对性,相对论质量的公式,相对论意义下的动量和动能,能量-质量关系式,能量-动量关系式。

第十二章 黑体辐射的两个实验定律:斯特蕃定律和维恩位移定律,以及黑体辐射的曲线图;光电效应中,(1)爱因斯坦光电效应方程(2)截止电压满足的零电流方程C m eU mv =221(3)截止频率A h =0ν(4)图ν~C U ,会计算普朗克常数,截止频率,逸出功(5)光的波粒二象性公式;康普顿散射中光子与静止自由电子碰撞满足的能量守恒公式和动量守恒公式,以及?0=-=∆λλλ公式;实物粒子的波粒二象性的公式,德布罗意波(即物质波)是概率波,不确定关系。

大学大一下册物理知识点

大学大一下册物理知识点

大学大一下册物理知识点大学物理课程是理工科学生在大学期间必修的一门基础课程,旨在培养学生的科学思维和实践能力。

在大一下册物理学习中,有几个重要的知识点是我们必须掌握的。

本文将介绍大学大一下册物理学的核心知识点,以帮助学生更好地掌握这门课程。

一、电磁感应电磁感应是大学物理中一个重要的知识点。

学习电磁感应时,我们需要了解法拉第电磁感应定律和楞次定律的基本概念。

法拉第电磁感应定律指出:当磁场的磁通量变化时,会在电路中感应出感应电动势。

而楞次定律则说明了感应电动势的方向与磁场变化的方向以及电路的方向之间的关系。

掌握这些定律对于理解电磁感应现象以及应用于实际问题解决具有重要意义。

二、交流电路交流电路是大学物理中的另一个重要知识点。

在学习交流电路时,我们需要了解交流电的基本概念,如交流电的频率、周期、有效值等。

此外,还需要熟悉交流电路中的电感、电容和阻抗等概念,以及交流电路中的欧姆定律和基尔霍夫定律的应用。

通过掌握这些知识,我们可以了解交流电路中电流和电压之间的关系,并可以应用于解决实际问题。

三、光学光学作为物理学中的分支学科,也是大学物理中的重要部分。

而大一下册的光学内容主要包括光的折射、光的衍射和光的干涉等方面。

学习光学时,我们需要了解折射定律、光的反射定律以及夫琅禾费衍射和杨氏双缝干涉等光学现象和定律。

熟悉这些内容可以使我们理解光的传播规律以及光与物体之间的相互作用,从而更好地应用这些知识于实际问题解决。

四、核物理核物理是大学物理中的高级内容,对于理解原子核结构和核反应等具有重要意义。

大一下册的核物理内容主要包括了关于原子核结构、放射现象以及核反应等方面的知识。

在学习核物理时,我们需要了解原子核的组成、放射性衰变以及核反应的基本规律等内容。

通过学习核物理知识,我们可以更好地理解和应用核能在能源、医学和环境等方面的重要作用。

结语大学大一下册物理学习中的知识点众多,本文仅列举了电磁感应、交流电路、光学和核物理等几个重要的知识点。

大物下知识点总结

大物下知识点总结

大物下知识点总结一、力学1. 力的概念及分类2. 牛顿定律3. 动量和动量守恒4. 能量和能量守恒5. 固体力学基础6. 流体力学基础7. 弹性碰撞和非弹性碰撞8. 运动学和动力学二、热学1. 热量和温度的概念2. 熔化和汽化3. 气体热力学基础4. 热传导、对流和辐射5. 热力学定律和循环三、电磁学1. 电荷、电场和电势2. 电流、电阻和电路3. 磁场和磁通量4. 静电场和静磁场5. 电磁感应和法拉第定律6. 电磁波和光波7. 电磁谱和电磁场的辐射与吸收四、光学1. 几何光学基础2. 光的波动理论和干涉、衍射3. 光的偏振和光的色散4. 特殊相对论和光的波粒二象性5. 光的量子力学五、声学1. 声的产生和传播2. 声的特性和吸收、衍射3. Doppler效应和声音的量子特性六、相对论1. 狭义相对论2. 广义相对论3. 引力波和黑洞七、量子力学1. 波粒二象性2. 波函数和薛定谔方程3. 观测原理和测不准原理4. 波函数坍缩和量子纠缠5. 量子力学应用于固体物理和粒子物理6. 量子力学与统计力学的联系八、统计力学1. 统计物理的基本概念2. 统计系综、统计力学中的经典和量子系综3. 热力学极限和统计力学的应用九、凝聚态物理学1. 固体的结构和晶格2. 电子结构和电子在固体中的运动3. 固体的导电性和磁性4. 半导体物理和器件应用5. 超导物理和超导电性十、核物理1. 原子核结构和射线现象2. 放射性衰变和核反应3. 核裂变和核聚变4. 射线与材料相互作用十一、宇宙学1. 宇宙演化和宇宙微波背景辐射2. 星系和星际物质3. 宇宙加速膨胀和暗物质、暗能量4. 宇宙射线及宇宙线与大气相互作用以上是大物下的知识点总结,希望对你有所帮助。

(完整版)大学物理(下)知识点总结,推荐文档

(完整版)大学物理(下)知识点总结,推荐文档

大学物理(下)1简谐运动:1.1定义:物体运动位移(或角度)符合余弦函数规律,即:;X =Acos(ωt +φ)1.2特征:;= 令;F =‒kx (F:回复力)a ‒kxm ω2=km1.3简谐运动: =v =‒ωAsin(ωt +φ)a ω2Acos (ωt +φ)1.4描述简谐运动的物理量:I 振幅A :物体离开平衡位置时的最大位移;II频率是单位时间震动所做的次数(周期和频率V :V =1T仅与系统本身的弹性系数和质量有关);III 相位:称为初相,相位决定物体的运动状态ωt +φ"φ“1.5常数A 和的确定:φI解析法:当已知t=0时x 和v; {x =Acos(ωt +φ)v =‒ωAsin(ωt +φ)II旋转矢量法(重点):运用参考圆半径的旋转表示;2单摆和复摆2.1复摆:任意形状的物体挂在光滑水平轴上作微小()的θ<5°摆动。

I 回复力矩;(是物体的转动惯量)M =mglθω2=mglJ J II方程:;θ=θm cos⁡(ωt +φ)2.2单摆:单摆只是复摆的特殊情况所以推导方法相同,单摆的惯性矩J =ml 23求简谐运动周期的方法(1) 建立坐标,取平衡位置为坐标原点;(2) 求振动物体在任一位置所受合力(或合力矩);(3) 根据牛顿第二定律(或转动定律)求出加速度与位移的关系式2a xω=-4简谐运动的能量:4.1简谐运动的动能:;E K =12KA 2sin 2(ωt +φ)4.2简谐运动的势能:;E P =12KA 2cos 2(ωt +φ)4.3简谐运动的总能量:;(说明:①简谐运动强度的标E =12KA 2志是A ②振动动能和势能图像的周期为谐振动周期的一半)5简谐振动的合成5.1解析法:①和振幅②A =A 12+A 22+2A 1A 2cos⁡(φ2‒φ1)tanφ=A 1sinφ1+A 2sinφ2A 1COSφ1+A 2COSφ25.2旋转矢量法:①和振幅②由几何关系求出初A =A 12+A 22+2A 1A 2cos⁡(φ2‒φ1)相φ6波6.1定义:振动在空间的传播过程;分为横波 纵波;6.2波传播时的特点:①沿波传播的方向各质点相位依次落后②各质点对应的相位以波速向后传播;6.3描述波的物理量:I 波长(λ):相位相差2π的两质点之间的距离,反应了波的空间周期性;II周期(T ):波前进一个波长所需要的时间();常用求解周期的方法T =λu III 频率(ν):单位时间内通过某点周期的个数;IV波速(u ):振动在空间中传播的速度;6.4波的几何描述I 波线:波的传播方向;II波面:相同相位的点连成的曲面。

大一物理下册知识点全总结

大一物理下册知识点全总结

大一物理下册知识点全总结大一物理下册知识点主要包括力学、热学和光学,下面是对这些知识点的全面总结和梳理。

1. 力学1.1 运动学运动学研究物体的运动状态,它包括位移、速度和加速度等概念及其计算方法。

其中,位移可以通过速度的时间积分求得,速度可以通过位移的时间导数求得,而加速度可以通过速度的时间导数求得。

1.2 动力学动力学研究物体受力及其引起的运动。

牛顿三定律是动力学的基础,分别是:惯性定律、动量定律和作用-反作用定律。

利用这些定律,可以分析物体的运动以及受力情况。

1.3 万有引力万有引力定律描述了两个物体之间的引力与它们的质量和距离的关系。

根据该定律,我们可以计算天体之间的引力,比如行星公转的力学原理。

2. 热学2.1 热力学基本概念热力学研究热能转化和热能传递的规律。

热力学的基本概念包括温度、热量和热平衡等。

温度是物体内部微观粒子运动的平均动能,热量是热能的传递形式,热平衡表示两个物体之间没有热量的传递。

2.2 状态方程理想气体状态方程描述了气体的状态,即物质的温度、压强和体积之间的关系。

根据理想气体状态方程,我们可以计算气体的性质和性质的变化。

2.3 热力学定律热力学定律包括热传导定律、热辐射定律和热对流定律。

热传导定律描述了物体内部热能的传递,热辐射定律描述了物体通过辐射传递热能,热对流定律描述了物体通过气体或液体传递热能。

3. 光学3.1 光的特性光是一种电磁波,它具有波粒二象性。

光的特性包括反射、折射和衍射等。

反射是光线从一个介质到另一个介质的界面上发生偏折,折射是光线从一个介质进入到另一个介质时发生偏折,衍射是光线通过物体边缘或孔径时发生偏折。

3.2 光的干涉和衍射光的干涉和衍射是光的波动性质的表现。

干涉是两束或多束光线相遇后产生互相增强或抵消的现象,衍射是光线通过物体缝隙或物体的边缘时产生波的偏折和重叠。

3.3 光的偏振光的偏振是指光中的电场矢量在某一方向上振动,而在垂直于该方向的其他方向上不振动。

大一下物理知识点归纳

大一下物理知识点归纳

大一下物理知识点归纳在大一下学期的物理学习中,我们学习了许多重要的物理知识点,这些知识点涵盖了力学、电磁学和光学等方面。

下面,我将对这些知识点进行归纳和总结,以帮助大家加深对物理学的理解。

一、力学1. 质点运动:讨论质点在平面上的直线运动和曲线运动,研究其位移、速度和加速度等基本概念和运动规律。

2. 牛顿定律:介绍牛顿第一、第二和第三定律,分别描述力的平衡、力与加速度的关系和力的作用和反作用。

3. 物体的静力学性质:研究物体的重力、支持力、摩擦力等,探讨物体在平衡和失去平衡时的性质和条件。

4. 平面运动:探讨在竖直平面上的抛体运动和在水平平面上的运动,分析其运动规律和特点,包括自由落体、斜抛运动等。

二、电磁学1. 电荷与电场:介绍电荷的基本性质,讨论电场的概念和性质,包括电势能、电势差和电场强度等。

2. 静电场:研究电荷分布在空间中产生的静电场,分析电场的特点和分布规律,包括库仑定律和电场线等。

3. 电势差与电势:探讨电荷在电场中所具有的电势能和电势差的关系,分析电势的概念和计算方法。

4. 电流和电阻:介绍电荷的流动和电流的概念,讨论电流的分布和电阻的原理和特性,包括欧姆定律和电路中的串并联等。

5. 磁场和电磁感应:研究电流产生的磁场和磁场对电流的作用,以及磁场变化时电磁感应的现象和规律,包括洛伦兹力和法拉第定律等。

三、光学1. 光的传播:介绍光的传播方式和性质,包括直线传播和反射、折射等现象,分析光的速度和光的折射定律。

2. 光的色散:研究光经过光学介质时发生的色散现象,讨论不同介质中折射率的变化和光的色散关系。

3. 光的干涉和衍射:探讨光的干涉现象和衍射现象,分析光的干涉和衍射对于光的波动性质的验证和应用。

4. 像的成因和光学仪器:介绍像的成因和光学仪器的基本原理,包括平面镜、球面镜和透镜等的成像规律和特点。

通过对这些物理知识点的归纳和总结,我们能够更清晰地了解和掌握这些知识,并能够更好地应用于实际问题的解决和物理学习的深入。

大学物理下知识点归纳

大学物理下知识点归纳

大学物理下知识点归纳大学物理下知识点归纳静电场知识点:◎掌握库仑定律,掌握电场强度及电场强度叠加原理,掌握点电荷的电场强度公式◎理解电通量的概念,掌握静电场的高斯定理及应用,能计算无限长带电直线、带点平面、带电球面及带电球的场强分布.◎理解静电力做功的特征,掌握电势及电势叠加原理,能计算一些简单电荷分布的电势◎理解电场强度与电势的关系,掌握静电场的环路定理◎理解导体的静电平衡条件,能计算一些简单导体上的电荷分布规律和周围的电场分布◎能进行简单电容器电容的计算(*平行板电容器电容)◎掌握各向同性电介质中D、E的关系及介质中的高斯定理◎掌握平行板电容器储存的静电能的计算重点:叠加原理求电场强度,静电场的高斯定理及应用,电势及电势的计算,静电场的环路定理,简单电容器电容的计算,介质中的高斯定理,电容器储存的静电能稳恒磁场知识点◎掌握毕奥萨伐尔定律,能计算直线电流、圆形电流的磁感应强度◎理解磁通量的概念,掌握稳恒磁场的高斯定理,掌握安培环路定理及其应用◎掌握洛仑兹力和安培力公式,能分析运动电荷在均匀磁场中的受力和运动,了解霍尔效应,掌握载流平面线圈在均匀磁场中的磁矩和力矩计算。

◎掌握磁场强度、各向同性磁介质中H、B的关系及介质中的安培环路定理重点:毕奥萨伐尔定律及计算,安培环路定理及其应用,安培定律及应用,磁力矩,磁介质中的安培环路定理电磁感应知识点:◎掌握法拉第电磁感应定律及应用◎掌握动生电动势及计算、理解感生电场与感生电动势,◎理解自感和互感,能进行简单的自感和互感系数的计算◎掌握磁场能量◎理解位移电流和全电流环路定理◎理解麦克斯韦方程组的积分形式及物理意义重点:法拉第电磁感应定律及应用,动生电动势及计算,磁场能量,麦克斯韦方程组的积分形式扩展阅读:大学物理知识点总结大学物理知识点总结第一章声现象知识归纳1.声音的发生:由物体的振动而产生。

振动停止,发声也停止。

2.声音的传播:声音靠介质传播。

真空不能传声。

大学物理下知识点总结

大学物理下知识点总结

D t
d D Id dt
D t
全电流定律:

L
H d l Ic Id
(2) B
全电流总连续。 Id 与Ic的区别:
Maxwell方程组和电磁波概要
S 0 i
1、Maxwell方程组: (会写会解释)

D dS q B E dl t dS 0 B dS
p nkT
三. 热力学第一定律
Q (E2 E1) A
dQ dE dA
1. 准静态过程系统的功(过程量)
A
V2
V1
pd V
d A pd V
Qp C p (T2 T1 )
1 (dQ ) p Cp dT
(定压摩尔热容)
当电流I的方向与回路l的方向符合右手螺旋关 系时, I为正,否则为负.
4、洛仑兹力与安培力:
Fm qv B
dF Id l B
I nS q v
5、均匀磁场中一段载流导线: (1)直导线: F Il B 与起、止点一样的直导线受力相同 (2)曲导线:

L
B dl o
I
i
i
叠加原理贯穿于以上三种方法。
电流分布 直 电 流 无限长 半无限长 导线所在直线上 圆 电 流 圆心处 弧电流圆心
磁场分布
μ0 I B 2 πa 0 I B 4 a
B0
BO
0 I
2R 0 I BO 2 R 2
长直载流密绕螺线管 载流密绕细螺绕环
mv R qB
2R T v
h v // T
均匀 E 匀变直运动

大物下知识点总结

大物下知识点总结

大物下知识点总结
电磁学:
掌握磁场强度、各向同性磁介质中H、B的关系及介质中的安培环路定理。

理解并应用毕奥萨伐尔定律、安培环路定理、安培定律。

掌握磁力矩、磁介质中的安培环路定理。

理解并掌握法拉第电磁感应定律及其应用。

理解动生电动势的计算,感生电场与感生电动势的概念。

理解自感和互感现象,能进行简单的自感和互感系数的计算。

掌握磁场能量的概念。

理解位移电流和全电流环路定理。

理解麦克斯韦方程组的积分形式及物理意义。

电场与电势:
掌握电场强度的定义和计算方法,理解电场强度的方向和大小。

理解点电荷的电场分布特点。

掌握电势和电势差的定义及计算方法,理解等势面的概念。

理解电场力做功与电势能变化的关系。

电偶极子:
理解电偶极子的定义和性质。

掌握电偶极子在电场中的受力情况和电势分布。

波动光学:
理解光的干涉、衍射和偏振现象及其原理。

掌握光的干涉条纹和衍射图案的特点和解释。

理解光的偏振状态和偏振器件的工作原理。

量子力学基础:
理解量子力学的基本概念和原理,如波粒二象性、不确定性原理等。

掌握原子和分子的量子模型,理解其能级结构和跃迁过程。

了解固体物理中的量子力学应用,如能带理论等。

请注意,这只是一个大
致的总结,具体的知识点可能会因教材版本和授课教师的不同而有所差异。

为了更准确地掌握大学物理下册的知识点,建议直接参考所用教材的目录和具体内容,同时结合课堂讲解和课后习题进行学习和巩固。

大学物理(下)知识点、重点及难点

大学物理(下)知识点、重点及难点

《大学物理》(下)知识点、重点及难点气 体 分 子 动 理 论知识点:1. 理想气体状态方程在平衡态下 RT M PV μ=, n k T p =,普适气体常数 K m o l /J 31.8R ⋅= 玻耳兹曼常数 K /J 1038.1NR k 23A-⨯==2. 理想气体的压强公式t 2E n 32vnm 31p ==3. 温度的统计概念kT 23E t =4. 能量均分定理每一个自由度的平均动能为1/(2KT)。

一个分子的总平均动能为自由度):i (kT 2i E =。

ν摩尔理想气体的内能RT 2i E ⋅ν=。

5. 速率分布函数NdvdN )v (f =麦克斯韦速率分布函数 2vkT2m 23v e)kT2m (4)v (f 2-ππ=三种速率最概然速率 μ==RT 2mkT 2v p平均速率 πμ=π=RT 8mkT 8v方均根速率 μ==RT 3mkT 3v26.分子刚性球模型7.气体分子的平均自由程pd 2kT nd 2122π=π=λ重点:1. 理想气体状态方程的意义,利用它解有关气体状态的问题。

2. 理想气体的微观模型和统计假设,掌握对理想气体压强的推导。

3. 理想气体压强和温度的统计意义。

4. 能量均分定理的意义及其物理基础,由它推导出理想气体内能公式。

5. 速率分布函数及其麦克斯韦速率分布律的意义。

会计算三种速率的统计值。

难点:1. 理想模型的假设。

2. 速率分布函数的统计意义和物理解释。

3. 应用分布函数计算各种量的平均值。

热 力 学 基 础知识点:1. 准静态过程:在过程进行中的每一时刻,系统的状态都无限接近于平衡态。

2. 体积功:准静态过程中系统对外做的功为 pdV dA =, ⎰=21v v pdV A3. 热量:系统与外界或两个物体之间由于温度不同而交换的热运动能量。

4. 热力学第一定律A )E E (Q 12+-=, A dE dQ +=5. 热容量 d Td Q C =定压摩尔热容量 dTdQ Cpp=定容摩尔热容量 dTdQ C V V =迈耶公式 R C CV p+=比热容比 i2i C CVp+==γ6. 气体的绝热过程 c pV =γ,绝热自由膨胀:内能不变,温度复原。

(完整word版)大学物理下期末知识点重点总结(考试专用)

(完整word版)大学物理下期末知识点重点总结(考试专用)
2、劈尖干涉(出现的是平行直条纹)
1)明、暗条纹的条件:
2)相邻明纹对应劈尖膜的厚度差为
3)相邻明(暗)纹间距为
3、牛顿环(同心环形条纹,明暗环条件同劈尖干涉)
1)明环和暗环的半径:
③相邻明环、暗环所对应的膜厚度差为 。
三、迈克尔逊干涉仪
1)可移动反射镜移动距离d与通过某一参考点条纹数目N的关系为
2)在某一光路中插入一折射率n,厚d的透明介质薄片时,移动条纹数N与n、d的关系为
2、狭义相对论的基本原理与时空的相对性。(1)在所有的惯性系中物理定律的表达形式都相同。(2)在所有的惯性系中真空中的光速都具有相同的量值。(3)同时性与所选择的参考系有关。(4)时间膨胀。在某一惯性参考系中同一地点先后发生的两个事件的时间间隔。(5)长度收缩。在不同的惯性系中测量出的同一物体的长度差。3、当速度足够快时,使用洛伦兹坐标变换和相对论速度变换。但是当运动速度远小于光速时,均使用伽利略变换。
4. 制冷机的制冷系数:
卡诺制冷机的制冷系数:
五. 热力学第二定律
开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效率为 是不可能的)。
克劳修斯表述:热量不能自动地从低温物体传到高温物体。
两种表述是等价的.
4.机械振动
一. 简谐运动
振动:描述物质运动状态的物理量在某一数值附近作周期性变化。
k=0、1、2、3 称为0级、1级、2级、3级 明纹
3、缺级条件 七、光的偏振
1、马吕斯定律 ( 为入射偏振光的振动方向与偏振片的偏振化方向间的夹角)
2、布儒斯特定律 , 称为布儒斯特角或起偏角。
当入射角为布儒斯特角时,反射光为垂直于入射面的线偏振光,并且该线偏振光与折射光线垂直。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p
m c
h
c
h
光子质量:
m
h
c2
h
c
三.康普顿效应 单个光子与单个电子发生弹性碰撞
能量守恒: h0 m0c2 h mc2
反冲电子的动能: 入射光子与散射光子能量之差
Ek
0
h 0
h
hc
0
hc
四.氢原子光谱 玻尔的氢原子理论
1.谱线的波数
~
1
RH
(
1 k2
1 n2
)
氢光谱的里德伯常量
RH 1.097 373 1107 m1
h h 1 1.225 nm
m0v 2m0e U U
六.不确定关系
不确定关系(测不准关系): 粒子在同一方向上的坐标和 动量不能同时确定。
x px 2
七.氢原子的量子力学结论
1. 能量量子化
3. 角动量空间量子化
能量
En
1 n2
(8m 02eh4 2
)
E1 n2
主量子数 n = 1 ,2 ,3 ,…
E dl
p
3.静电力做的功
点电荷q在静电场中自A点沿
任意路径移至B过程中静电力
做的功:
B A AB qE dl q(U A UB )
A
五.1.导体的静电平衡条件
E 内 0 E表面 导体表面
2.静电平衡导体上的电荷分布
静电平衡下,导体所带的电荷只能
分布在导体的表面,导体内部没有
净电荷
导体表面场强垂直于导
2. 角动量量子化
角动量 L 在外磁场方向Z 的投影
Lz ml
磁量子数 ml = 0 , ±1 , ±2 , …, ±l
电子绕核转动的角动量的大小
L l(l 1) 角量子数 l = 0 ,1 ,2 , … , n-1
4.自旋磁量子数ms
ms = ±1/2
八. 四个量子数 1.主量子数 n ( 1 , 2 , 3, …)
r
R
LE d l 0
环路定理说明静电力是保守力,静电场是保守场。
四.电势的计算
1.利用电势叠加原理
Up
qi
i 4 0ri
dq
点电荷系
Q 4 0r 连续分布的带电体
2. 场强积分法(由定义求)
(1) 首先确定 E分布;
(2) 选零势点和便于计算的积 分路径
(3) 由电势定义计算
"0"
up
I0入射线偏振光的强度 I 为通过检偏器后的透射光的强度
α为检偏器的偏振化方向与入射线偏振光的振动方向之间的夹角
2.布儒斯特定律
tanib
n2 n1
n21
ib — 布 儒 斯
特角或起偏角
当入射角ib满足上式时,反射光为完
全偏振光,光矢量振动方向垂直入 射面,且反射光线和折射光线垂直。


n1


ib
k = 1 (n = 2, 3, 4, … ) 谱线系 —— 赖曼系
k = 2 (n = 3, 4, 5, … ) 谱线系 ——巴耳末系
2.玻尔的氢原子理论
(1)定态假设 原子的稳定状态(简称定态)相应的
能量分别为 E1, E2, E3, 。
(2)频率条件
kn
En
Ek h
玻尔辐射频率公式
(3)轨道角动量量子化条件
s
0
n
qi
i 1
高斯定理说明静电场 是有源场。
三.几种典型带电体的电场
均匀带电球面 E
0 r R
Q r R
4πε0r 2
均匀带电无限长直线 E 2 π 0r
方向垂直于带电直线
“无限大”均匀带电平面 E 2 0
方向垂直于带电平面
均匀带电球体 四. 环路定理
E
Qr
4 0R3
r
R
Q 4πε0r 2
I1 I2时
I
4I1 cos2
2
2k , I 4I1 干涉加强
2.杨氏双缝干涉
(1)条纹位置 (2)条纹间距
x k D
K=0,1,2,··· 明纹中心位置
x
2k
d
1
D
d2
I
K=0,1,2,··· 暗纹中心位置
D
x
其中D为双缝与屏之间的距离,双缝间距为d
d
3.光乘差和相位差
(1)光程—表示光在介质 中传播的路程相当于光在
相同时间内在真空中的传播路x 程nr ct
(2)光程差δ与相位差 之间的关系 2
(3)半波损失
0
光从光疏介质入射到光密介质的分界面上反射回光疏介质的过
程中,相位要发 生π的突变,相当于光程增加或减少半个波长,
称为半波损失。
4.波膜等厚干涉(劈尖) (该干涉属分振幅法,光线垂直入射)
2n2d
大体上决定了电子能量 2. 角量子数 l ( 0,1,2,…, n -1 )
决定电子的轨道角动量大小。
3. 磁量子数 ml ( 0,±1, ± 2,…, ± l ) 决定电子轨道角动量空间取向
4.自旋磁量子数 ms ( 1/2 , -1/2 ) 决定电子自旋角动量空间取向
知识回顾 Knowledge Review
2
中央明纹线宽度 x0 2 f tan1 2 f1 2 f λ a
其他暗纹位置
f
xk k a
2.光栅衍射
其他明纹线宽度
f xk a
光栅方程 d sin k k 0,1,2,3,
缺级条件 d sin k asin k
k k d k 1,2,3, a
六.光的偏振
1.马吕斯定律 I I0 cos2
静电场总结
一.场强的计算
(一)根据场强叠加原理求场强
1.点电荷的电场
E
F q0
1
4 0
q r2
r 0
3.连续分布带电体
2.点电荷系的电场
E
k
1
4 0
qk rk2
rk0
(1)根据带电体的形状选择坐标系;
(2)
dE
1
4 0
dq r2
r 0
(3)
E
dq
40r 2
r 0
二.高斯定理
Ed S
1
qB
周期
T 2R 2m v qB
• 一般情况 v// v cos v v sin
带电粒子作螺旋运动
R mv mv sin
qB
qB
h
v //T
2mv cos
qB
电磁感应总结
一.法拉第电磁感应定律 感应电动势的大小与通过导体 回路的磁通量的变化率成正比

dt
二.动生电动势的求解
i
(v B) dl
a.在运动导体上选取线元 dl
b.写出
di (v B) dl
再积分,即
i
(v B) dl
L
c.确定电动势的方向
B
在导线上的投影方向。
电源内部:低电势指向高电势
例:直长导直线导距线离通为有d。电当流它I,沿在平其行附于近直有导一线导的线方棒向A以B,速长度为L,平v 离移长时, 导线棒中的感应电动势多大?哪端电势高? 解:建立如图所示坐标系,在AB上取线元dx,方向与X轴
一致。距长直导线为x。则此处:
B 0I 2x
方向垂直纸面向里
B
d A (v B) dx
= dL 0 Iv dx
d 2 x
I
v
dx
0 dA L x
Bx
= 0 Iv ln d L
2 d
电动势的方向由B指向A,故A端电势高。
一.光的干涉
1.光的相干性 I I1 I2 2 I1I2 cos
体表面,其表面上任意 点场强数值是
E
0
恒定磁场总结
一. 比—萨定律
dB
0
4
Idl
r2
r0
载流直导线的磁场
B
0I
4a
(cos1
cos 2
)
“无限长”载流直导线 B 0I
2a
载流圆线圈圆心处 B 0 I
2R
二.磁通量
对于有限曲面
m
B dS
对于闭合曲面
m
B dS
S
二. 安培环路定理
B dl L
祝您成功!
2
2k
( 2k
2
1)
2
k 1,2,相长干涉 k 0,1,2,相消干涉
条纹间距满足
l sin
2n2
相邻暗纹或(或明纹)
对应的厚度差
ek1 ek 2n2
二.光的衍射
1.夫琅和费单缝衍射
暗纹条件 a sin 2k ,k 1,2,3…
2
明纹条件 a sin (2k 1) , k 1,2,3…
μ0
Ii内
电流的正负:与积分回路绕
行方向L成右手螺旋关系的
电流取正值,反之则取负值
三.安培力
dF Idl B
大小:dF IdlB sin
方向:由右手螺旋法则确定
任意形状载流导线在外磁场中 受到的安培力
F IBl sin
四.洛仑兹力
Fm qv B
• 带电粒子在磁场中的运动
半径 R mv
L n h , n 1,2,3,
2
n 为量子数
3.氢原子轨道半径和能量的计算
rn r1n2 (n 1,2,3,)
n 1 , 玻尔半径
r1
0h2
π me2
5.29 1011m
氢原子能级公式
相关文档
最新文档