高二数学 导数的运算(学案)

合集下载

高中数学新增导数教案模板

高中数学新增导数教案模板

高中数学新增导数教案模板
一、教学目标:
1. 了解导数的定义和基本性质;
2. 掌握导数的计算方法;
3. 能够利用导数求函数的极值和拐点。

二、教学重点和难点:
1. 导数的计算方法;
2. 利用导数求函数的极值和拐点。

三、教学准备:
1. 教材《高中数学新增导数》;
2. 黑板、彩色粉笔;
3. 讲义和练习题。

四、教学过程:
1. 导入:通过举例引入导数的概念,让学生了解导数的定义和意义(15分钟);
2. 讲解:详细介绍导数的计算方法,包括用极限定义导数、求导数的常用规则和方法(40分钟);
3. 练习:让学生通过练习题巩固所学知识,包括求函数的导数、计算导数、求函数的极值和拐点(30分钟);
4. 拓展:通过引导学生讨论和解决导数应用问题,如最优化问题等(20分钟);
5. 总结:对本节课内容进行总结,并布置相关作业(15分钟)。

五、教学方式:
1. 讲授与练习相结合;
2. 学生讨论、互动;
3. 案例分析。

六、教学环节设计:
1. 导数概念引入:通过图形或实际问题引入导数的概念;
2. 导数计算方法讲解;
3. 样题讲解与练习;
4. 应用题解析;
5. 课堂讨论与总结。

七、课后作业:
1. 完成课后练习题;
2. 思考利用导数求函数极值和拐点的应用问题。

八、教学反馈与评估:
1. 随堂测验;
2. 学生课堂表现评价;
3. 学生课后作业评价。

高二数学下第七讲 高二导数概念(学案)

高二数学下第七讲  高二导数概念(学案)

第七讲 导数概念,运算及几何意义一.课时目标1.通过实例分析了解函数平均变化率的意义..会求函数f (x )在x 0到x 0+Δx 之间的平均变化率.2.了解函数的平均变化率及导数间的关系.掌握函数在一点处导数的定义,以及函数f (x )在区间(a ,b )内导函数的概念.3.理解函数y =f (x )在点(x 0,y 0)处的导数与函数y =f (x )图象在点(x 0,y 0)处的切线的斜率间的关系,掌握导数的几何意义.4.已知函数解析式,会求函数在点(x 0,y 0)处切线的斜率,能求过点(x 0,y 0)的切线的方程.5.掌握基本初等函数的导数公式..掌握导数的和、差、积、商的求导法则.6.会运用导数的四则运算法则解决一些函数的求导问题.二.重点难点1.理解函数平均变化率的意义.(难点)2.求函数f (x )在 x 0到x 0+Δx 之间的平均变化率.(重点)3.理解函数在某点处的导数.(难点)4.根据导数的几何意义,求函数在点(x 0,y 0)处的切线的方程.(重点)5.准确理解在某点处与过某点处的切线方程.(易混点) 6导数公式表的记忆..应用四则运算法则求导(重点) 7.利用导数研究函数性质.(难点)三.知识梳理1.函数)(x f y =从1x 到2x 的平均变化率:函数)(x f y =从1x 到2x 的平均变化率为1212)()(x x x f x f --若12x x x -=∆,12y y y -=∆,则平均变化率可表示为xy ∆∆.2. 函数)(x f y =在0x x =处的导数(1)定义:lim 0→∆x x x f x x f ∆-∆+)()(00=lim 0→∆x xy ∆∆为函数)(x f y =在0x x =处的导数,记作)(0'x f 或'y |0x x =,即)(0'x f =lim 0→∆x xy ∆∆为函数)(x f y =在0x x =处的导数,记作)(0'x f 或'y|0x x =,即)(0'x f =lim 0→∆x xy ∆∆=lim 0→∆x xx f x x f ∆-∆+)()(00(2)几何意义:函数)(x f 在点0x 处的导数)(0'x f 的几何意义是在曲线y =)('x f 上点 处的切线的 相应地,切线方程为 . 3.函数f (x )的导函数:称函数)('x f =lim→∆xxx f x x f ∆-∆+)()(为)('x f 的导函数,导函数有时也记作y ′.4.5.导数运算法则:(1)[f (x )±g (x )]′= ;(2)[f (x )·g (x )]′= ;(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 6.复合函数的导数:复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的 关系为y ′x = ,即y 对x 的导数等于的导数与 的导数的乘积.四.正本清源1.深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系:(1)函数)(x f 在点0x 处的导数)(0'x f 是一个常数;(2)函数y =)(x f 的导函数,是针对某一区间内任意点x 而言的.如果函数y =)(x f 在区间(b a ,)内每一点x 都可导,是指对于区间(b a ,)内的每一个确定的值0x 都对应着一个确定的导数)(0'x f.这样就在开区间(b a ,)内构成了一个新函数,就是函数)(x f 的导函数)('x f .在不产生 混淆的情况下,导函数也简称导数.2.曲线)(x f y= “在点),(00y x p 处的切线”“过点),(00y x p 的切线”的区别与联系 (1)曲线)(x f y =在点),(00y x p 处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线)(x f y=过点),(00y x p 的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.五.典例分析题型一 利用导数的定义求函数的导数例1 求函数12+=x y在0x 到0x +Δx 之间的平均变化率.思维启迪:紧扣定义xf ∆∆=xx f x x f ∆-∆+)()(00进行计算.探究提高 : 求函数)(x f 平均变化率的步骤:①求函数值的增量)()(12x f x f f-=∆②计算平均变化率xf ∆∆=1212x x )f(x )f(x --.解这类题目仅仅是简单套用公式,解答过程相对简单,只要注意运算过程就可以了.变式训练1 过曲线y =f (x )=x 3上两点P (1,1)和Q (1+Δx,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率,并求曲线在点P 处切线的斜率.题型二 导数的运算例2 求下列函数的导数:(1)y =x (2311xx x++);(2)y =x -sin2xcos2x ;(3)y =(1)1)-. 思维启迪:若式子能化简,可先化简,再利用公式和运算法则求导.探究提高 ①求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;②有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量.变式训练2 求下列函数的导数:(1)y =(x -2)2;(2)y =cos x2⎝⎛⎭⎫sin x 2-cos x 2; (3)y =log 2(ax 3).例3 求下列复合函数的导数:(1)y =(2x -3)5; (2)y =3-x ; (3)y =sin 2⎝⎛⎭⎫2x +π3; (4)y =ln(2x +5). 思维启迪:先正确地分析函数是由哪些基本函数经过怎样的顺序复合而成;求导时,可设出中间变量,注意要逐层求导不能遗漏,每一步对谁求导,不能混淆.探究提高 由复合函数的定义可知,中间变量的选择应是基本函数的结构,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外向内,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程. 变式训练3 求下列函数的导数:(1)y =(2x +1)n (n ∈N *); (2)y =⎝⎛⎭⎫x 1+x 5.题型三 导数的几何意义例4 已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.思维启迪:函数y =ax 2+bx +c 在点Q (2,-1)处的导数值等于切线斜率为1,且点Q (2,-1)、点P (1,1)都在抛物线上.探究提高 利用导数求切线斜率是行之有效的方法,它适用于任何可导函数,解题时要充分运用这一条件,才能使问题迎刃而解.解答本题常见的失误是不注意运用点Q (2,-1)在曲线上这一关键的隐含条件.变式训练4 设函数f (x )=ax +1x +b(a ,b ∈Z),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.求y =f (x )的解析式.题型四 求切点坐标例5 在曲线y =x 2上哪一点处的切线,满足下列条件:(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角.分别求出该点的坐标.[题后感悟] 解决此类问题,关键是利用导数的几何意义求出过切点的切线的斜率,结合题意列方程,求出切点的坐标.求解过程应认真领会数学的转化思想、待定系数法.变式训练5 已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线的倾斜角为45°?(2)抛物线上哪一点的切线平行于直线4x -y -2=0?(3)抛物线上哪一点的切线垂直于直线x +8y -3=0?[特别提醒] (1)若曲线y =f (x )在点P (x 0,f (x 0))处的导数f ′(x 0)不存在,就是切线与y 轴平行.f ′(x 0)>0,切线与x 轴正向夹角为锐角,f ′(x 0)<0,切线与x 轴正向夹角为钝角;f ′(x 0)=0,切线与x 轴平行.(2)若题中所给的点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而可求出切线方程.六 易错警示:分不清“曲线在点P 处的切线”与“曲线过点P 的切线”的区别致误例6 已知曲线y =13x 3+43. (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.批阅笔记(1)解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设出切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)易错点是:在第(2)问中,多数学生误以为点(2,4)就是切点,从而导致错误.(4)错因分析:一般情况下,受思维定势的影响,有些人认为直线与曲线相切时,有且只有一个公共点,这是错误的.依据切线斜率的导数定义可知,切线可以和曲线有除切点外的其他公共点.思想方法感悟提高.七课后小结1.在对导数的概念进行理解时,特别要注意f (x0)与(f (x0))′是不一样的,f′(x0)代表函数f (x)在x=x0处的导数值,不一定为0;而(f (x0))′是函数值f (x0)的导数,而函数值f (x0)是一个常量,其导数一定为0,即(f (x0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.失误与防范1.利用导数定义求导数时,要注意到x与Δx 的区别,这里的x是常量,Δx是变量.2.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.3.求曲线切线时,要分清点P处的切线与过P点的切线的区别,前者只有一条,而后者包括了前者.4.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.八家庭作业1,(2011全国高考4)曲线2y21x x=-+在点(1,0)处的切线方程为(A)1y x=-(B)1y x=-+(C)22y x=-(D)22y x=-+2,(2011年山东高考4)曲线311y x=+在点P(1,12)处的切线与y轴交点的纵坐标是(A)-9 (B)-3 (C)9 (D)15,3,(2011年江西考4)曲线xy e=在点A(0,1)处的切线斜率为()A.1B.2C.eD.1 e4,(2011年重庆高考文3)曲线在点,处的切线方程为(A)(B)(C) (D)5,(2011年江西高考理4)设xxxxf ln42)(2--=,则0)('>xf的解集为A.),0(+∞ B. ),2()0,1(+∞- C. ),2(+∞ D.)0,1(-6,(2011年全国高考理8)曲线21xy e-=+在点(0,2)处的切线与直线0y=和y x=围成的三角形的面积为(A)13 (B)12 (C)23 (D)17,(2011年湖南高考7)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C.2-D.28,(2011年辽宁文高考题20)设函数)(x f =x+ax2+blnx ,曲线y=)(x f 过P (1,0),且在P 点处的切斜线率为2. (I )求a ,b 的值;(II )证明:)(x f ≤2x -2.9,(2011年全国Ⅰ理高考题21)已知函数ln ()1a x bf x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

苏教版高二数学选修2-2 1.2.3 简单复合函数的导数 学案

苏教版高二数学选修2-2  1.2.3  简单复合函数的导数  学案

1.2.3简单复合函数的导数学习目标 1.理解掌握复合函数的求导法则.2.能够结合已学过的法则、公式,进行一些复合函数的求导.知识点复合函数的概念及求导法则已知函数y=2x+5+ln x,y=ln(2x+5),y=sin(x+2).思考1这三个函数都是复合函数吗?思考2试说明函数y=ln(2x+5)是如何复合的?思考3试求函数y=ln(2x+5)的导数.类型一 复合函数的概念例1 下列函数是否为复合函数,若是,说明是怎样复合而成的?(1)y =(2-x 2)3;(2)y =sin x 2;(3)y =cos(π4-x ); (4)y =ln sin(3x -1).反思与感悟 根据复合函数的定义,若是一个复合函数,分清哪个是里层函数,哪个是外层函数,引入中间变量,将复合函数分解成较为简单的函数.跟踪训练1 写出由下列函数复合而成的函数.(1)y =cos u ,u =1+x 2;(2)y =ln u ,u =ln x .类型二 求复合函数的导数例2 求下列函数的导数:(1)y =32x -1;(2)y =1(2x +1)4; (3)y =5log 3(1-x );(4)y =x 2cos(2x -π3).跟踪训练2 (1)若f (x )=(2x +a )2,且f ′(2)=20,则a = .(2)已知y =ln 3x e x ,则y ′|x =1= . (3)已知y =sin 3x +cos 3x ,则y ′= . 类型三 复合函数导数的综合应用例3 求曲线y =1x 2-3x 在点⎝⎛⎭⎫4,12处的切线方程.反思与感悟 (1)复合函数的导数应用主要有:求在某点处的切线方程,已知切线的方程或斜率求切点,以及涉及切线问题的综合应用.(2)先求出复合函数的导数,若已知切点,则求出切线斜率、切线方程;若切点未知,则先设出切点,用切点表示切线斜率,再根据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.跟踪训练3 设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R 且为常数),曲线y =f (x )与直线y =32x 在点(0,0)相切.求a ,b 的值.1.函数y =sin 3x 是由函数 复合而成的.2.设f (x )=e -x 则f ′(x )= .3.函数y =(1-2x )4在x =12处的导数为 . 4.过曲线y =11+x 2上一点,使曲线在该点的切线平行于x 轴,求切线方程.1.复合函数求导的步骤2.求复合函数的导数的注意点:(1)分解的函数通常为基本初等函数;(2)求导时分清是对哪个变量求导;(3)计算结果尽量简洁.提醒:完成作业 1.2.3答案精析问题导学知识点思考1 函数y =ln(2x +5),y =sin(x +2)是复合函数,函数y =2x +5+ln x 不是复合函数. 思考2 设u =2x +5,则y =ln u ,从而y =ln(2x +5)可以看作是由y =ln u 和u =2x +5,经过“复合”得到的,即y 可以通过中间变量u 表示为自变量x 的函数.思考3 y ′=12x +5·(2x +5)′=22x +5. x 的函数 f (g (x )) y ′u ·u ′x y 对u 的导数与u 对x 的导数的乘积题型探究例1 解 (1)y =(2-x 2)3是由y =u 3及u =2-x 2复合而成.(2)y =sin x 2是由y =sin t 及t =x 2复合而成.(3)y =cos(π4-x )是由y =cos u 及u =π4-x 复合而成. (4)y =ln sin(3x -1)是由y =ln u ,u =sin t 及t =3x -1复合而成.跟踪训练1 解 (1)y =cos(1+x 2).(2)y =ln(ln x ).例2 解 (1)函数y =32x -1看作函数y =3u 与函数u =2x -1的复合,∴y ′=y ′u ·u ′x =(3u )′·(2x -1)′=(2ln 3)·3u =2·32x -1·ln 3.(2)y =1(2x +1)4=(2x +1)-4,函数y =1(2x +1)4看作函数y =u -4与u =2x +1的复合. y ′=y ′u ·u ′x =(u -4)′·(2x +1)′=-4u -5×2=-8(2x +1)-5=-8(2x +1)5. (3)函数y =5log 3(1-x )看作函数y =5log 3u 与函数u =1-x 的复合.y ′=y ′u ·u x ′=(5log 3u )′(1-x )′=5u ln 3×(-1)=5(ln 3)(x -1). (4)函数t =cos(2x -π3)看作函数t =cos u 与u =2x -π3的复合. ∴[cos(2x -π3)]′=(cos u )′(2x -π3)′ =-2sin u =-2sin(2x -π3),∴y ′=(x 2)′cos(2x -π3)+x 2[cos(2x -π3)]′ =2x cos(2x -π3)-2x 2sin(2x -π3). 跟踪训练2 (1)1 (2)1-ln 3e(3)3sin 2x cos x -3sin 3x例3 解 y ′=[(x 2-3x )-12]′=-12(x 2-3x )-32·(2x -3), ∴y =1x 2-3x 在点⎝⎛⎭⎫4,12处的切线斜率为k =y ′| x =4=-12×(42-3×4)-32×(2×4-3)=-516, ∴切线方程为y -12=-516(x -4),即5x +16y -28=0. 跟踪训练3 解 由y =f (x )过点(0,0)得b =-1,∴f (x )=ln(x +1)+x +1+ax -1,∴f ′(x )=1x +1+12x +1+a , 又∵曲线y =f (x )与直线y =32x 在点(0,0)相切,即曲线y =f (x )在点(0,0)处切线的斜率为32,∴f ′(0)=32,即1+12+a =32,∴a =0. 达标检测1.y =u 3及u =sin x 2.-e -x 3.04.解 设切点的坐标为(x 0,y 0),因为过点(x 0,y 0)的切线平行于x 轴,于是k =0,由导数几何意义知k =f ′(x 0)=-2x 0(1+x 20)2=0,所以x 0=0.又因为点(x 0,y 0)在曲线y =11+x 2上,将x 0=0代入得y 0=1.故切点坐标为(0,1),切线方程为y -1=0.。

5.2.2 导数的四则运算法则课件-2024-2025学年高二上学期数学人教A版选择性必修2

5.2.2 导数的四则运算法则课件-2024-2025学年高二上学期数学人教A版选择性必修2
∴b=0,d=0.∴f(x)=ax4+cx2+1.
∵函数f(x)的图象在点(1,f(1))处的切线方程为y=x-2,
∴切点为(1,-1).∴a+c+1=-1.①
∵切线的斜率为1,且f'(1)=4a+2c,∴4a+2c=1.②
联立①②,解得
5
9
a= ,c=- .
2
2
∴函数 f(x)的解析式为
5 4 9 2
A.
e

C.(3lg
)
e -e
'= 2

B.(3x+1)'=3xlog3e
3
x)'=
lg e
D.(x2cos x)'=-2xsin x
解析:对于 A,
e

(e )'-e ()'
'=
2
=
e -e
,故正确;
2
对于 B,(3x+1)'=3xln 3,故错误;
对于 C,(3lg
过原点,且在原点处的切线斜率是-3,求a,b的值.
解:因为f(x)=x3+(1-a)x2-a(a+2)x+b.
所以f'(x)=3x2+2(1-a)x-a(a+2),
又函数f(x)的图象过原点,且在原点处的切线斜率是-3,
(0) = = 0,
所以
解得 b=0,a=1 或 b=0,a=-3.
'(0) = -( + 2) = -3,
'=
2
(+1)
=
2
(+1)

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。

5.2导数的运算(课件)高二数学(苏教版选择性必修第一册)

5.2导数的运算(课件)高二数学(苏教版选择性必修第一册)

A. 1011 1012
【答案】B
B. 2022 2025
C. 2025 2022
D.1
【详解】设直线 y kx b 与 f (x) ex3 的图象相切于点 P1 x1, y1 ,与 g x ex2022 2022 的图象相切于点
P2 x2, y2 ,又 f x ex3 , g x ex2022 ,
当堂检测 7.函数 f x 及其导函数 f x 定义域均为 R ,且 f 3x 2是偶函数,记 g x f x ,g x 1 也是偶 函数,则 f 2022 ___________.
【答案】 0
【详解】 f 3x 2 是偶函数, f 3x 2 f 3x 2 , 两边求导得到3 f 3x 2 3 f 3x 2 ,即 g 3x 2 g 3x 2 , 即 g x g x 4 ,取 x 2 , g 2 g 2 , g 2 0 , g x 1 也是偶函数,故 g x 1 g x 1 ,即 g x g x 2 , 故 g x 4 g x 2 ,即 g x g x 2 , g x 2 g x 4 . 故 g x g x 4 , 4 是函数的一个周期, f 2022 g 2022 g 2 0 .
所以 y1 ex13 , y2 ex2 2022 2022 ,
由点 P1 x1, y1 在切线上,得切线方程为 y ex13 ex13 x x1 ;
由点 P2 x2, y2 在切线上,得切线方程为 y ex22022 2022 ex22022 x x2 ,

x′ex-cos ex2
xex′=-sin
x+cos ex
x .
讲授新课
【方法总结】 1.求函数导数的总原则:先化简解析式,再求导. 2.常见形式及具体求导 6 种方法 连乘形式 先展开化为多项式形式,再求导 三角形式 先利用三角函数公式转化为和或差的形式,再求导 分式形式 先化为整式函数或较为简单的分式函数,再求导 根式形式 先化为分数指数幂的形式,再求导 对数形式 先化为和、差形式,再求导 复合函数 先确定复合关系,由外向内逐层求导,必要时可换元

高二数学导学案 导数公式及四则运算

高二数学导学案  导数公式及四则运算

高二数学导学案 导数的运算学习目标 :1、掌握基本初等函数的导数公式;2、能应用基本初等函数的导数解决有关问题;3、掌握导数的和、差、积、商的求导法则;4、会运用导数的四则运算法则解决一些函数求导问题.重点:1、基本初等函数的导数公式;2、导数的四则运算法则.难点:导数的四则运算法则的灵活应用.知识要点1、初等函数导数公式表2、导数的四则运算(1)函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())f x g x '±= ,这个法则可推广到有限个函数,即12()n f f f '±±⋅⋅⋅±=______ ___.(2)函数积的求导法则:设()f x ,()g x 是可导的,则(()())f x g x '⋅= , 由上述法则可以得出[()]Cf x '= .(3)函数商的求导法则:设()f x ,()g x 是可导的,且0)(≠x g ,则()[]()f xg x '= ,由上述法则可以得出1[]()g x '= . 3、复合函数(())y f g x =,()u g x =,y '= = ,由上述法则可以得出()ax b e +'= ,[ln()]ax b '+= .预习检测1、求下列函数的导数:(1)5x y =; (2)3-=x y ; (3)3.0x y =; (4)x y 2=.2、求下列函数在给定点的导数:(1)14y x =,16x =;(2)sin y x =,2x π=;(3)cos y x =,2x π=.3、求曲线x y 2sin =在点4π=x 处的切线方程.课题内容例1、求多项式函数1011()n n n n f x a x a x a x a --=++⋅⋅⋅++的导数.练习、求下列函数的导数:(1)3102+=x y ; (2)5673x x x y -+=; (3)2(0)y ax bx c a =++≠.例2、求x x y sin =的导数.练习、求下列函数的导数:(1))5)(23(2-+=x x y ;(2)x x y ln =.例3、求x y tan =的导数.练习、求下列函数的导数:(1)12+=x xy ;(2)x x y sin =.例4、(1)2(53)y x =+; (2)sin(3)3y x π=-.课堂练习1、求下列函数的导数:(1)x x y sin 3=; (2))53)(32(2x x x y +-+=;(3)x x y 1+=; (4)3(57)(38)y x x =-+;(5)2)53(+=x y ; (6)x x y +=.2、求下列函数在指定点的导数:(1)x x y cos 2=,4π=x ; (2)22-=x x y ,1=x .3、已知抛物线532-+=x x y ,求此抛物线在3=x 处的切线方程.4、已知曲线x x y 33+=,求这条曲线平行于直线215+=x y 的切线方程.。

2024-2025学年高二数学选择性必修第二册(北师版)教学课件第二章-§3导数的计算

2024-2025学年高二数学选择性必修第二册(北师版)教学课件第二章-§3导数的计算
由导数的定义可知,一个函数的导数是唯一确定的。在必修第一册中我们学过基本初等函数,并且知道,
很多复杂函数都是通过对这些函数进行加、减、乘、除等运算得到的.由此自然想到,能否先求出基本初
等函数的导数,然后研究出导数的“运算法则”,这样就可以利用导数的运算法则和基本初等函数的导数
求出复杂函数的导数。本节我们就开始研究这些问题.
北师大版
函数 = = 2 的导数
∆ +∆ −() +∆ 2 − 2 2 +2∆+(∆)2 − 2
解:因为∆ =
=
=
=




所以 ′ = ∆→0


=
∆→0

2+ ∆,
(2 + ∆ ) = 2.
′ =2x表示函数 = 2 的图像,上点 , 处切线的斜率为2x,说明随着变
的价格上涨的速度大约是多少?(精确到0.01元/年)
解:根据基本初等函数的导数公式表有′ = 1.05 ln1.05,
所以′ 10 = 1.0510 ln1.05≈ 0.08,
所以在第10个年头这种商品的价格约以0.08元/年的速度上涨.
高中数学
选择性必修第二册
北师大版
跟踪训练
质点的运动方程是S(t)=sin
cos2

=__________
高中数学
选择性必修第二册
北师大版
即时巩固
4
-1
1.函数= 2在=2处的导数为________.
2. (多选)下列结论正确的是 (ABC)
A.若y=0,则y′=0
C.若y=x-1,则y′=-x-2

高二人教A版高中数学选修1-3 第三章 导数及其应用3.2 导数的计算

高二人教A版高中数学选修1-3 第三章 导数及其应用3.2 导数的计算

=
28 (1 4)2
=-
6 25
.
因此曲线 y= 2x 在点(2, 4 )处的切线方程为 y- 4 =- 6 (x-2),
x2 1
5
5 25
即 6x+25y-32=0.
答案:(1)6x+25y-32=0
(2)已知曲线 y=5 x ,则过点 P(0,5)且与曲线相切的切线方程为
.
解析:(2)因为点 P(0,5)不在曲线 y=5 x 上,
1
f′(x)= x ln a (a>0,且 a≠1)
1
f′(x)= x
2.导数运算法则
和差的导数 积的导数
商的导数
[f(x)±g(x)]′= f′(x)±g′(x) [f(x)·g(x)]′= f′(x)g(x)+f(x)g′(x)
[ f (x) ]′= f (x)g(x) f (x)g(x)
3.2 导数的计算 3.2.1 几个常用函数的导数 3.2.2 基本初等函数的导数公式及导数
的运算法则
课标要求:1.能根据定义求函数y=c,y=x,y=x2,y=1 的导函数.2.理解导数的
x
四则运算法则.3.掌握几种常见函数的导数公式.4.能够应用导数公式及运
算法则进行求导运算.
自主学习 课堂探究
值为( B )
(A)1-cos 1
(B)1+cos 1 (C)cos 1-1
(D)-1-cos 1
5.(商的导数的应用)设函数f(x)= sin x ,f′(x)为函数f(x)的导函数,则
x
f′(π )=
.
答案:- 1
π
课堂探究
题型一 利用导数公式求函数的导数

高二文科数学选修1-1第三章导数的概念及运算带答案

高二文科数学选修1-1第三章导数的概念及运算带答案

导数的概念及运算[必备知识]考点1 函数y =f (x )在x =x 0处的导数 1.定义称函数y =f (x )在x =x 0处的瞬时变化率lim Δ x →f (x 0+Δx )-f (x 0)Δx =lim Δ x →0 ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δ x →0ΔyΔx =lim Δ x →0 f (x 0+Δx )-f (x 0)Δx. 2.几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 考点2 基本初等函数的导数公式若y =f (x ),y =g (x )的导数存在,则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 考点4 复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [必会结论]1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 一、疑难辨析判断下列结论的正误.(正确的打“√”,错误的打“×”) 1.f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) 2.曲线的切线不一定与曲线只有一个公共点.( ) 3.与曲线只有一个公共点的直线一定是曲线的切线.( )4.对于函数f (x )=-x 2+3x ,由于f (1)=2,所以f ′(1)=2′=0.( )5.物体的运动方程是s =-4t 2+16t ,则该物体在t =0时刻的瞬时速度是0.( ) 6.若f (x )=f ′(a )x 2+ln x (a >0),则f ′(x )=2xf ′(a )+1x .( )答案 1.√ 2.√ 3.× 4.× 5.× 6.√ 二、例题练习1.已知函数()y f x =,那么下列说法错误的是( ) A.()()00y f x x f x +∆=∆-叫做函数值的增量 B.()()00f x x f x y x x+∆-∆=∆∆叫做函数在0x 到0x x +∆之间的平均变化率 C.()f x 在0x 处的导数记为y ' D.()f x 在0x 处的导数记为()0f x '【答案】C【解析】由导数的定义可知C 错误.故选C.2. 已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy =________.【答案】 -12【解析】 Δy =⎝⎛⎭⎫2+12-(2+1)=-12. 3.设函数()f x 在1x =处可导,则()()11lim 2x f x f x∆→+∆--∆等于()A .()1f 'B .()112f '- C .()21f '-D .()1f '- 【答案】B【解析】函数()f x 在1x =处()()()0111limx f x f f x ∆→+∆-'=∆()()0112lim 2x f x f x∆→+∆-=--∆,所以()()()0111lim122x f x f f x ∆→+∆-'=--∆.4.若函数()y f x =在区间(),a b 内可导,且()0,x a b ∈,若0()f x '=4,则()()0002limh f x f x h h→--的值为( )A .2B .4C .8D .12 【答案】C【解析】由函数()y f x =在某一点处的导数的定义可知()()()()()000000022lim2lim 282h h f x f x h f x f x h f x h h→→----'===5.若()()0003lim1x f x x f x x∆→+∆-=∆,则()0f x '=__________.【答案】13【解析】由于()()()()()000000033lim 3lim 313x x f x x f x f x x f x f x x x∆→∆→+∆-+∆-'===∆∆,所以()013f x '=. 6.[课本改编]曲线y =x 2在(1,1)处的切线方程是( ) A .2x +y +3=0 B .2x -y -3=0 C .2x +y +1=0 D .2x -y -1=0答案 D 解析 ∵y ′=2x ,∴k =y ′| x =1=2;故所求切线方程为:y -1=2(x -1)即2x -y-1=0,故选D.7.函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)=( ) A .1 B .2 C .3 D .4 答案 B解析 由条件知f ′(5)=-1,又在点P 处切线方程为y -f (5)=-(x -5),∴y =-x +5+f (5),即y =-x +8,∴5+f (5)=8,∴f (5)=3,∴f (5)+f ′(5)=2. 8.函数y =x ·e x 在点(1,e)处的切线方程为( ) A .y =2e x B .y =x -1+eC .y =-2e x +3eD .y =2e x -e答案 D解析 函数y =x ·e x 的导函数是f ′(x )=e x +x e x ,在点(1,e)处,把x =1代入f ′(x )=e x +x e x ,得k =f ′(1)=2e ,点斜式得y -e =2e(x -1),整理得y =2e x -e.9.已知函数2()cos 3g x x x =+,则2()πg'=_______________.【答案】13. 【解析】因为2()sin 1g x x '=-+,所以2()πg'=2π21sin 113233-+=-=.故填13.10=')1(f _______________.【答案】e【解析】0x =得(0)1f =,∴(1)e f '=.11.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '= A .e - B .1- C .1D .e【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>,1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B .12.若2()24ln f x x x x =--,则()0f x '>的解集为_______________. 【答案】(2,)+∞【解析】由()224ln f x x x x =--,得()()4220f x x x x'=-->,则由不等式()42200x x x-->>,得()2200x x x -->>,从而可解得2x >.故()0f x '>的解集为(2,)+∞.13.求下列函数的导数:(1)y =e x sin x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; (3)y =x -sin x 2cos x2;(3)=xx ln ;[解] (1)y ′=(e x )′sin x +e x (sin x )′=e x sin x +e x cos x . (2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3.(3)因为y =x -12sin x ,所以y ′=1-12cos x .14.[2015·天津高考]已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________.答案 3解析 因为f (x )=ax ln x ,所以f ′(x )=a ln x +ax ·1x =a (ln x +1).由f ′(1)=3得a (ln1+1)=3,所以a =3.15.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 【答案】(-∞,0)【解析】曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,即f ′(x )=0有正实数解.又∵f ′(x )=5ax 4+1x ,∴方程5ax 4+1x=0有正实数解.∴5ax 5=-1有正实数解.∴a <0.16.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29 C .212 D .215 【答案】C【解析】因为f ′(x )=x ′·[]x -a 1x -a 2…x -a 8+[]x -a 1x -a 2…x -a 8′·x =(x -a 1)(x -a 2)…(x -a 8)+ []x -a 1x -a 2…x -a 8′·x ,所以f ′(0)=(0-a 1)(0-a 2)…(0-a 8)+0=a 1a 2…a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.17.[2016·襄阳调研]曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C .60°D .120°答案 B 解析 由y ′=3x 2-2得y ′| x =1=1,即曲线在点(1,3)处的切线斜率为1,所以切线的倾斜角为45°,故选B.18.[2016·大同质检]一点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A.⎣⎡⎦⎤0,π2B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎝⎛⎦⎤π2,3π4 答案 B 解析 ∵y ′=3x 2-1,∴tan α=3x 2-1≥-1,∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 19.[2016·深圳中学实战考试]函数y =x 33-x 2+1(0<x <2)的图象上任意点处切线的倾斜角记为α,则α的最小值是( ) A.π4B.π6C.5π6D.3π4答案 D 解析 由于y ′=x 2-2x ,当0<x <2时,-1≤y ′<0,据导数的几何意义得-1≤tan α<0,当tan α=-1时,α取得最小值,即αmin =3π4. 20.[2016·山西师大附中质检]已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.解 (1)根据已知得点P (2,4)是切点且y ′=x 2,所以在点P (2,4)处的切线的斜率为y ′| x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′| x =x 0=x 20.所以切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43, 即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以x 20(x 0+1)-4(x 0+1)(x 0-1)=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0.21.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上的任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0||2x 0=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6. 备用:1.函数f (x )=ln x -2xx 的图象在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0答案 C解析 f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.2.[2014·江西高考]若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)解析 令f (x )=x ln x ,则f ′(x )=ln x +1,设P (x 0,y 0),则f ′(x 0)=ln x 0+1=2,∴x 0=e ,此时y 0=x 0ln x 0=eln e =e ,∴点P 的坐标为(e ,e).[2014·江苏高考]在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 答案 -3解析 由曲线y =ax 2+b x 过点P (2,-5),得4a +b2=-5.①又y ′=2ax -b x 2,所以当x =2时,4a -b 4=-72,②由①②得⎩⎪⎨⎪⎧a =-1,b =-2,所以a +b =-3.3. [2016·沈阳模拟]若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( ) A .1 B.164C .1或164D .1或-164[正解] 易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上, (1)当O (0,0)是切点时,同上面解法.(2)当O (0,0)不是切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2.①又k =y 0x 0=x 20-3x 0+2,②由①,②联立,得x 0=32(x 0=0舍),所以k =-14,∴所求切线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0.依题意,Δ=116-4a =0,∴a =164.综上,a =1或a =164.[答案] C[2016·沈阳模拟]若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7答案 A解析 ∵y =x 3,∴y ′=3x 2.设过点(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为:y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,得a =-1. 综上,a =-1或a =-2564.故选A.。

人教版高中数学高二 基本初等函数的导数公式及导数的运算法则 精品导学案

人教版高中数学高二 基本初等函数的导数公式及导数的运算法则  精品导学案

§3.2.2基本初等函数的导数公式及导数的运算法则课前预习学案一.预习目标1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二.预习内容1.基本初等函数的导数公式表2.(2)推论:[]'()cf x =(常数与函数的积的导数,等于: )三. 提出疑惑课内探究学案一. 学习目标1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二. 学习过程(一)。

【复习回顾】复习五种常见函数y c =、y x =、2y x =、1y x=、y =(二)。

【提出问题,展示目标】我们知道,函数*()()n y f x x n Q ==∈的导数为'1n y nx-=,以后看见这种函数就可以直接按公式去做,而不必用导数的定义了。

那么其它基本初等函数的导数怎么呢?又如何解决两个函数加。

减。

乘。

除的导数呢?这一节我们就来解决这个问题。

(三)、【合作探究】1.(1)分四组对比记忆基本初等函数的导数公式表(2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2xy =(2)3x y =与3log y x =2.(1推论:[]''()()cf x cf x =(常数与函数的积的导数,等于: )提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号.(2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)sin y x x =⋅;(3)2(251)xy x x e =-+⋅;(4)4xx y =;【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.(四).典例精讲例1:假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t(单位:年)有如下函数关系0()(15%)tp t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是:解:变式训练1:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%分析:净化费用的瞬时变化率就是: 解:比较上述运算结果,你有什么发现?三.反思总结:(1)分四组写出基本初等函数的导数公式表:(2)导数的运算法则:四.当堂检测1求下列函数的导数(1)2log y x = (2)2xy e =(3)32234y x x =-- (4)3cos 4sin y x x =-2.求下列函数的导数(1)ln y x x = (2)ln xy x=课后练习与提高1.已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为: A ()2(1)f x x =- B 2()2(1)f x x =- C 2()(1)3(1)f x x x =-+- D ()1f x x =-2.函数21y ax =+的图像与直线y x =相切,则a =A18 B 14 C 12D 1 3.设函数1()n y x n N +*=∈在点(1,1)处的切线与x 轴的交点横坐标为n x ,则12n x x x ••⋅⋅⋅•=A l nB l 1n +C 1n n + D 14.曲线21xy xe x =++在点(0,1)处的切线方程为-------------------5.在平面直角坐标系中,点P 在曲线3103y x x =-+上,且在第二象限内,已知曲线在点P 处的切线的斜率为2,则P 点的坐标为------------6.已知函数32()f x x bx ax d =+++的图像过点P (0,2),且在点(1,(1))M f --处的切线方程为670x y -+=,求函数的解析式。

高二数学导数的计算

高二数学导数的计算

二、重点解析
无限逼近的极限思想是建立导数概念, 用导数定义求函数 的导数的基本思想. f(x+x)-f(x) 导数的定义: f(x)=lim . x0 x y 利用定义求导数的步骤: (1)求 y; (2)求 x ; y (3)取极限得 f(x)=lim . x0 x 导数的几何意义是曲线的切线的斜率, 导数的物理意义是 某时刻的瞬时速度.
即当 t=2 时, 质点运动的瞬时速度为 13m/s.
课后练习 3
已知函数 f(x)=2x3+ax 与 g(x)=bx2+c 的图象都过点 P(2, 0), 且 在点 P 处有公共切线, 求 f(x)、g(x) 的表达式. 解: ∵f(x)=2x3+ax 的图象过点 P(2, 0), ∴a=-8. ∴f(x)=2x3-8x. ∴f(x)=6x2-8. ∵g(x)=bx2+c 的图象也过点 P(2, 0), ∴4b+c=0. 又g(x)=2bx, 4b=g(2)=f(2)=16, ∴b=4. ∴c=-16. ∴g(x)=4x2-16. 综上所述, f(x)=2x3-8x, g(x)=4x2-16.
∵g(x)=bx2+c 的图象也过点 P(2, 0),
∴4b+c=0. 又g(x)=2bx, 4b=g(2)=f(2)=16, ∴b=4. ∴c=-16. ∴g(x)=4x2-16. 综上所述, f(x)=2x3-8x, g(x)=4x2-16.
课后练习 7
设函数 y=ax3+bx2+cx+d 的图象与 y 轴的交点为 P 点, 且曲线 在 P 点处的切线方程为 12x-y-4=0. 若函数在 x=2 处取得极值 0, 试确定函数的解析式. 解: 由已知, P 点的坐标为(0, d). ∵曲线在 P 点处的切线方程为 12x-y-4=0, ∴120-d-4=0. 解得: d=-4. 又切线斜率 k=12, 故函数在 x=0 处的导数 y|x=0=12. 而 y=3ax2+2bx+c, y|x=0=c, ∴c=12. ∵函数在 x=2 处取得极值 0, ∴y|x=2=0 且当 x=2 时, y=0. 12a+4b+12=0, 故有 8a+4b+20=0. 解得 a=2, b=-9. ∴y=2x3-9x2+12x-4.

高二数学选修2-2:3导数的四则运算法则

高二数学选修2-2:3导数的四则运算法则
∴y′x=y′u·ux′=(eu)′(2x+1)′=2eu=2e2x+1.
(2)函数 y=(2x-1 1)3可看作函数 y=u-3 和 u=2x- 1 的复合函数,
∴y′x=y′u·ux′=(u-3)′(2x-1)′=-6u-4=-6(2x -1)-4=-(2x-6 1)4.
(3)函数 y=log2(1-x)可看作函数 y=log2u 和 u=1- x 的复合函数,
【提示】 Q′(x)=1+x1,H′(x)=1-1x,M′(x)=ln x +1,N′(x)=1-xl2n x,K′(x)=x5.
导数的运算法则
1.函数和(或差)的求导法则
f(x)±g(x)′= f′(x)±g′(x)

2.函数积的求导法则
(1)[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x.)
2.设 f(x)=ax3+3x2+2,若 f′(-1)=4,则 a 的值等
于( )
A.139
B.136
C.133
D.130
【解析】 ∵f′(x)=3ax2+6x,∴f′(-1)=3a-6=4,
∴a=130. 【答案】 D
3.(2013·江西高考)若曲线y=xα+1(α∈R)在点(1,2)处 的切线经过坐标原点,则α=________.
=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)·
(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2) =(2x+3)(x+3)+x2+3x+2=3x2+12x+11. 法二 ∵(x+1)(x+2)(x+3)=(x2+3x+2)(x+3)=x3+6x2 +11x+6, ∴y′=[(x+1)(x+2)(x+3)]′=(x3+6x2+11x+6)′=3x2+1 2x+11.

高二数学人教A版选修1-1第三章3.3.2函数的极值与导数导学案(含答案)

高二数学人教A版选修1-1第三章3.3.2函数的极值与导数导学案(含答案)

内 容 标 准学 科素 养 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.利用直观想象 提升逻辑推理 及数学运算[基础认识]知识点一 极值点与极值的概念 预习教材P 93-95,思考并完成以下问题 (1)观察函数f (x )=13x 3-2x 的图象.f ′(-2)的值是多少?在x =-2左、右两侧的f ′(x )有什么变化? f ′(2)的值是多少,在x =2左、右两侧的f ′(x )又有什么变化?提示:f ′(-2)=0,在x =-2的左侧f ′(x )>0,在x =-2的右侧f ′(x )<0;f ′(2)=0,在x =2的左侧f ′(x )<0,在x =2的右侧f ′(x )>0.(2)如图,函数f (x )在a ,b 点的函数值与它附近的函数值有什么关系?y =f (x )在a ,b 点的导数值是多少?在a ,b 附近,y =f (x )的导数的符号是什么?提示:可以发现,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0.类似地,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0.知识梳理 极值点与极值的概念(1)极小值点与极小值如图,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则把点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)极大值点与极大值如(1)中图,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 的左侧f ′(x )>0,右侧f ′(x )<0,则把点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.知识点二 求函数y =f (x )的极值的方法 知识梳理 解方程f ′(x )=0,当f ′(x 0)=0时:(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是________. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是________. 提示:(1)极大值 (2)极小值[自我检测]1.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 答案:C2.已知函数f (x )=x +1x ,则f (x )( )A .有极大值2,极小值-2B .有极大值-2,极小值2C .无极大值,但有极小值-2D .有极大值2,无极小值 答案:B探究一极值与极值点的判断与求解[教材P98习题3.3A组4题]如图是导函数y=f′(x)的图象,在标记的点中,在哪一点处:(1)导函数y=f′(x)有极大值?(2)导函数y=f′(x)有极小值?(3)函数y=f(x)有极大值?(4)函数y=f(x)有极小值?解析:(1)点x2处f′(x)有极大值.(2)点x1、x4处f′(x)有极小值.(3)点x3处f(x)有极大值.(4)点x5处f(x)有极小值.[例1](1)已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值[解析]由导函数的图象可知:当x∈(-∞,0)∪(2,4)时,f′(x)>0,当x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以在x=0处取得极大值,在x =2处取得极小值,在x=4处取得极大值,故选C.[答案] C(2)求下列函数的极值:①f(x)=2x3+3x2-12x+1;②f(x)=x2-2ln x.[解析]①函数f(x)=2x3+3x2-12x+1的定义域为R,f′(x)=6x2+6x-12=6(x+2)(x-1),解方程6(x+2)(x-1)=0,得x1=-2,x2=1.当x变化时,f′(x)与f(x)的变化情况如下表:x (-∞,-2)-2 (-2,1) 1 (1,+∞)f ′(x ) +0 - 0 + f (x )极大值21极小值-6所以当x 当x =1时,f (x )取极小值-6.②函数f (x )=x 2-2ln x 的定义域为(0,+∞), f ′(x )=2x -2x =2(x +1)(x -1)x ,解方程2(x +1)(x -1)x =0,得x 1=1,x 2=-1(舍去).当x 变化时,f ′(x )与f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) -0 + f (x )极小值1因此当x =1时,f (方法技巧 1.通过导函数值的正负确定函数单调性,然后进一步明确导函数图象与x 轴交点的横坐标是极大值点还是极小值点.2.求可导函数f (x )的极值的步骤 (1)确定函数的定义域,求导数f ′(x ). (2)求f (x )的拐点,即求方程f ′(x )=0的根.(3)利用f ′(x )与f (x )随x 的变化情况表,根据极值点左右两侧单调性的变化情况求极值.特别提醒:在判断f ′(x )的符号时,借助图象也可判断f ′(x )各因式的符号,还可用特殊值法判断. 跟踪探究 1.如图为y =f (x )的导函数的图象,则下列判断正确的是( )①f (x )在(-3,-1)上为增函数;②x =-1是f (x )的极小值点;③f (x )在(2,4)上为减函数,在(-1,2)上为增函数;④x =2是f (x )的极小值点.A .①②③B .②③C .③④D .①③④解析:由f ′(x )的图象知,-3<x <-1时,f ′(x )<0;f ′(-1)=0; -1<x <2时,f ′(x )>0;f ′(2)=0;2<x <4时,f ′(x )<0故f (x )在(-3,-1)和(2,4)上是减函数,在(-1,2)上是增函数,f (-1)是极小值,f (2)是极大值,所以②③正确,故选B.答案:B2.判断下列函数有无极值,如果有极值,请求出极值;如果没有极值,请说明理由. (1)y =13x 3+4;(2)y =e xx (x >0).解析:(1)f ′(x )=x 2. 令f ′(x )=0,解得x =0.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,0)0 (0,+∞)f ′(x ) + 0 + f (x )单调递增无极值单调递增(2)y ′=e x ·x -e x x 2=e x (x -1)x 2,令y ′=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减极小值单调递增探究二 利用函数极值确定参数的值[教材P 110复习参考题A 组7题]已知函数f (x )=x (x -c )2在x =2处有极大值,求c 的值.解析:∵f (x )=x 3-2cx 2+c 2x , ∴f ′(x )=3x 2-4cx +c 2.∴f ′(2)=0,即3×4-8c +c 2=0,得c =2,或c =6. 但c =2时,f (2)是极小值,不合题意,舍去,所以c =6.[例2] (1)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a =________,b =________. (2)若函数f (x )=13x 3-x 2+ax -1有极值点,则a 的取值范围为________.[解析] (1)∵f ′(x )=3x 2+6ax +b ,且函数f (x )在x =-1处有极值0,∴⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0, 即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,此时函数f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f ′(x )>0, 此时f (x )为增函数;当x ∈(-3,-1)时,f ′(x )<0, 此时f (x )为减函数;当x ∈(-1,+∞)时,f ′(x )>0, 此时f (x )为增函数.故f (x )在x =-1处取得极小值, ∴a =2,b =9.(2)∵f ′(x )=x 2-2x +a ,由题意得方程x 2-2x +a =0有两个不同的实数根, ∴Δ=4-4a >0,解得a <1. [答案] (1)2 9 (2)(-∞,1)方法技巧 已知函数极值的情况,逆向应用确定函数的解析式时,应注意以下两点: (1)根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.跟踪探究 3.已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值. 解析:(1)f ′(x )=3ax 2+2bx +c , ∵x =±1是函数f (x )的极值点,∴x =±1是方程f ′(x )=3ax 2+2bx +c =0的两根, 由根与系数的关系,得⎩⎨⎧-2b3a=0, ①c3a =-1, ②又f (1)=-1,∴a +b +c =-1.③ 由①②③解得a =12,b =0,c =-32.(2)由(1)知f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1),当x <-1或x >1时,f ′(x )>0, 当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上是减函数,∴当x =-1时,函数取得极大值f (-1)=1, 当x =1时,函数取得极小值f (1)=-1. 探究三 函数极值的综合应用[例3] 已知函数f (x )=x 3-3ax -1(a ≠0).若函数f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.[解析] 因为f (x )在x =-1处取得极值且f ′(x )=3x 2-3a , 所以f ′(-1)=3×(-1)2-3a =0, 所以a =1,所以f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0,解得x 1=-1,x 2=1. 当x <-1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以f (x )的单调增区间为(-∞,-1),(1,+∞);单调减区间为(-1,1), f (x )在x =-1处取得极大值f (-1)=1, 在x =1处取得极小值f (1)=-3. 作出f (x )的大致图象如图所示.因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合f (x )的图象可知,m 的取值范围是(-3,1). 方法技巧 利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.延伸探究 若本例“三个不同的交点”改为“两个不同的交点”,结果如何?改为“一个交点”呢? 解析:由本例解析可知当m =-3或m =1时,直线y =m 与y =f (x )的图象有两个不同的交点;当m <-3或m >1时,直线y =m 与y =f (x )的图象只有一个交点.跟踪探究 4.已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围.解析:由f (x )=x 3-6x 2+9x +3, 可得f ′(x )=3x 2-12x +9,∴13f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m ,则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点.∵g ′(x )=3x 2-14x +8 =(3x -2)(x -4),∴令g ′(x )=0,得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:则函数g (x )的极大值为g ⎝⎛⎭⎫23=6827-m ,极小值为g (4)=-16-m . ∵由y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同交点,得⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g (4)=-16-m <0, 解得-16<m <6827.即m 的取值范围为⎝⎛⎭⎫-16,6827.[课后小结](1)在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值. (2)函数的极值是函数的局部性质.可导函数f (x )在点x =x 0处取得极值的充要条件是f ′(x 0)=0且在x =x 0两侧f ′(x )符号相反.(3)利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.[素养培优]1.误把导函数的零点当作函数的极值点求函数f (x )=x 4-x 3的极值,并说明是极小值还是极大值.易错分析 本题易错将导数为零的点都认为是极值点,其实不然,导数为零仅是零点是极值点的必要不充分条件,错解中还有一个误区就是认为极大值一定大于极小值.事实上,极值仅描述函数在该点附近的局部特征,极大值未必一定大于极小值.考查逻辑推理及数学运算.自我纠正 f ′(x )=4x 3-3x 2,令f ′(x )=0, 即4x 3-3x 2=0时,得x 1=0,x 2=34.当x 变化时,f (x ),f ′(x )的变化情况如下表:由上表可知函数f (x )在区间(-∞,0)上是减函数,在区间⎝⎛⎭⎫0,34上还是减函数,所以x =0不是函数的极值点,而函数f (x )在区间⎝⎛⎭⎫0,34上是减函数,在区间⎝⎛⎭⎫34,+∞上是增函数,所以函数f (x )在x =34处取得极小值,极小值为-27256.2.误把切点当作函数的极值点已知函数f (x )=ax 4+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x -2,求f (x )的解析式. 易错分析 本题错在将切点当做极值点,得到f ′(1)=0的错误结论.其实,虽然切点和极值点都与导数有关,但它们却是两个完全不同的概念,不能混为一谈.考查逻辑推理及数学运算的学科素养.自我纠正 f ′(1)表示函数f (x )的图象在点(1,-1)处的切线斜率,应有f ′(1)=1,再联立f (0)=1,f (1)=-1便可得到正确答案:a =52,b =-92,c =1,因此f (x )=52x 4-92x 2+1.。

高二数学高效课堂资料导数的四则运算法则学案

高二数学高效课堂资料导数的四则运算法则学案

高二数学高效课堂资料导数的四则运算法则编制人:宋理芬一、学习目标:1. 掌握两个函数的和、差、积、商的求导法则2. 能正确运用两个函数的和差积商的求导法则和已有的导数公式求一些简单函数的导数二、学习重点:掌握函数的和、差、积、商的求导法则三、学习难点:学生对积和商的求导法则的理解和运用四、学习过程:学习活动一:回顾旧知,问题导入☆【问题1】基本初等函数的导数公式()C ()n x ()a x ()x a (log )a x (0,1a a 且)()x e (ln )x (sin )x (cos )x ☆☆【问题2】用定义求函数2y x x 的导数?☆☆【问题3】观察函数2y x x 的导数与函数2y x 的导数及函数y x 的导数之间有什么关系?学习活动二:导数的运算法则☆☆【探究1】如果(),()f x g x 都有导数且分别为)()(x g x f 和,则(1)])()([x g x f = ;(2) ])()([x g x f = ;(3) ])([x cf = ;(4) ])()([x g x f = 。

当1()1=___________g x f x 时,有()☆小试牛刀:求下列函数的导数1.y=x 3+2x-3 2、y=xsinx 3、1y x ☆☆应用学习:1、求y = xlnx 的导数2、求 y=sin2x 的导数131x y x 、求的导数4、求 f (x) = tan x 的导数☆☆五:自我知识建构六:当堂检测A 组求下列函数的导数(1)()(1)(2)f x x x (2)x y xe (3)ln x y xB 组求下列函数的导数3(1)(57)(38)(2)(3)sin cos 22yx x yx x xxy x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档