离散数学第3章答案

合集下载

离散数学第3版习题答案

离散数学第3版习题答案

离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。

离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。

在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。

本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。

第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。

(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。

(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。

(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。

1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。

(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。

(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。

(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。

1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。

2023学堂在线网课《离散数学》课后作业单元考核答案

2023学堂在线网课《离散数学》课后作业单元考核答案

2023学堂在线网课《离散数学》课后作业单元考核答案第一单元答案1.1题目:在集合 {1, 2, 3, 4} 上定义一个二元关系 R,其中 R = {(1,1), (2,2), (3,3), (4,4), (1,4), (4,1)}。

给出 R 的自反、对称、反对称和传递性特点。

•自反特性:对于任意元素x ∈ {1, 2, 3, 4},都存在 (x, x) ∈ R。

所以,R 是自反的。

•对称特性:对于任意的(x, y) ∈ R,都存在(y, x) ∈ R。

所以,R 是对称的。

•反对称特性:对于任意的(x, y) ∈ R,如果存在 (y, x) ∈ R,那么 x = y。

所以,R 是反对称的。

•传递性特性:对于任意的(x, y) ∈ R 和(y, z) ∈ R,都存在(x, z) ∈ R。

所以,R 是传递的。

1.2题目:在集合 {1, 2, 3, 4} 上定义一个二元关系 R,其中 R = {(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)}。

给出 R 的自反、对称、反对称和传递性特点。

•自反特性:对于任意元素x ∈ {1, 2, 3, 4},都存在 (x, x) ∈ R。

所以,R 是自反的。

•对称特性:对于任意的(x, y) ∈ R,都存在(y, x) ∈ R。

所以,R 是对称的。

•反对称特性:对于任意的(x, y) ∈ R,如果存在 (y, x) ∈ R,那么 x = y。

所以,R 是反对称的。

•传递性特性:对于任意的(x, y) ∈ R 和(y, z) ∈ R,都存在(x, z) ∈ R。

所以,R 是传递的。

第二单元答案2.1题目:证明或给出一个反例:若 R 是集合 A 上的一个等价关系,且对于任意 a, b ∈ A,有 (a, b) ∈ R 或 (b, a) ∈ R,那么 A 必然可以划分为若干等价类。

假设 R 是集合 A 上的一个等价关系,且对于任意a, b ∈ A,有(a, b) ∈ R 或(b, a) ∈ R。

离散数学智慧树知到课后章节答案2023年下济宁医学院

离散数学智慧树知到课后章节答案2023年下济宁医学院

离散数学智慧树知到课后章节答案2023年下济宁医学院济宁医学院第一章测试1.答案:2.设P:我将去市里,Q:我有时间.命题“我将去市里,仅当我有时间”符号化为答案:3.答案:4.下列公式是重言式的为答案:5.答案:永真式6.下列表述成立的为答案:7.下列结论中不正确的是答案:任意两个不同的布尔小项的析取式必为永真式8.答案:9.答案:必要而非充分条件10.答案:11.一个公式在等价意义下,下面哪个写法是唯一的答案:主析取范式12.下面4个推理定律中,不正确的是答案:13.答案:14.下列语句中哪个是真命题答案:如果疑问句是命题,那么地球将停止转动.15.答案:5第二章测试1.答案:矛盾式2.设个体域为整数集,下列公式中其真值为1的是答案:3.答案:4.下面给出的一阶逻辑等价式中,错误的是答案:5.答案:6.答案:与谓词变元和论述域都无关7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:第三章测试1.答案:2.答案:反自反的3.答案:4.答案:5.答案:6.下列关系中等价关系的是答案:n阶方阵之间的相似关系7.答案:8.下列命题中结论正确的是答案:9.答案:无、2、无、2 10.答案:11.答案:12.答案:13.答案:14.答案:对称闭包15.下列关系矩阵所对应的关系具有反对称性的是答案:第四章测试1.代数系统中若存在左幺元、右幺元,则左幺元,右幺元不一定相等.答案:错2.一个代数系统中若存在左零元、右零元,则左零元,右零元一定相等。

答案:对3.一个代数系统中若存在左逆元、右逆元,则左逆元,右逆元必相等。

答案:错4.代数系统若存在单位元,则单位元是唯一的。

对5.代数系统若存在单位元,零元则单位元必与零元相等。

答案:错第五章测试1.独异点中的元素必有逆元.答案:错2.答案:错3.对4.答案:对5.独异点是含幺半群.答案:对第六章测试1.群必为半群.答案:对2.群必为独异点.答案:对3.群中并不是每个元素均有逆元.答案:错4.群中无零元.答案:对5.群和其子群共用一个单位元.答案:对第七章测试1.答案:2.答案:等价关系3.答案:4.下面四组数不能构成无向图的度数列的答案:5.答案:6.答案:67.答案:128.答案:9.下列哪一种图不一定是树答案:对每对结点间都有通路的图10.答案:11.答案:12.答案:图(d)是强连通的13.答案:14.答案:15.答案:。

(完整版)离散数学课后习题答案(第三章)

(完整版)离散数学课后习题答案(第三章)

a t a t i m e an dA l lt h i ng si nt h ei r be i ng ar eg oo df o r so me t hi n 3-5.1 列出所有从X={a,b,c}到Y={s}的关系。

解:Z 1={<a,s>}Z 2={<b,s>} Z 3={<c,s>}Z 4={<a,s>,<b,s>} Z 5={<a,s>,<c,s>} Z 6={<b,s>,<c,s>}Z 7={<a,s>,<b,s>,<c,s>}3-5.2 在一个有n 个元素的集合上,可以有多少种不同的关系。

解 因为在X 中的任何二元关系都是X ×X 的子集,而X ×X=X 2中共有n 2个元素,取0个到n 2个元素,共可组成22n 个子集,即22|)(|n X X =⨯℘。

3-5.3 设A ={6:00,6:30,7:30,…, 9:30,10:30}表示在晚上每隔半小时的九个时刻的集合,设B={3,12,15,17}表示本地四个电视频道的集合,设R 1和R 2是从A 到B 的两个二元关系,对于二无关系R 1,R 2,R 1∪R 2,R 1∩R 2,R 1⊕R 2和R 1-R 2可分别得出怎样的解释。

解:A ×B 表示在晚上九个时刻和四个电视频道所组成的电视节目表。

R 1和R 2分别是A ×B 的两个子集,例如R 1表示音乐节目播出的时间表,R 2是戏曲节日的播出时间表,则R 1∪R 2表示音乐或戏曲节目的播出时间表,R 1∩R 2表示音乐和戏曲一起播出的时间表,R 1⊕R 2表示音乐节目表以及戏曲节目表,但不是音乐和戏曲一起的节日表,R 1-R 2表示不是戏曲时间的音乐节目时间麦。

3-5.4 设L 表示关系“小于或等于”,D 表示‘整除”关系,L 和D 刀均定义于解:L={<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>}D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>} L ∩D={<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>,<2,2>,<3,3>,<6,6>}3-5.5对下列每一式,给出A 上的二元关系,试给出关系图:a){<x,y>|0≤x ∧y ≤3},这里A={1,2,3,4};b){<x,y>|2≤x,y ≤7且x 除尽y ,这里A ={n|n ∈N ∧n ≤10}c) {<x,y>|0≤x-y<3},这里A={0,1,2,3,4};d){<x,y>|x,y 是互质的},这里A={2,3,4,5,6}解:a) R={<0,0>,<0,1>,<0,2>,<0,3>, <1,0>,<1,1>,<1,2>,<1,3>, <2,0>,<2,1>,<2,2>,<2,3>, <3,0>,<3,1>,<3,2>,<3,3>,} 其关系图b) R={<2,0>,<2,2>,<2,4>,<2,6>,<3,0>,<3,3>,<3,6>, <4,0>,<4,4>, <5,0>,<5,5>,i m e an dA l lt h in gs in th ei r be i ng ar eg oo df o rsa)若R1和R2是自反的,则R1○R2也是自反的;b)若R1和R2是反自反的,则R1○R2也是反自反的;c)若R1和R2是对称的,则R1○R2也是对称的;d)若R1和R2是传递的,则R1○R2也是传递的。

离散数学第3章答案

离散数学第3章答案

习题3.11.(1) {0,1,2,3,4,5,6,7,8,9}(2) {aa , ab , ba , bb }(3) {-1,1}(4) {11,13,17,19,23,29}(5) {1,2,3, (79)(6) {2}2. 用描述法表示下列集合:(1) 不超过200的自然数的集合;{|N 200}x x x ∈∧≤(2) 被5除余1的正整数的集合;+{|I (N 51)}x x y y x y ∈∧∃∈∧=+(3) 函数y =sin x 的值域;{|R 11}y y y ∈∧-≤≤(4) 72的质因子的集合;{|N |72(N 2|)}x x x y y y x y x ∈∧∧∀∈∧≤<→/(5) 不等式031>-x 的解集; {|R 3}x x x ∈∧>(6) 函数2312+-=x x y 的定义域集. {|R 12}x x x x ∈∧≠∧≠3. 用归纳定义法描述下列集合:(1) 允许有前0的十进制无符号整数的集合;① {0,1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x x x x x x x x x x x A ⊆(2) 不允许有前0的十进制无符号整数的集合;① {1,2,3,4,5,6,7,8,9}A ⊆② 如果x A ∈,则{0,1,2,3,4,5,6,7,8,9}x x x x x x x x x x A ⊆(3) 不允许有前0的二进制无符号偶数的集合;① 1A ∈② 如果x A ∈,则{0,1}x x A ⊆(4) 5的正整数倍的集合.① 5A ∈② 如果x A ∈,则5x A +∈4. 判断下列命题中,哪些是真的,哪些是假的(A 是任意集合):(1) ;A ∈∅(2) ;A ⊆∅ (3) };{A A ∈ (4) ;A A ⊆ (5) ;A A ∈ (6) };{A A = (7) }.{∅=∅答:(2),(3),(4)为真,(1),(5),(6),(7)为假。

离散数学概论习题答案第3章

离散数学概论习题答案第3章

第二部分集合、矩阵、关系和函数集合论是处理集合,函数和关系的数学理论。

集合包括最基本的数学概念,例如集合,元素和成员关系。

在大多数现代数学公式中,集合论提供了一种描述数学对象的语言。

集合可用来表示数及其运算,还可表示和处理非数值计算,如数据间关系的描述等。

集合论,逻辑和一阶逻辑构成了数学公理化的基础。

同时,函数和关系是基于集合的映射,它们是满足某些属性的特殊集合。

接下来,我们将在两个单独的章节中介绍它们。

集和矩阵将在第3章中介绍,而关系和函数将在第4章中介绍。

第三章集合和矩阵3.1 集合3.1.1 集合概念集合没有确定的概念。

一般地,我们把研究的对象统称为元素;把一些元素组成的总体叫做集合,也简称集。

通常用大写英文字母表示集合。

例如,N代表是自然数集合,Z代表是整数集合,R代表是实数集合。

用小写英文字母表示集合内元素。

若元素a是集合A的一个元素,则表示为a A∈,读作元素a属于集合A;若元素a不是集合A的一个元素,则表示为a A∉,读作a不属于集合A。

集合分为有限集合和无限集合两种,下面给出定义。

表示集合方法有列举法和描述法两种方式,下面分别介绍。

1. 列举法当集合是有限集合时,可以列出集合的所有元素,用逗号隔开各元素,并用花括号把所有元素括起来。

这种表述方式为列举法。

例如:S1={a, b, c, d, e, f},S2={a, b, b, c, d, e, f},S3={ d, e, a, b, c, f}上述三个集合S1、S2和S3是相同集合,尽管有重复元素。

且集合元素之间没有次序关系。

一个集合可以作为另个集合的元素。

例如,S1={a, b,{ c, d, e, f }}集合S1包含元素a, b和{ c, d, e, f }。

因为{ c, d, e, f }是集合S1中的元素,故可记为:{}∈。

,,,c d e f A以上给出的集合实例都是有限集合。

当集合是无限集合时,无法列出集合的所有元素,可先列出一部分元素,若剩余元素与已给出元素存在一定规律,那剩余元素的一般形式很明显可用省略号表示。

离散数学(屈婉玲版)第三章部分答案

离散数学(屈婉玲版)第三章部分答案

3.6从1到300的整数中(1)同时能被3、5、和7这3个数整除的数有A个。

(2)不能被3、5,也不能被7整除的数有B个。

(3)可以被3整除,但不能被5和7整除的数有C个。

(4)可被3或5整除,但不能被7整除的数有D个。

(5)只能被3、5和7之中的一个数整除的数有E个。

供选择的答案A、B、C、D、E:①2;②6;③56;④68;⑤80;⑥102;⑦120;⑧124;⑨138;⑩162。

解:设1到300之间的整数构成全集E,A、B、C分别表示其中可被3、5或7整除的数的集合。

文氏图如下图:在A∩B∩C中的数一定可以被3、5和7的最小公倍数105整除,即∣A∩B∩C∣=⎣300/105⎦=2,同样可得∣A∩B∣=⎣300/15⎦=20,∣A∩C∣=⎣300/21⎦=14,∣B∩C∣=⎣300/35⎦=8.然后将20-2=18,14-2=12,8-2=6分别填入邻近的3块区域.再计算∣A∣=⎣300/3⎦=100,∣B∣=⎣300/5⎦=60,∣C∣=⎣300/7⎦=42.所以∣A∪B∪C∣=162.所以本题的答案是:A=①2;B=⑨138;C=④68;D=⑦120;E=⑧124.3.10列元素法表示下列集合。

(1)A={ x | x ∈N ∧x2 ≤7}.(2)A={ x | x ∈N ∧|3-x|<3}.(3)A={ x | x ∈R ∧(x+1)2≤0}.(4)A={<x,y> |x,y∈N∧x+y≤4}.解:(1) A={0,1,2}.(2) A={1,2,3,4,5}.(3) A={-1}.(4) A={<0,0>,<0,1>,<0,2>,<0,3>,<0,4>,<1,0>,<2,0>,<3,0>,<4,0>,<1,1>,<1,2>,<1,3>,<2,1>,<3,1>,<2,2>}.3.11求使得以下集合等式成立时,a,b,c,d应满足的条件。

离散数学第四版课后答案(第3章)

离散数学第四版课后答案(第3章)
但对于等式(4),左边经变形后得
( A B C) ( A B) ((A B) ( A B)) (C ( A B))
= (C ( A B)) C ( A B). 易 见 , C (A B) C, 但 不 一 定 有 C (A B) C.如 令 A B C {1}.时,等式(4)不为真。类假地,等式(5)的左 边经化简后得 (A C) B ,而 (A C) B 不一定恒等于 A-C。 3.17 (1)不为真。(2),(3)和(4)都为真。对于题 (1)举反例如下:令 A {1}, A {1}, B {1,4},C {2}, D {2,3}, 则 A B 且 C B ,但 A C B D ,
这是 S T 的充公必要条件,从而结论为真. 对 于 假 命 题 都 可 以 找 到 反 例 , 如 题 (2) 中 令 S {1,2},T z{1}, M {2}即可;而对于题(5),只要 S 即可. 3.9 (2),(3)和(4)为真,其余为假. 3.10 (1) A {0,1,2}. (2) A {1,2,3,4,5} (3) A {1} (4) A { 0,0 , 0,1 1,0 , 0,2 , 1,1 , 2,0 , 0,3 ,
A B .
(4)易见,当 A=B 成立时,必有 A-B=B-A。反之,由 A-B=B-A 得
( A B) B (B A) B
化简后得 B A ,即 B A,同理,可证出 A B ,从而 得到 A=B。
3.18 由| P(B) | 64 可知|B|=6。又由| P(A B) | 256 知| A B | 8 , 代入包含排斥原理得
{,{1},{2},{1,2}}}.
(4) P( A) {,{{1}},{{1,2}},{{1}},{{1,2}} (5) P( A) {,{1},{1},{2},{1,1},{1,2}{1,2}{1,1,2}. 分析 在做集合运算前先要化简集合,然后再根据题目 要求进行计算.这里的化简指的是元素,谓词表示和集合公 式三种化简. 元素的化简——相同的元素只保留一个,去掉所有冗余 的元素。 谓词表示的化简——去掉冗余的谓词,这在前边的题解 中已经用到。 集合公工的化简——利用简单的集合公式代替相等的 复杂公式。这种化简常涉及到集合间包含或相等关系的判别。 例如,题(4)中的 A {{1,1},{2,1},{1,2,1}}化简后得 A {{1},{1,2}}, 而题(5)中的 A {x | x R x3 2x2 x 2 0} 化 简为 A {1,1,2}。 3.15

离散数学第三章习题详细答案

离散数学第三章习题详细答案

3.9解:符号化:p:a是奇数. q:a是偶数. r:a能被2整除前提:(p→¬r),(q→r)结论:(q→¬p)证明:确。

方法2(等值演算法)(p→¬r)∧(q→r) →(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔((p∧r) ∨¬p)∨((q∧¬r) ∨¬q)⇔(r∨¬p) ∨(¬r∨¬q)⇔¬p∨(r∨¬r) ∨¬q⇔1即证得该式为重言式,则原结论正确。

方法3(主析取范式法)(p→¬r)∧(q→r) →(q→¬p)⇔(¬p∨¬r)∧(¬q∨r) →(¬q∨¬p)⇔(p∧r) ∨(q∧¬r) ∨¬q∨¬p⇔m0+ m1+ m2+ m3+ m4+ m5+ m6+ m7可知该式为重言式,则结论推理正确。

3.10. 解:符号化:p:a是负数. q:b是负数. r:a、b之积为负前提: r→(p∧¬q) ∨(¬p∧q)结论:¬r→(¬p∧¬q)方法1(真值法)证明:不正确。

方法2(主析取范式法)证明:(r→(p∧¬q) ∨(¬p∧q)) →(¬r→(¬p∧¬q))⇔¬ (¬r∨(p∧¬q) ∨(¬p∧q)) ∨(r∨(¬p∧¬q))⇔r∨(¬p∧¬q)⇔m0+m2+m4+m6+m7只含5个极小项,课件原始不是重言式,因此推理不正确3.11.填充下面推理证明中没有写出的推理规则。

离散数学-第三部分代数结构练习题答案(课件模板)

离散数学-第三部分代数结构练习题答案(课件模板)

《离散数学》第三部分----代数结构一、选择或填空1、设A={2,4,6},A上的二元运算*定义为:a*b=max{a,b},则在独异点<A,*>中,单位元是( ),零元是( )。

答:2,62、设A={3,6,9},A上的二元运算*定义为:a*b=min{a,b},则在独异点<A,*>中,单位元是( ),零元是( );答:9,33、设〈G,*〉是一个群,则(1) 若a,b,x∈G,a*x=b,则x=( );(2) 若a,b,x∈G,a*x=a*b,则x=( )。

答:(1)a*-1 b (2)b4、设a是12阶群的生成元,则a2是( )阶元素,a3是( )阶元素。

答:6,45、代数系统<G,*>是一个群,则G的等幂元是( )。

答:单位元6、设a是10阶群的生成元,则a4是( )阶元素,a3是( )阶元素。

答:5,107、群<G,*>的等幂元是( ),有( )个。

答:单位元,18、素数阶群一定是( )群, 它的生成元是( )。

答:循环群,任一非单位元9、设〈G,*〉是一个群,a,b,c∈G,则(1) 若c*a=b,则c=( );(2) 若c*a=b*a,则c=( )。

答:(1)b1-*a(2) b10、<H,,*>是<G,,*>的子群的充分必要条件是( )。

答:<H,,*>是群或∀ a,b ∈G,a*b∈H,a-1∈H 或∀ a,b ∈G,a*b-1∈H 11、群<A,*>的等幂元有( )个,是( ),零元有( )个。

答:1,单位元,012、在一个群〈G,*〉中,若G中的元素a的阶是k,则a-1的阶是( )。

答:k13、在自然数集N上,下列哪种运算是可结合的?()(1) a*b=a-b (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|a-b| 答:(2)14、任意一个具有2个或以上元的半群,它()。

离散数学智慧树知到答案章节测试2023年武汉科技大学

离散数学智慧树知到答案章节测试2023年武汉科技大学

第一章测试1.若P:天下雨;Q:他来了;则“虽然天下雨,他还是来了”,可符号化为( )A:P∧QB:P→QC:P∨┐QD:P∨Q答案:A2.以下命题公式中,为永真式的是( )A:(Q∨┐P)→(P∧┐P)B:(P→┐P)→┐PC:┐(Q→Q∧P)D:P∧(P∨Q∨R)答案:B3.命题公式的能成真赋值的P,Q的值为()A:11B:01C:10D:00答案:ABD4.命题公式的能成假赋值的P,Q的值为()A:10B:00C:11D:01答案:ABD5.G=P→(P∧(Q→P))主析取范式中所含的极大极小项有()A:P∧QB:¬P∧¬QC:¬P∨QD:P∨QE:P∧¬QF:¬P∨¬QG:P∨¬QH:¬P∧QI:无答案:ABEH6.G=P→(P∧(Q→P))主合取范式中所含的极大极小项有()。

A:P∧QB:无C:¬P∧QD:此项必选E:P∨¬QF:P∧¬QG:¬P∨¬QH:¬P∨QI:P∨QJ:¬P∧¬Q答案:BD7.(P→Q)∧Q的主合取范式中所含的极大极小项有()。

A:¬P∧QB:P∨QC:P∧¬QD:¬P∨QE:无F:P∧QG:¬P∧¬QH:¬P∨¬QI:P∨¬Q答案:BD8.(P→Q)∧Q的主析取范式中所含的极大极小项有()。

A:P∨¬QB:¬P∧QC:¬P∨¬QD:P∧QE:P∧¬QF:无G:¬P∨QH:¬P∧¬QI:P∨Q答案:BD9.设前提集合Γ={P∨Q, R∧S, ┐Q},公式G=P∧S,,证明Γ=>G。

证明:(1)┐Q P(2)P∨Q P(3) T,1),2),I (4)R∧S P(5) T,4),I(6)P∧S T,3),5),I 按顺序选出(3)和(5)处应该填的内容()A:¬PB:SC:RD:P答案:BD10.使用演绎法构造下列推理的证明。

离散数学第3-5章习题答案

离散数学第3-5章习题答案

第三章1、用枚举法写出下列集合。

①英语句子“I am a student”中的英文字母;解:{I,a,m,s,t,u,d,e,n}②大于5小于13的所有偶数;解:{6,,8,10,12}③20的所有因数;解:{1,2,4,5,10,20}④小于20的6的正倍数。

解:{6,12,18}2、用描述法写出下列集合。

①全体奇数;解:S={x|x是奇数}②所有实数集上一元二次方程的解组成的集合;解:S={x|x是实数集上一元二次方程的解}③二进制数;解:S={x|x是二进制数}④能被5整除的整数集合。

解:S={x|x是能被5整除的整数}3、求下列集合的基数。

①“proper set”中的英文字母;解:S={p,r,o,e,s,t}所以 cardS=|S|=6②{{1,2},{2,1,1},{2,1,2,1}};解: cardS=|S|=3③{x|x=2或x=3或x=4或x=5};解:cardS=|S|=4④{{1,{2,3}}}。

解:cardS=|S|=14、求下列集合的幂集。

①“power set”中的英文字母;解:S={p,o,w,e,r,s,t}(S)是所有S的子集构成的集合,这里不一一列举了。

②{3,6,9};解:℘(S)={Φ ,{3},{6},{9},{3,6},{3,9},{6,9},{3,6,9}} ③小于20的5的正倍数;解:S={5,10,15} ℘(S)={Φ,{5},{10},{15},{5,10},{5,15},{10,15},{5,10,15}} ④{{1,3}}。

解:℘(S)={Φ,{1,3}}5、设Φ=A ,B=a ,求P(A) ,P(P(A)) ,P(P(P(A))) ,P(B) ,P(P(B)) ,P(P(P(B)))。

解:P(A)={Φ};P(P(A))={Φ,{Φ}};P(P(P(A)))={Φ,{Φ},{{Φ}},{Φ,{Φ}}}P(B)={Φ,a };P(P(B))={Φ,{Φ},{a},{Φ,a}};P(P(P(B)))={Φ,{Φ},{{Φ}},{{a}},{{Φ,a}},{Φ,{Φ}},{Φ,{a}},{Φ,{Φ,a}},{{Φ},{a}},{{Φ},{Φ,a}},{{a},{Φ,a}},{Φ,{Φ},{a}},{Φ,{Φ},{Φ,a}},{Φ,{a},{Φ,a}},{{Φ},{a},{Φ,a}},{{Φ,{Φ},{a},{Φ,a}}}.6、如果集合A 和B 分别满足下列条件,能得出A 和B 之间有什么联系? ①A ∪B=A ; ②A ∩B=A ; ③A -B=A ; ④A ∩B=A -B ; ⑤A -B=B -A ; ⑥A B A =⊕。

离散数学第二版 屈婉玲 1-5章(答案)

离散数学第二版 屈婉玲  1-5章(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(4)5.答:⌝P ,Q→P6.答:P(x)∨∃yR(y)7.答:⌝∀x(R(x)→Q(x))8、c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。

解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4. 答:(4)5.答:(2),(4)6、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}2.答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015、解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。

离散数学 第3章 命题逻辑的推理理论

离散数学 第3章 命题逻辑的推理理论

例 构造下面推理的证明 2 是素数或合数. 若 2 是素数,则 2 是无理数. 若 2 是无理数,则 4 不是素数. 所以,如果 4 是素数,则 2 是合数. 用附加前提证明法构造证明 (1)设 p:2 是素数,q:2 是合数, r: 2 是无理数,s:4 是素数 (2)形式结构 前提:pq, pr, rs 结论:sq
结论(不正确)是对的 方法四 直接观察出 10 是成假赋值
解(2)答案:推理正确 方法一 方法二 方法三 方法四 真值表法(自己做) 等值演算法(自己做) 主析取范式法(自己做) P 系统中构造证明 ① pr ② rp ③ qr ④ qp (前提引入) (①置换) (前提引入) (③②假言三段论)
(8) 假言三段论规则: AB BC AC (9) 析取三段论规则: AB B A (10) 构造性二难推理规则: AB CD AC BD
(11) 破坏性二难推理规则: AB CD BD AC (12)合取引入规则: A B AB
三、P 中的证明 例 在自然推理系统 P 中构造下面推理的证明: (1)前提:p∨q,q→r,p→s,┐s 结论:r∧(p∨q) (2)前提:┐p∨q, r∨┐q ,r→s 结论:p→s 解 (1)证明: ① p→s 前提引入 ② ┐s 前提引入 ③ ┐p ①②拒取式 ④ p∨q 前提引入 ⑤ q ③④析取三段论 ⑥ q→r 前提引入 ⑦ r ⑤⑥假言推理 ⑧ r∧(p∨q) ⑦④合取 此证明的序列长为 8,最后一步为推理的结论,所以推理正确,r∧(p∨q) 是有效结论。

判断下面推理是否正确:
(1)若 a 能被 4 整除,则 a 能被 2 整除;a 能被 4 整除。所以 a 能被 2 整除。 (2)若 a 能被 4 整除,则 a 能被 2 整除;a 能被 2 整除。所以 a 能被 4 整除。 (3)下午马芳或去看电影或去游泳;她没有看电影。所以,她去游泳 了。 (4)若下午气温超过 30℃,则王小燕必去游泳;若她去游泳,她就不 去看电影了。所以王小燕没有去看电影,下午气温必超过了 30℃。

自考2324离散数学第三章课后答案

自考2324离散数学第三章课后答案

自考2324离散数学课后答案3.1 习题参考答案1、写出下列集合的的表示式。

a)所有一元一次方程的解组成的集合。

A={x|x是所有一元一次方程的解组成的集合}晓津答案:A={x| ax+b=0∧a∈R∧b∈R}b) x2-1 在实数域中的因式集。

B={1,(x-1),(x+1)|x∈R}c)直角坐标系中,单位圆内(不包括单位圆周)的点集。

C={x,y| x2+y2<1 }晓津答案:C={a(x,y)|a为直角坐标系中一点且 x2+y2<1 }d)极坐标中,单位圆外(不包括单位圆周)的点集。

D={r,θ| r>1,0<=θ<=360}晓津答案:D={a(r,θ)|a为极坐标系中一点且 r>1,0<=θ<=2π } e)能被5整除的整数集E={ x| x mod 5=0}2、判定下列各题的正确与错误。

a) {x}{x};正确b) {x}∈{x};正确晓津观点:本命题错误。

理由:{x}作为一个元素是一个集合,而右边集合中的元素并不是集合。

c) {x}∈{x,{x}};正确d) {x}{x,{x}};正确----------------------------------------------------------------3、设 A={1,2,4},B={1,3,{2}},指出下列各式是否成立。

a) {2}∈A; b) {2}∈B c) {2}Ad) {2}B; e) ∈A f) A解:jhju、晓津和wwbnb 的答案经过综合补充,本题的正确答案是:b、c、d、f成立,a,d、e不成立。

理由:a式中,{2}是一个集合,而在A中并无这样的元素。

因此不能说{2}属于A,当然如果说2∈A则是正确的。

对于e式也应作如此理解,空集是一个集合,在A中并无这个集合元素,如f 式则是正确的。

空集包含于任何集合中,但空集不一定属于任一集合。

----------------------------------------------------------------4、设A= {} , B=(A),问下列各题是否正确。

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

(完整版)洪帆《离散数学基础》(第三版)课后习题答案

第1章 集合1、列举下列集合的元素 (1) 小于20的素数的集合 (2) 小于5的非负整数的集合 (3) 2{|,10240515}i i I i i i ∈--<≤≤且 答:(1) {1,3,5,7,11,13,17,19}(2) {0,1,2,3,4} (3) {5,6,7,8,9,10,11}2、用描述法表示下列集合 (1) 12345{,,,,}a a a a a 答:{|,15}i a i I i ∈≤≤ (2) {2,4,8,}L 答:{2|}i i N ∈ (3) {0,2,4,100}L答:{2|,050}i i Z i ∈≤≤3、下面哪些式子是错误的? (1) {}{{}}a a ∈ 答:正确 (2) {}{{}}a a ⊆ 答:错误 (3) {}{{},}a a a ∈ 答:正确 (4) {}{{},}a a a ⊆ 答:正确4、已给{2,,{3},4}S a =和{{},3,4,1}R a =,指出下面哪些论断是正确的?哪些是错误的? (1) {}a S ∈ 错误(2) {}a R ∈ 正确 (3) {,4,{3}}a S ⊆ 正确 (4) {{},1,3,4}a R ⊆ 正确 (5)R S = 错误 (6) {}a S ⊆ 正确 (7) {}a R ⊆错误 (8) R φ⊆正确 (9) {{}}a R φ⊆⊆ 正确 (10) {}S φ⊆错误 (11) R φ∈错误 (12) {{3},4}φ⊆正确5、 列举出集合,,A B C 的例子,使其满足A B ∈,B C ∈且A C ∉答:{}A a =,{{}}B a =,显然A B ∈,{{{}}}C a =,显然B C ∈,但是A C ∉。

6、 给出下列集合的幂集 (1) {,{}}a b答:幂集{,{},{{}},{,{}}a b a b φ (2) {,,{}}a a φ答:幂集{,{},{},{{}},{,},{,{}},{,{}},{,,{}}}a a a a a a a a φφφφφ 7、设{}A a =,给出A 和2A 的幂集答:2{,{}}A a φ= 22{,{{}},{{}},{,{}}}Aa a φφφ=8、 设128{,,,}A a a a =L 由17B 和31B 所表示的A 的子集各是什么?应如何表示子集2,67{,}a a a 和13{,}a a 答:170001000148{,}B B a a ==310001111145678{,,,,}B B a a a a a ==2,670100011070{,}a a a B B ==,1310100000160{,}a a B B ==9、 设{1,2,3,4,5}U =,{1,4}A =,{1,2,5}B =,{2,4}C =,确定集合: (1) A B '⋂ (2) ()A B C '⋂⋃ (3) ()A B C ⋃⋂ (4)()()A B A C ⋃⋂⋃ (5) ()A B '⋂ (6) A B ''⋃ (7) ()B C '⋃ (8)B C ''⋂ (9) 22A C - (10)22A C ⋂ 答:(1) {3,4}B '=,{4}A B '⋂=(2) {1}A B ⋂=,{1,3,5}C '=,(){1,3,5}A B C '⋂⋃= (3) {2}B C ⋂=,(){1,2,4}A B C ⋃⋂=(4) {1,2,4,5}A B ⋃=,{1,2,4}A C ⋃=,()(){1,2,4}A B A C ⋃⋂⋃= (5) (){2,3,4,5}A B '⋂= (6) {2,3,5}A '=,{2,3,4,5}A B ''⋃= (7) {1,2,4,5}B C ⋃=,(){3}B C '⋃= (8) {3,4}B '=,{1,3,5}C '=,{3}B C ''⋂=(9) 2{,{1},{4},{1,4}}A φ=,2{,{2},{4}{24}}C φ=,,,22{{1},{1,4}}A C -= (10) 22{,{4}}A C φ⋂=10、 给定自然数集N 的下列子集:{1,2,7,8}A =,2{|50}B i i =<,{|330}C i i i =≤≤可被整数,0{|2,,06}k D i i k Z k ==∈≤≤求下列集合: (1) (())A B C D ⋃⋃⋃ 答:{1,2,3,4,5,6,7}B =,{0,3,6,9,12,15,18,21,24,27,30}C =,{1,2,4,8,16,32,64}D =(()){0,1,2,3,4,5,6,7,8,9,12,15,16,18,21,24,27,30,32,64}A B C D ⋃⋃⋃= (2) (())A B C D φ⋂⋂⋂=(3) ()B A C -⋃解:{0,1,2,3,6,7,8,9,12,15,18,21,24,27,30}A C ⋃=,(){4,5}B A C -⋃= (4) ()A B D '⋂⋃解:{3,4,5,6}A B B A '⋂=-=,(){1,2,3,4,5,6,8,16,32,64}A B D '⋂⋃=11、 给定自然数集N 的下列子集{|12}A n n =<,{|8}B n n =≤,{|2,}C n n k k N ==∈,{|3,}D n n k k N ==∈ {|21,}E n n k k N ==-∈将下列集合表示为由,,,,A B C D E 产生的集合:(1) {2,4,6,8} (2){3,6,9} (3){10} (4){|369}n n n n ==≥或或 (5) {|109}n n n n n ≤>是偶数且或是奇数且 (6) {|6}n n 是的倍数答:{1,2,3,4,5,6,7,8,9,10,11}A =,{1,2,3,4,5,6,7,8}B ={2,4,6,8,}C =L ,{3,6,9,12,}D =L ,{1,3,5,7,}E =L {2,4,6,8}B C =⋂ {3,6,9}=A D ⋂ {10}=(())A B D E ---(4){|369}n n n n ==≥=或或{3}{6}{9,10,11,12,}⋃⋃L{3,6,9,10,11,12,}()A D B '==⋂⋃L(5) {2,4,6,8,10,11,13,15,}(()())(())A E E B A D B =-⋃--⋂-L (6) {|6}{6,12,18,24,30}n n ==L 是的倍数C D ⋂12、 判断以下哪些论断是正确的,哪些论断是错误的,并说明理由。

哈工大《离散数学》教科书习题答案

哈工大《离散数学》教科书习题答案

教材习题解答第一章 集合及其运算8P 习题3. 写出方程2210x x ++=的根所构成的集合。

解:2210x x ++=的根为1x =-,故所求集合为{1}-4.下列命题中哪些是真的,哪些为假a)对每个集A ,A φ∈;b)对每个集A ,A φ⊆;c)对每个集A ,{}A A ∈;d)对每个集A ,A A ∈;e)对每个集A ,A A ⊆;f)对每个集A ,{}A A ⊆;g)对每个集A ,2A A ∈;h)对每个集A ,2A A ⊆;i)对每个集A ,{}2A A ⊆;j)对每个集A ,{}2A A ∈;k)对每个集A ,2A φ∈;l)对每个集A ,2A φ⊆;m)对每个集A ,{}A A =;n){}φφ=;o){}φ中没有任何元素;p)若A B ⊆,则22A B ⊆q)对任何集A ,{|}A x x A =∈;r)对任何集A ,{|}{|}x x A y y A ∈=∈; s)对任何集A ,{|}y A y x x A ∈⇔∈∈;t)对任何集A ,{|}{|}x x A A A A ∈≠∈; 答案:假真真假真假真假真假真真假假假真真真真真5.设有n 个集合12,,,n A A A L 且121n A A A A ⊆⊆⊆⊆L ,试证:12n A A A ===L证明:由1241n A A A A A ⊆⊆⊆⊆⊆L ,可得12A A ⊆且21A A ⊆,故12A A =。

同理可得:134n A A A A ====L因此123n A A A A ====L6.设{,{}}S φφ=,试求2S ?解:2{,{},{{}},{,{}}}S φφφφφ=7.设S 恰有n 个元素,证明2S 有2n 个元素。

证明:(1)当n =0时,0,2{},212S S S φφ====,命题成立。

(2)假设当(0,)n k k k N =≥∈时命题成立,即22S k =(S k =时)。

那么对于1S ∀(11S k =+),12S 中的元素可分为两类,一类为不包含1S 中某一元素x 的集合,另一类为包含x 的集合。

离散数学(屈婉玲)答案-1-5章

离散数学(屈婉玲)答案-1-5章

离散数学(屈婉玲)答案-1-5章第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外6能被2整除,6才能被4整除。

”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命xF题。

离散数学(1-4章)自测题(答案)

离散数学(1-4章)自测题(答案)

《离散数学》题库答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(1)P↔(4)QP→⌝P⌝Q→⌝(2)QP⌝→(3)Q5.答:(1)6.答:2不是偶数且-3不是负数。

7.答:(2)8.答:⌝P ,Q→P9.答:P(x)∨∃yR(y)10.答:⌝∀x(R(x)→Q(x))11、a、(P→Q)∧R解:(P→Q)∧R⇔(⌝P∨Q )∧R⇔(⌝P∧R)∨(Q∧R) (析取范式)⇔(⌝P∧(Q∨⌝Q)∧R)∨((⌝P∨P)∧Q∧R)⇔(⌝P∧Q∧R)∨(⌝P∧⌝Q∧R)∨(⌝P∧Q∧R)∨(P∧Q∧R)⇔(⌝P∧Q∧R)∨(⌝P∧⌝Q∧R)∨(P∧Q∧R)⇔m3∨ m1∨m7 (主析取范式)⇔m1∨ m3∨m7⇔M0∧M2∧M4∧M5∧M6 (主合取范式)b、Q→(P∨⌝R)解:Q→(P∨⌝R)⇔⌝Q∨P∨⌝R⇔M5(主合取范式)⇔ m0∨ m1∨ m2∨m3∨ m4∨m6 ∨m7 (主析取范式)c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式)12、a、P→Q,⌝Q∨R,⌝R,⌝S∨P=>⌝S证明:(1) ⌝R 前提(2) ⌝Q∨R 前提(3)⌝Q (1),(2)析取三段论(4) P→Q 前提(5)⌝P (3),(4)拒取式(6)⌝S∨P 前提(7) ⌝S (5),(6)析取三段论b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理c、A,A→B, A→C, B→(D→⌝C) => ⌝D证明:(1) A 前提(2) A→B 前提(3) B (1),(2) 假言推理(4) A→C 前提(5) C (1),(4) 假言推理(6) B→(D→⌝C) 前提(7) D→⌝C (3),(6) 假言推理(8)⌝D (5),(7) 拒取式d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确13.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(7) {{}} {,{,{}}} (9) {a, b} {a, b,{a},{b}} (11) {}
(8) {{}} {,{,{}}} (10) {a, b} {a, b,{a},{b}} (13) (14) {}
(12) {}
答:(1),(2),(4),(6),(10),(11),(12),(14)为真,(3),(5),(7),(8),(9),(13)为假。 6. 设 A 和 B 是集合, A B 和 A B 能同时成立吗?为什么? 答:能。当 B A { A} 时, A B 和 A B 同时成立。 7. 设 A 和 B 是集合, A B 和 B A 能同时成立吗?为什么? 答:不能。若 A B 和 B A 同时成立,则我们能得到 B B ,而这是不可能的。 8. 设 A,B 和 C 是集合,若 A B ,且 B C ,则 A C 可能成立吗? A C 是否总能成 立?为什么? 答: A C 可能成立。比如当 B { A} ,C { A, B} 时, A B ,B C 和 A C 同时成立。 但结论不是总成立。比如 B { A} , C {B} 时, A B 且 B C ,但 A C 不成立。
习题 3.2
1. 设全集 U={a,b,c,d,e}, A={a,d} B={a,b,c}, C={b,d}. 求下列各集合: (1) A B C (2) A B C (3) A B C (4)
( A) ( B)
(5) ( A B) ( B C ) 解:(1) A B C {a} (2) A B C U (3) A B C {b, d } (4)
(5) 不等式
1 0 的解集; x3
{x | x R x 3}
(6) 函数 y
1 的定义域集. x 3x 2
2
{x | x R x 1 x 2}
3. 用归纳定义法描述下列集合: (1) 允许有前 0 的十进制无符号整数的集合; ① {0,1, 2,3, 4,5, 6, 7,8,9} A ② 如果 x A , 则 {0 x,1x, 2 x,3x, 4 x,5 x,6 x, 7 x,8 x,9 x, x0, x1, x2, x3, x 4, x5, x6, x7, x8, x9} A (2) 不允许有前 0 的十进制无符号整数的集合;
5. 求下列集合的幂集: (1) {{}} 解:
({{}}) {,{{}}}
(2) {a, b, c} 解:
({a, b, c}) {,{a},{b},{c},{a, b},{a, c},{b, c},{a, b, c}}
(3) {{a, b}, {c}} 解: ({{a, b}, {c}}) {, {{a, b}}, {{c}}, {{a, b}, {c}}} (4) {,{},{{}}}
x B ( x B x A) ( x B x A) ( x A x A B A B) ( x A x A B A B) (x A x A C A C) (x A x A C A C) (x A C x A C) (x A x A C)
xC 从而 B C 同理可证 C B 因此 B C
4. 设 {{a , b},{b, c},{a , c}, } , 试计算: (1) (2) (3) { } (4) { }
解: (1) {a , b, c} (2) (3) { } {{a , b, c}} {a , b, c} (4) { } {}
(4) 若 A B , 且 B C , 则 A C 答: 此断言不正确。例如当 A={a}, B={a,b}, C={{a},c}时, 有 A B 和 B C , 但 A C 11. 证明: A 当且仅当 A 证:必要性. 因为 A 和同时成立 A ,所以 A . 充分性. 因为空集是任何集合的子集, 而 A , 所以 A 12. 确定下列哪些集合是相等的: A2={b,a} A3={a,a,b} A4={a,b,c} A1={a,b} 2 A6={a,b,d} A7={x|{x -(a+b)x+ab=0} A5={x|(x-a)(x-b)(x-c)=0} 答: A1, A2, A3, A7 相等, A4 与 A5 相等. 13. 设 n 个集合 A1, A2,…An 满足关系 A1 A2 ... An A1 . 证明: A1= A2=…= An. 证: 对任意的 2 i n 从条件我们得到 A1 Ai 和 Ai A1 , 所以我们有 Ai A1 , 因此 A1= A2=…= An.
A B ∧ B C
A)A=φA B ∧x( x∈A→x源自φ)x(┐(x ∈A∨0)
┐ x(x ∈
10. 设 A, B 和 C 是任意集合. 证明或否定下列断言: (1) 若 A B , 且 B C , 则 A C 答: 此断言不正确。例如当 A={a}, B={a,b}, C={{a},c}时, 有 A B 和 B C , 但 A C (2) 答: (3) 答: 若 A B , 且 B C , 则 AC 此断言不正确。例如当 A={a}, B={{a},b}, C={{a},c}时, 有 A B 和 B C , 但 A C 若 A B , 且 B C , 则 AC 此断言不正确。例如当 A={a}, B={a,b}, C={{a},c}时, 有 A B 和 B C , 但 A C
① {1, 2,3, 4,5, 6,7,8,9} A ② 如果 x A ,则 {x0, x1, x 2, x3, x 4, x5, x6, x7, x8, x9} A (3) 不允许有前 0 的二进制无符号偶数的集合; ① 1 A ② 如果 x A ,则 {x0, x1} A (4) 5 的正整数倍的集合. ① 5 A ② 如果 x A ,则 x 5 A 4. 判断下列命题中,哪些是真的,哪些是假的(A 是任意集合): (1) A; (4) A A; (2) A; (5) A A; (3) A { A}; (6) A { A}; (7) {}.
9. 设 A,B 和 C 是任意集合,证明或否定下列断言: (1) 若 A B ,且 B C ,则 A C 结论成立。因为 x A x B x C ,所以 A C (2) 若 A B ,且 B C ,则 A C 结论不成立。例如当 A {a}, B {a, b}, C {a, b, c} 时,有 A B ,且 B C ,但 A C (3) 若 A B ,且 B C ,则 A C s 命题为假。设 B { A}, C {B} ,易知 A B ,且 B C ,但 A C (4)若 A B ,且 B C ,则 A C 结论成立。(题目有误,应改为“若 A B ,且 B C ,则 A C ”)
习题 3.1
1. (1) {0,1,2,3,4,5,6,7,8,9} (2) {aa, ab, ba, bb} (3) {-1,1} (4) {11,13,17,19,23,29} (5) {1,2,3,…,79} (6) {2} 2. 用描述法表示下列集合: (1) 不超过 200 的自然数的集合;
(6) ( A B) C
(7) A ( B C )
( A) ( B) {{d },{a, d }}
(5) ( A B) ( B C ) {a, c, d } (6) ( A B) C {b, d } (7) A ( B C ) {a, d , e} 2. 设 A, B 和 C 是集合,试把 A B C 表示成各不相交的集合之并. 解: A B C A ( B A) (C A B )
(4) {,{}} {} {,{}}
(5) {,{}} {{}}
(6) {,{}} {{}} {} 答: (1),(3)和(6)是对的, (2),(4)和(5)是错的.
习题 3.3
1. 证明下列各式: (1) A ( B A) 证: A ( B A) A B A A A B (2) A ( B A) A B 证: A ( B A) A ( B A) ( A B) ( A A) ( A B ) U A B (3) A ( B C ) ( A B) ( A C ) 证: A ( B C ) A ( B C ) A ( B C ) ( A B ) ( A C ) ( A B ) ( A C ) (4) A ( B C ) ( A B) ( A C ) 证: A ( B C ) A ( B C ) A ( B C ) ( A B ) ( A C ) ( A B ) ( A C ) (5) ( A B) C A B C ) 证: ( A B ) C A B C A ( B C ) A B C )
答:(2),(3),(4)为真,(1),(5),(6),(7)为假。 5. 判断下列命题中哪些为真: (1) {,{}} (2) {,{}} (3) {} {,{{}}} (6) {{}} {,{}}
(4) {} {,{{}}}
(5) {{}} {,{}}
{x | x N x 200}
(2) 被 5 除余 1 的正整数的集合;
{x | x I+ y ( y N x 5 y 1)}
(3) 函数 y=sinx 的值域;
相关文档
最新文档