决策支持系统实例
研究生第四章决策支持系统的开发与实例
层次模型概述
▪ 层次模型的基本结构 ▪ 应用层的概念 ▪ 任务层的概念 ▪ 功能层的概念 ▪ 物理层的概念
层次模型的基本结构
▪ 通用系统理论(GST)
➢ 通用系统理论(General System Theory)是由 Bertalanffy等人于1968年创立并由Mesarovic和Takahara 等人发展起来的理论。
DSS的开发策略、方法
▪ 开发策略 ▪ 开发方法 ▪ 开发步骤
DSS的开发策略、方法
▪ 开发策略
➢ (1)编制一个用户定制化的DSS ➢ (2)采用DSS集成开发工具 ➢ (3)利用专用DSS生成器
DSS的开发策略、方法
▪ 开发策略
➢ 编制一个用户定制化的DSS
这种策略采用一种通用编程语言(GPL),如Pascal语言和 C语言;或者采用第4代编程语言(4GL),例如面向对象的 语言(Delphi和Visual C++)、表格和面向财务的语言。
DSS的开发策略、方法
▪ 开发策略
➢ 用专门领域的DSS生成器
专用DSS(SDSS)实际上是执行决策支持的系统。这 些系统可以辅助开发高度结构化的专用DSS,因此常常 被某些职能部门使用。
专用DSS包含一组计算机软件和硬件,支持一个或一群 决策者,处理一批相关的决策问题,例如,实现复杂统 计功能的SAS,用于金融分析的Commander FDC。
应用层的概念
▪ 层次模型的最高层--应用层表示问题求解活动在决策支 持系统上的语义描述,也就是说,应用层需要描述系统所 处的外部环境、系统所要表达的问题、以及系统和用户是 怎样来解决问题的。因此,DSS的任何问题求解活动都应 该有应用层的描述。应用层为特定DSS提供了一种模型。
人工智能技术在决策支持系统中的应用案例
人工智能技术在决策支持系统中的应用案例随着人工智能技术的迅猛发展,决策支持系统(Decision S upport S ystem, DSS)已经得到了广泛的应用。
决策支持系统是一种通过计算机技术帮助决策者进行决策的信息系统。
它利用大数据、机器学习、自然语言处理等人工智能技术,可以提供决策所需的信息和分析工具,帮助决策者制定更加科学和有效的决策。
本文将介绍几个人工智能技术在决策支持系统中的应用案例,以展示其在不同领域的价值和潜力。
一、金融领域的风险评估与预测金融领域是决策支持系统运用人工智能技术最为广泛的领域之一。
人工智能技术可以利用大数据进行风险评估和预测,帮助金融机构制定风险控制策略。
例如,某银行可以通过分析客户的交易数据、信用记录和个人信息,利用人工智能算法构建客户信用评分模型。
该模型可以根据客户的历史行为和多个指标对其进行信用评估,从而决定是否向其提供贷款,并确定适当的贷款额度和利率。
二、医疗领域的诊断和治疗决策人工智能技术在医疗领域的应用也越来越多。
通过分析海量的医疗数据,人工智能技术可以提供更加精确的诊断和治疗建议,辅助医生进行决策。
例如,一项研究表明,基于人工智能的决策支持系统可以通过分析患者的病历、影像学检查和实验室结果,帮助医生准确诊断乳腺癌的类型和分级,并推荐最适合的治疗方案。
三、交通领域的智能交通管理交通拥堵是现代城市面临的重要问题之一。
人工智能技术可以应用于智能交通管理系统,通过实时监测和预测交通状态,优化交通流量分配,从而减少交通拥堵和提高交通效率。
例如,某城市的交通管理部门利用人工智能技术分析历史交通数据,并结合实时的交通监测数据,可以预测交通拥堵区域和时间,并提前做出相应的交通疏导策略,帮助减少拥堵并提高交通流动性。
四、市场营销领域的精准推荐与个性化营销人工智能技术在市场营销领域的应用越来越受到关注。
通过分析用户的历史购买记录、浏览行为和个人喜好,人工智能技术可以提供个性化的产品推荐和定制化的营销方案,提升市场推广效果。
企业决策支持系统的应用实践有哪些
企业决策支持系统的应用实践有哪些在当今竞争激烈的商业环境中,企业面临着日益复杂的决策问题。
为了在市场中脱颖而出,企业需要依靠准确、及时的信息和有效的分析工具来支持决策过程。
企业决策支持系统(Decision Support System,简称 DSS)应运而生,成为企业管理的重要利器。
那么,企业决策支持系统在实际应用中有哪些具体的实践呢?一、销售与市场决策在销售领域,企业决策支持系统可以帮助企业分析销售数据,预测市场需求。
通过对历史销售数据的挖掘和分析,系统能够发现销售趋势、客户购买行为模式以及产品的销售周期。
这有助于企业合理安排生产计划,优化库存管理,避免库存积压或缺货的情况发生。
例如,一家服装企业通过决策支持系统分析不同地区、不同季节的销售数据,发现某些款式在特定地区和季节的销售表现出色。
基于这些分析结果,企业可以针对性地调整生产和配送策略,增加热门款式在相关地区和季节的供应,从而提高销售业绩。
在市场推广方面,决策支持系统可以评估不同营销活动的效果。
通过收集和分析市场活动的数据,如广告投放效果、促销活动的响应率等,企业能够了解哪些营销手段最为有效,从而优化市场推广预算的分配,提高投资回报率。
二、财务决策企业决策支持系统在财务管理方面也发挥着重要作用。
它可以帮助企业进行财务分析、预算编制和成本控制。
系统能够对企业的财务数据进行深入分析,包括资产负债表、利润表和现金流量表等。
通过财务比率分析、趋势分析等方法,为企业提供财务状况的评估和预警,帮助管理层及时发现潜在的财务风险。
在预算编制过程中,决策支持系统可以整合各部门的业务数据,提供准确的预测和规划依据。
这使得预算更加科学合理,能够更好地指导企业的资源配置和业务发展。
成本控制方面,系统可以对企业的成本结构进行详细分析,找出成本的关键驱动因素。
例如,通过分析发现原材料采购成本过高,企业可以与供应商重新谈判价格,或者寻找更具性价比的替代材料,从而降低成本,提高盈利能力。
智能决策支持系统在水果种植中的实际应用案例
智能决策支持系统在水果种植中的实际应用案例目录一、前言 (2)二、智能决策支持系统在水果种植中的实际应用案例 (2)三、数字化农业的定义与特点 (6)四、数字化农业对水果种植的意义 (8)五、国内外数字化农业应用现状 (10)六、数字化农业的发展历程 (14)一、前言数字化农业建立了数字化农业生态系统,通过农业云平台和农业物联网等技术,实现农业生产、经营和管理的网络化。
果园管理者可以随时随地通过互联网查看果园的生产数据和管理信息,实现远程控制和调度,提高生产效率和管理质量。
数字化农业的核心是数据。
从农田环境、果树生长状况到果实品质,每一个生产环节都需要进行数据采集、处理、分析和应用。
这些数据构成了数字化农业的基础,为精准管理和科学决策提供了有力支持。
数字化农业利用人工智能、大数据和物联网等技术,实现农业生产的智能化管理和决策。
例如,通过智能传感器和控制系统,可以实时监测果园的环境参数和果树生长状况,根据数据分析结果自动调整灌溉、施肥和病虫害防治等管理措施,实现精准管理。
声明:本文内容来源于公开渠道或根据行业大模型生成,对文中内容的准确性不作任何保证。
本文内容仅供参考,不构成相关领域的建议和依据。
二、智能决策支持系统在水果种植中的实际应用案例(一)AI辅助决策模型在水果种植中的应用1、温室大棚内的应用AI辅助决策模型在水果种植中的首次大规模应用是在温室大棚内。
例如,在成都崇州市天府粮仓核心区的温室大棚内,中国农业科学院都市所团队研发的AI辅助决策模型被用于指导小番茄的种植。
该模型通过卫星遥感技术、田间监控设备、环境监测数据实时收集作物的生长数据,并经过AI处理后生成相应的生产决策意见。
种植户可以参考这些意见进行播种、施肥、打药、收割等操作。
这种模型的应用不仅提高了作物的生长效率,还确保了水果的品质。
在温室大棚内,小番茄的个头饱满、颜色鲜红、大小均匀,每一串的颗数都被精准地控制在了10颗左右。
这些由AI种出来的小番茄在市场上获得了良好的反响。
决策支持系统在企业管理中的应用案例
决策支持系统在企业管理中的应用案例引言:随着信息技术的飞速发展和企业管理日益复杂化,决策的质量和效率成为企业成功的关键。
决策支持系统是一种使用计算机技术和数据分析的工具,可帮助管理者在制定决策时提供准确的信息和精确的分析。
本文将通过介绍几个真实的案例,详细说明决策支持系统在企业管理中的应用。
案例一:供应链优化决策支持系统在制造业中的应用某汽车制造公司利用决策支持系统来优化供应链管理,提高运营效率。
该系统整合了公司内部和供应商的相关数据,实现信息共享和协同决策。
系统通过对订单数据进行分析,优化供应商的选择、订货量和库存水平,减少了库存积压和订单延误。
此外,该系统还利用模拟技术和预测分析,帮助公司预测销售趋势和变动,以便更好地调整生产计划和物流策略。
案例二:金融风险管理决策支持系统在银行业中的应用一家银行引入决策支持系统来帮助管理风险,并防范可能的金融危机。
该系统通过整合各部门的交易数据、市场数据和客户数据,建立了一个综合的风险分析模型。
系统可以对不同类型的风险进行评估和监控,如信用风险、市场风险和操作风险。
通过对数据进行实时分析和预警,银行可以更及时地发现潜在的风险和异常情况,并及时采取相应的措施来降低风险。
案例三:营销决策支持系统在零售业中的应用一家连锁超市使用决策支持系统来帮助制定营销策略,提高销售额和客户满意度。
该系统通过对销售数据、客户数据和市场数据进行分析,帮助超市识别潜在的销售机会、客户需求和市场趋势。
系统可以为超市提供个性化的定价策略、促销活动和产品组合推荐,以及预测销售额和市场份额。
通过优化营销决策,该超市实现了销售额的大幅增长和客户满意度的提升。
案例四:人力资源决策支持系统在人力资源管理中的应用一家跨国公司引入决策支持系统来优化人力资源管理,提高人员招聘和绩效管理的效果。
该系统整合了公司的人事信息、招聘数据和绩效评估数据,实现了人力资源的集中管理和智能决策。
系统可以帮助公司识别最适合的候选人,根据员工的绩效评估结果进行薪酬调整和晋升决策。
决策支持系统案例
7
aij 表示以判断准则H 的角度考虑要素 Ai 对Aj 的相 对重要程度。
对于准则H,对下一层的n个要素 A1 , A2 ,, An
进行两两比较,来确定矩阵的元素值,aij 满足:
aij 1 aij 1/ a ji aik akj aij
2019/12/15
8
aij 的判断尺度
2019/12/15
求A的最 大特征值
和其 对应的 特征向量
单 位
权重 向量
化
W
12
(a)求和法(算术平均法)
• A的元素按列归一化 • 将归一化后的各列相加 • 将相加后的向量归一化
bij
aij aij
决策支持系统应用案例
广东国税局税务分析与决策支持系统应用案例——信息XXXX班XXX XXXXXXXXXXXX广东国税局采用菲奈特软件公司商业智能系统平台,共同打造广东国税的税务分析与决策支持系统。
同时,该系统将在广东省国税系统全面推广。
这不但是广东国税在“科技兴税”战略实施上的又一进步,同时也标志着菲奈特软件公司商业智能系统在税务行业的成功应用。
随着电子政务系统的发展以及税务信息化程度的不断提高,在税务决策支持方面不断吸纳新的信息处理技术、提高决策的科学性和规范性,成为提高行政办公效率、促进经济发展的关键所在。
广东省国税局自“科技兴税”战略实施以来,信息化工作在网络建设、设备配置、应用系统开发应用等方面已逐步得到完善;金税工程、统一征管软件、出口退税、公文管理、人事管理等应用系统都已推广应用多年,具备一定的应用规模和应用深度,并取得了较好的应用效果。
广东国税的业务系统在满足日常税收业务需求的同时也采集了大量的业务数据。
例如,每年采集2000多万份的申报数据和2000多万份的税票数据,其中出口专用税票数据达100多万份;1999-2000年全省共采集5000多万份的专用发票数据。
这些业务数据的背后隐含了十分丰富的信息和规律,也给税务信息化建设带来一些问题,主要体现在:业务数据分散在不同的应用系统中,数据共享度低且格式不统一;数据太多而信息太少;缺乏快速、高效、便捷的获取信息的工具;基层单位的管理手段日益先进,而上级管理机关却仍然停留在以汇报和检查为主的传统的管理模式上;上级管理部门没有或很少信息,上下级税务机关形成信息不对称等方面。
为进一步加强税务信息化建设,实现对税收业务和纳税人的纳税情况进行科学分析,为管理决策提供及时准确的信息,以进一步加强税收管理,加强业务监控,促进依法治税,广东省国税提出建设税务分析与决策支持系统。
该系统作为国家税务总局关于税务信息化“一个网络,一个平台,四个系统”的总体规划的重要组成部分,其目标在于通过建立规范统一、高度共享的综合性主题数据库,并在此基础上,建设一个能够对事物(如:税收收入)的规模、构成、分布、发展速度、平均水平、平衡程度等特征以及增长变化规律和发展趋势,以及事物之间(如:GDP与税收收入)的相关关系、强度及均衡性等问题进行分析的平台。
决策支持系统实例课件
物资调拨数据库
仓库发物数据库 单位收物数据库 单位物资数据库
注: 程序控制线 数据存取线
DSS数据库
21
物资分配调拨决策支持系统运行结构图
开始 计划汇总
分配处理
人工干预吗 Y
N 取出 修改 送回
调拨预处理
运输处理
人工干预吗 Y
N 取出 修改 送回
调拨预处理 制表处理
修改方案否? Y
分配处理
人工干预吗 Y
N 取出 修改 送回
调拨预处理
运输处理
人工干预吗 Y
N 取出 修改 送回
调拨预处理 制表处理
修改方案否? Y
修改方案处理
N
结束
DSS控制程序 (综合部件)
计划汇总模型
分配模型
调拨预处理模型 实际距离矩阵 运输模型
物资调拨汇总模型
制表模型
仓库发物 报表
仓库收物 报表
DSS模型库
仓库库存数据库 单位申请数据库 总申请数据库 总库存数据库
修改方案处理
N
结束
DSS控制程序 (综合部件)
计划汇总模型
分配模型
调拨预处理模型 实际距离矩阵 运输模型
物资调拨汇总模型
制表模型
仓库发物 报表
仓库收物 报表
DSS模型库
仓库库存数据库 单位申请数据库 总申请数据库 总库存数据库
物资分配数据库 距离数据库
物资调拨数据库
仓库发物数据库 单位收物数据库 单位物资数据库
6
3. 物资调拨预处理
该模型和数据库之间关系为:
距离数据库 物资分配数据库
物资调拨 预处理 模型
某物资实际 距离矩阵
会计学中的管理会计与决策支持系统应用案例
会计学中的管理会计与决策支持系统应用案例在当今竞争激烈的商业环境中,管理会计和决策支持系统起着至关重要的作用。
它们为企业提供了必要的财务数据和信息,帮助管理者做出明智的决策。
本文将介绍几个管理会计和决策支持系统在实际应用中的案例,展示它们的重要性和价值。
首先,让我们看一个来自制造业的案例。
某汽车制造公司决定推出一款新的电动汽车,并计划投资大量的资金进行研发和生产。
在这个过程中,管理者需要准确评估产品的成本以及销售的潜力。
通过管理会计的方法,他们能够对研发、生产和市场推广等环节进行成本核算,确保投资回报率可行。
决策支持系统则可以提供市场调研数据和销售预测,帮助管理者制定正确的市场定位和推广策略。
另一个案例涉及零售业。
一家服装零售商希望扩大市场份额,并希望了解不同产品线的盈利情况以及库存管理的最佳方案。
通过管理会计,他们可以对不同产品的成本、销售额和毛利率进行核算,确定最具盈利潜力的产品线。
决策支持系统则可以帮助他们进行库存管理,提供实时销售数据和库存水平,以便及时调整采购和销售策略。
除了制造业和零售业,管理会计和决策支持系统在服务业也有广泛的应用。
例如,一家酒店希望提高客房出租率和客户满意度。
通过管理会计,他们可以分析客房的定价策略、渠道分配成本以及市场推广费用,以便优化收益。
决策支持系统可以提供客房出租率和客户满意度的数据,并帮助管理者决定何时调整房价和推广活动。
另外一个应用案例涉及跨国公司。
一家跨国公司需要对其全球业务进行绩效评估,并决定是否关闭一些不盈利的分支机构。
通过管理会计,他们可以对不同分支机构的销售额、成本和利润进行核算,确定哪些分支机构应该关闭或重组。
决策支持系统可以提供全球业务的实时数据和关键指标,帮助管理者做出明智的决策。
总而言之,管理会计和决策支持系统在各行各业都有广泛的应用,为企业提供了重要的财务数据和决策支持。
通过准确核算成本、评估销售潜力和分析业务绩效,管理者能够做出明智和有效的决策,提高企业的竞争力和盈利能力。
决策支持系统实例
决策支持系统实例决策支持系统(Decision Support System,DSS)是一种基于计算机技术和数学方法的信息系统,目的是为决策者提供有关于特定决策问题的信息和分析。
它能够帮助决策者收集、分析和解释数据,以便做出更明智的决策。
下面将为您介绍一个决策支持系统的实例。
一个很好的决策支持系统的实例是供应链管理决策支持系统(Supply Chain Management Decision Support System,SCM DSS)。
供应链管理是一个涉及多个环节和参与者的复杂系统,包括供应商、生产商、分销商和最终消费者。
这个系统的目标是帮助组织优化其供应链的各个方面,以提高效率、降低成本和提供更好的客户服务。
SCMDSS能够帮助企业管理者在供应链中做出各种决策,包括供应商选择、库存管理、生产规划、物流安排等等。
这个系统基于大量的数据收集和分析,通过模型和算法来评估不同决策方案的优劣,并给出最佳的决策建议。
一个典型的SCMDSS包括以下几个核心组件:1.数据收集和整理:SCMDSS通过连接企业内部的各个信息系统,包括ERP系统、订单管理系统、库存管理系统等等,从中收集所需的数据。
同时,它还可以连接外部供应商和物流公司的系统,以获取更全面的数据。
2.数据分析和建模:SCMDSS使用各种分析方法和建模技术对数据进行处理和分析。
这些方法包括统计分析、数据挖掘、优化模型等等。
通过这些技术,系统能够提取出有用的信息,并建立模型来评估不同决策方案的效果。
3.决策支持和模拟:SCMDSS提供对决策过程的支持和模拟功能。
它可以根据用户的需求和决策标准,生成不同的决策方案,并对其进行评估。
系统还可以通过模拟和预测分析,帮助用户预测供应链的未来情景,并针对性地做出决策。
4.报告和可视化:SCMDSS能够生成各种报告和可视化图表,以帮助用户更好地理解分析结果和决策建议。
这些报告和图表可以展示供应链的各种指标和指标的变化趋势,帮助用户发现问题和机会,以及做出相应的调整。
财务分析和决策支持系统的实际应用案例
财务分析和决策支持系统的实际应用案例在当今复杂多变的商业环境中,财务分析和决策支持系统(Financial Analysis and Decision Support System,FADSS)起着至关重要的作用。
本文将介绍一些实际应用案例,展示FADSS如何帮助企业进行财务分析和决策。
案例一:投资决策支持假设一个制造业公司正在考虑购买新的生产设备。
通过FADSS,公司能够进行财务分析,评估投资的可行性和潜在风险。
首先,FADSS可以帮助公司计算投资回报率(Return on Investment,ROI)和净现值(Net Present Value,NPV)。
此外,FADSS可以模拟不同的市场情景,在不同条件下预测投资收益。
最终,公司可以根据FADSS提供的数据和分析,作出是否购买新设备的决策。
案例二:预算规划与管控一家零售公司面临着复杂的预算规划和管控挑战。
通过FADSS,公司能够集中管理财务数据,并进行有效的预算规划。
FADSS可以帮助公司创建详细的财务预算模型,并将实际数据与预算进行比较。
通过实时监控和分析,公司可以及时调整预算和支出,以保持财务目标的实现。
此外,FADSS还可以协助公司进行风险评估,制定相应的应对策略。
案例三:业绩评估和分析一家跨国公司需要对其全球业务进行绩效评估和分析。
通过FADSS,公司可以整合各地分支机构的财务数据,并进行跨地区的业绩对比。
FADSS可以提供多维度的数据分析,例如销售额、利润率和市场份额。
通过对比分析,公司可以识别出在不同市场中表现强劲的产品线,并制定相应的战略决策。
案例四:风险管理与决策支持一家保险公司希望提高其风险管理水平,并做出更准确的决策。
通过FADSS,公司可以进行风险评估和模拟分析。
FADSS能够帮助公司建立风险模型,并预测不同保险产品的潜在风险。
此外,FADSS还可以帮助公司进行行业趋势分析,从而为保险产品的开发和定价提供支持。
综上所述,FADSS在实际业务中的应用具有广泛的范围和重要性。
决策支持系统的开发实例
数据库 DB
DSS 控制 系统
模型库 MB
问题综合 与 交互系统
动态 DB
推理机 和 解释器
知识库 KB
集成系统
DSS
ES
图4.16智能决策支持系统集成结构图
综合系统
4.3.5智能决策支持系统实例
松毛虫智能预测系统(PCFES)是一个智能决策支持系统。该系统把模型库、数据库、知识推理、人机交互四者有机地结合起来了。达到了定性的知识推理、定量的模型数值计算、数据库处理的高度集成。 系统结构见图4.22。
问题综合与交互系统
模型库管理系统
数据库管理系统
知识库 管理系统
推理机
用户
模型库
知识库
数据库
4.3专家系统与智能决策支持系统
4.3.1专家系统原理 1. 专家系统概念 1)专家系统定义 专家系统是具有大量专门知识, 并能运用这些知识解决特定领域中实际问题的计算机程序系统。 专家系统是利用大量的专家知识,运用知识推理的方法来解决各特定领域中的实际问题。计算机专家系统这样的软件能够达到人类专家解决问题的水平。
4.1.2 智能决策支持系统结构
1、人工智能的决策支持技术 从智能决策支持系统的概念可知智能决策支持系统中包含了人工智能技术,与决策支持有关的人工智能技术主要有: 专家系统、神经网络、遗传算法、机器学习、自然语言理解等。
1)专家系统是利用大量的专门知识解决特定领域中的实际问题的计算机程序系统; 2)神经网络是利用神经元的信息传播模型(MP模型)进行学习和应用; 3)遗传算法是模拟生物遗传过程的群体优化搜索方法;
问题综合与交互系统
数据库 管理系统
模型库 管理系统
模型库
工程造价核算中的决策支持系统应用案例分析
工程造价核算中的决策支持系统应用案例分析随着社会经济的发展和科技的进步,工程建设项目越来越复杂,造价核算也变得愈发重要。
在工程造价核算中,决策支持系统(Decision Support System,简称DSS)的应用正发挥着越来越重要的作用。
本文将通过一个实际案例,探讨DSS在工程造价核算中的应用。
案例背景:某公司计划开展一项新的建筑工程项目,该项目涉及多个工程专业领域,包括土建、电气、给排水等。
为了确保项目的顺利进行,该公司决定使用DSS来辅助进行工程造价核算。
DSS在项目前期的应用:在项目启动阶段,DSS被用于进行初步的工程造价估算。
通过输入工程的基本参数,如建筑面积、楼层数、结构类型等,DSS能够根据历史数据和专业知识库,快速给出一个初步的造价估算结果。
这一结果能够帮助公司进行初步预算,为后续的决策提供参考。
DSS在设计阶段的应用:在项目设计阶段,DSS的应用更加广泛。
首先,DSS可以通过输入详细的设计方案,包括施工图纸、工程规范等,来进行详细的工程造价核算。
通过与历史数据和市场行情的比对,DSS能够给出一个更加准确的造价估算结果。
其次,DSS还能够进行成本优化分析,通过对不同设计方案的成本进行比较,帮助公司选择最经济合理的设计方案。
此外,DSS还可以进行风险评估,通过考虑不同因素的风险概率和影响程度,帮助公司制定风险管理策略。
DSS在施工阶段的应用:在项目施工阶段,DSS的应用主要集中在成本控制和进度管理方面。
首先,DSS可以通过与实际施工情况的对比,实时监控工程的成本变化。
通过与预算进行比较,DSS能够及时发现成本超支的情况,并提供相应的成本控制建议。
其次,DSS还可以对工程进度进行管理和优化。
通过输入实际施工进度和预定计划,DSS 能够自动计算出工程进度的偏差,并提供相应的调整建议,以确保工程按时完成。
DSS在验收阶段的应用:在项目验收阶段,DSS的应用主要集中在工程质量评估和成本结算方面。
决策支持系统的开发与实例
案例:企业销售决策支持系统(ESDSS)
• 三、ESDSS的应用
4、 广告媒体选择决策
构造专用DSS
持系统;
的计算机硬件 Boeing计算机服务公司的
和软件系统
EIS(Executive Information
System);
Tymshare公司的Express等。
用来构造专用DSS 净现值计算程序、
和DSS生成器 彩色图像工具、
的基础技术与 线性规划软件包、
基本硬件和软 数据库查询软件、
决策功能 产品价格
促销手段: 1. 广告
2. 推销人员数 产品运输 通用决策方法
方法与模型 1. 拟合产品需求曲线 2. 各种需求价格弹性预测方法 3. 成本加成法、量本利法、边际贡献法
1. 广告效应曲线德拟合 2. 广告费用预测 3. 广告媒体选择模型(线性规划) 1. 销售数量比例法 1. 运输成本最小化或利润最大化 1. 决策表 2. 决策树 3. 线性规划
完全DSS开发法
先开发一个具有相当功能的DSS生成系统, 然后用它再开发专用DSS
理想化的开发方法,适合有大量DSS需求 的机构
基于C/S的DSS快速开发平台
CS-DSSP结构图(P280) 农业投资空间决策支持系统(P308)
案例:企业销售决策支持系统(ESDSS)
在市场经济体制下,销售管理已成为企业最重要 的经济活动之一。企业销售是企业经营的起点,也是 企业效益的焦点,销售活动不仅与企业内部各部门有 密切的关系,还与外界有着广泛的交往。销售活动涉 及的许多问题具有相当的不确定性,这些问题的决策 是半结构化或非结构化的。因此用于支持企业销售决 策的DSS是一种较典型的专用DSS,本节将以企业销 售决策系统(ESDSS)为案例,介绍实际的DSS的构造 及其具体的应用。以便直观地帮助我们学习和认识 DSS。
企业决策支持系统的应用实践有哪些
企业决策支持系统的应用实践有哪些在当今竞争激烈的商业环境中,企业面临着日益复杂的决策挑战。
为了在市场中脱颖而出,许多企业纷纷引入决策支持系统(Decision Support System,DSS)来辅助决策制定。
决策支持系统通过整合数据、分析信息和提供决策建议,帮助企业管理者做出更明智、更及时的决策。
那么,企业决策支持系统在实际应用中都有哪些具体的实践呢?一、市场营销决策支持企业决策支持系统在市场营销领域发挥着重要作用。
通过收集和分析市场数据,如消费者行为、竞争对手动态、销售趋势等,为企业的营销策略制定提供依据。
例如,一家电商企业可以利用决策支持系统分析消费者的购买历史、浏览行为和评价数据,从而精准地进行客户细分。
根据不同客户群体的特点和需求,制定个性化的营销方案,如推荐相关产品、提供个性化的促销活动等,提高营销效果和客户满意度。
此外,决策支持系统还能帮助企业评估市场推广活动的效果。
通过对比活动前后的销售数据、市场份额变化等指标,判断活动是否达到预期目标,并为后续的营销活动提供经验教训和改进方向。
二、生产运营决策支持在生产运营方面,决策支持系统可以优化生产流程、提高生产效率、降低成本。
对于制造业企业,决策支持系统可以实时监控生产线上的设备运行状态、原材料库存水平和生产进度。
当出现设备故障或原材料短缺等问题时,及时发出预警并提供解决方案,避免生产中断和延误。
同时,通过分析历史生产数据,企业可以找出生产过程中的瓶颈环节,并进行针对性的改进。
例如,重新规划生产线布局、优化作业流程、调整人员配置等,以提高生产效率和产品质量。
另外,决策支持系统还能协助企业进行供应链管理。
根据市场需求预测和生产计划,合理安排原材料采购、库存管理和物流配送,确保供应链的顺畅运作,降低库存成本和物流费用。
三、财务管理决策支持财务管理是企业决策的重要组成部分,决策支持系统在这方面也有广泛的应用。
在预算编制方面,系统可以整合历史财务数据、业务计划和市场预测信息,为企业制定合理的预算方案提供支持。
决策支持系统的开发与实例
需求整理与分析
03
对收集到的需求信息进行整理、分类、分析,形成详细的需求
文档。
系统设计
架构设计
根据需求分析结果,设计系统的整体架构,包括系统模块、数据 库结构、系统流程等。
功能设计
根据需求文档,设计系统的具体功能,包括数据输入、数据处理、 数据输出等。
界面设计
设计用户界面,包括界面布局、操作流程、交互方式等,确保用 户友好性。
系统实现
编程语言与工具选择
根据系统设计和开发团队的技术能力,选择合适的编程语言和开 发工具。
数据库设计与实现
根据系统设计,建立数据库结构,并进行数据存储、查询等操作。
功能模块开发
按照功能设计,逐个实现系统功能模块,并进行单元测试。
系统测试
功能测试
对每个功能模块进行测试,确保功能正常、符合 设计要求。
数据仓库技术
数据整合
数据仓库技术能够将分散在各个业务系统的数据进行整合,形成一 个集中、统一的数据平台,便于进行数据分析和决策支持。
数据存储
数据仓库具备大规模数据存储能力,能够存储海量的历史数据和实 时数据,满足决策者对数据的需求。
数据查询
数据仓库提供高效的数据查询功能,支持复杂的查询和报表生成,为 决策者提供准确、及时的数据支持。
半结构化或非结构化决策
DSS主要针对半结构化或非结构化问题,帮助决 策者进行问题分析和解决方案制定。
人机交互性
DSS强调人与机器的交互,通过人机对话的方式 进行决策。
数据、模型和知识集成
DSS集成了数据仓库、模型库和知识库,为决策 提供全面的支持。
决策支持系统的历史与发展
01
02
03
早期阶段
决策支持系统实例
K i={XY(W1)—KD(W1),XY(W2)—KD(W2),…}i=1,2,…(1.3)其中K i表示第i个仓库;XY(W j),KD(W j)分别表示该仓库中物资W j的现有数量和最低储备量;XY(W j)—KD(W j)表示物质W j 的可供量。
各仓库的多物资的可供应情况汇总成某一物资个仓库的可供量,形成总库存数据库。
Wj={XY(K1)—KD(K1),XY(K2)—KD(K2),…}(1.4)该项数据处理工作,要在数据库中计算出可供量后,再进行类似于数据库旋转来实现。
该计划汇总工作构成数据处理模型,它与数据库的关系如图:图2计划汇总模型与数据库的关系一、制定物资的分配方案物资分配方案是利用物资分配模型来完成的,该分配模型是通过一系列公式实现。
1、比较分配情况对同一物资W j计算总可供量S(各仓库可供量之和)与总申请量Q(各单位申请量之和)的大小。
2、物资分配方法(1)总可供量大于等于总申请量S≥Q完全满足各单位的申请数量,即各单位的分配数量FB(D j)等于他的申请量。
FB(D j)=SQ(Dj)(2.1)(2)总可供量小于总申请量S〈Q这里有2种处理方法:A、按申请比例削减FB(Dj)=SQ(D j)*S/Q(2.2)B、按优先类别分配各单位按需求物资的需求程度有一个优先类别该模型是一个数学模型。
模型和数据库之间的关系如图:图3其中物资分配数据库中每条记录表示每种物资分配给各单位的具体数量。
三、物资调拨预处理在制定物资分配方案中已经确定了每种物资给各接收单位的分配数量。
具体由哪个仓库调拨多少物资到哪个单位去,就有运输问题的线性规划来解决。
但决定哪几个仓库,哪几个接收单位之间实现调拨供应是需要进行预处理的。
每种物资的调运中,参加调运的仓库和接收单位都是不一样的,是随机出现的。
参加调运的仓库是由该仓库提供某物资的可供量是否大于零来决定。
参加调用接收单位要看他接收某物资的分配数大于零来决定。
决策支持系统应用案例
决策支持系统应用案例决策支持系统(Decision Support System,DSS)是一种基于计算机技术和信息系统的管理工具,用于帮助决策者进行复杂决策的过程。
它通过收集、整理、分析和展示大量的数据和信息,为决策者提供决策所需的支持和建议。
以下是一些决策支持系统应用的案例:1.供应链管理决策支持系统供应链管理决策支持系统帮助企业实现供应链数据的收集、分析和决策支持。
它可以跟踪和监控库存、运输和订单等信息,并将其整合在一起,以便进行最佳的供应链决策。
例如,系统可以根据需求预测和供应链运作情况,帮助企业及时提供产品和服务,提高供应链的效率和灵活性。
2.营销决策支持系统营销决策支持系统可帮助企业在市场营销方面做出明智决策。
它可以收集和分析顾客的购买数据、市场趋势、竞争对手的活动等信息,并提供决策者所需的洞察和建议。
例如,系统可以通过分析大数据来确定目标市场和受众,制定定制化的营销策略,提高销售和市场份额。
3.金融风险管理决策支持系统金融风险管理决策支持系统可以帮助金融机构评估和管理风险。
它可以分析金融市场、经济数据和客户的信用评级等信息,以确定潜在的风险和机会。
系统可以生成报告和模拟,为决策者提供风险评估和决策支持。
例如,系统可帮助银行确定信贷风险,制定贷款政策,减少不良贷款的风险。
4.医疗决策支持系统医疗决策支持系统可以帮助医生和医疗专业人员做出诊断和治疗决策。
它可以收集和分析患者的医疗记录、实验室结果、病历数据等信息,以提供相关的诊断和治疗建议。
例如,系统可以根据患者的症状和历史数据,给出可能的诊断和推荐的治疗方案,并帮助医生做出决策。
5.生产计划决策支持系统生产计划决策支持系统可以帮助企业进行生产计划和资源分配的决策。
它可以收集和分析销售数据、库存水平、生产能力等信息,以优化生产计划和运营效率。
例如,系统可以根据市场需求和资源可用性,预测需求和产能,并帮助企业制定合理的生产计划,提高生产效率和客户满意度。
决策支持系统案例
决策支持系统案例决策支持系统(DSS)是指能够帮助决策者进行战略、战术及操作层面决策的信息系统。
它使用各种方法和技术来提供准确、及时和相关的信息,以支持决策者在面对复杂和不确定的问题时做出明智的决策。
下面将介绍一个决策支持系统的实际案例。
案例名:汽车公司市场扩张决策支持系统案例背景:汽车公司正在考虑在新的市场扩张,并希望通过决策支持系统来帮助他们做出合理的决策。
该汽车公司在过去几年取得了较大的成功,现在想要进一步扩大市场份额,但是他们面临着许多问题和挑战,比如如何选择合适的市场、汽车型号等。
解决方案:该汽车公司决策支持系统的设计需要包括以下几个主要的组件和功能:1.数据收集和分析:通过收集和分析内部数据、市场数据、竞争数据等信息,帮助企业了解当前市场状况和竞争对手情况。
例如,可以收集销售数据、市场调研数据、竞争对手销售数据等,分析当前市场规模、销售趋势、竞争对手品牌定位等。
2.模型建立和分析:基于收集到的数据,可以建立模型来分析不同市场扩张策略的效果。
例如,可以建立销售预测模型,根据市场规模、竞争对手定价、消费者需求等因素预测不同市场扩张策略下的销售额和市场份额。
3.决策支持:在数据分析和模型分析的基础上,为决策者提供有用的信息和建议,帮助他们做出最佳的决策。
例如,系统可以生成报告、可视化图表等形式的结果,展示不同市场扩张策略的利弊,并提供相应的建议。
4.决策结果监控:一旦决策执行,系统可以对决策结果进行监控,并根据市场反馈和实际销售数据来评估决策的有效性。
如果需要,系统可以根据监控结果调整原有的决策或制定新的决策。
该决策支持系统的实施将有助于该汽车公司更好地理解市场需求、竞争对手和消费者行为,并为他们提供更有效的决策信息,支持他们在新市场的扩张决策过程中做出明智的决策。
通过决策支持系统,该汽车公司能够更好地选择适合的市场扩张策略,从而提高销售额和市场份额。
同时,系统的使用也能够帮助该公司更好地了解和掌握竞争对手的动态,及时调整市场策略,从而增加竞争力并获得持续的竞争优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决策支持系统实例
物资分配调拨问题是依照各单位提出对物资的需求申请,按仓库的库存情形制定分配方案,再依照分配放案以及仓库和单位的距离制定物资运输方案。
最后按照物资运输方案制定各仓库的发货表和各单位的接收表,修改各仓库库存数和各单位的物资数。
该决策问题需要设计多个数据库和多个模型共同求解。
总的处理流程如图:
图1 物资分配调拨流程图
一、物资申请和库存的打算汇总
1、各单位按自己的需求提出对各物资的申请
申请数据库为:
D i={SQ(W1),SQ(W2),…} i=1,2,3…(1.1)
其中D i表示第i各单位,SQ(W j)表示申请物资W j的需要数量。
将各单位的申请数据库汇总成各单位对物资的需求量,形成总申请数据库。
W j={ SQ(D1),SQ(D2),…} j=1,2,3…(1.2) 其中SQ(D i)表示第i个单位对物资W j的申请数量。
该项数据处理需要编制程序,类似于数据库的旋转来完成。
2、各仓库度物资的可供应情形
K i ={XY(W 1)—KD(W 1),XY(W 2)—KD(W 2),…} i=1,2,… (1.3) 其中K i 表示第i 个仓库;XY(W j ), KD(W j )分别表示该仓库中物资W j 的现有数量和最低储备量;XY(W j )—KD(W j )表示物质W j 的可供量。
各仓库的多物资的可供应情形汇总成某一物资个仓库的可供量,形成总库存数据库。
Wj={XY(K 1)—KD(K 1),XY(K 2)—KD(K 2),…} (1.4) 该项数据处理工作,要在数据库中运算出可供量后,再进行类似于数据库旋转来实现。
该打算汇总工作构成数据处理模型,它与数据库的关系如图:
图2 打算汇总模型与数据库的关系
二、 制定物资的分配方案
物资分配方案是利用物资分配模型来完成的,该分配模型是通过一系列公式实现。
1、
比较分配情形
对同一物资W j 运算总可供量S (各仓库可供量之和)与总申请量Q (各单位申请量之和)的大小。
2、
物资分配方法
(1) 总可供量大于等于总申请量S ≥Q
完全满足各单位的申请数量,即各单位的分配数量FB(D j )等
物资总申请数据库
物资总库存数据库
于他的申请量。
FB(D j)= SQ(Dj) (2.1)(2)总可供量小于总申请量S〈Q
那个地点有2种处理方法:
A、按申请比例削减
FB(Dj)= SQ(D j)*S/Q (2.2)
B、按优先类别分配
各单位按需求物资的需求程度有一个优先类别该模型是一个数学模型。
模型和数据库之间的关系如图:
图3 物资分配模型与数据库的关系
其中物资分配数据库中每条记录表示每种物资分配给各单位的具体数量。
三、物资调拨预处理
在制定物资分配方案中差不多确定了每种物资给各接收单位的分配数量。
具体由哪个仓库调拨多少物资到哪个单位去,就有运输问题的线性规划来解决。
但决定哪几个仓库,哪几个接收单位之间实现调拨供应是需要进行预处理的。
每种物资的调运中,参加调运的仓库和接收单位差不多上不一样
的,是随机显现的。
参加调运的仓库是由该仓库提供某物资的可供量是否大于零来决定。
参加调用接收单位要看他接收某物资的分配数大于零来决定。
每个仓库到所接收单位的路程,存入一个距离数据库中。
对每一种物资,由于参加调运的仓库和单位不同,要形成参加调运的实际距离矩阵,这就要对每个距离记录进行选择,选择后形成小的实际距离矩阵,再形成好实际调拨矩阵后,才能够进行运输问题的线性规划运算,运算出有哪个仓库运多少物资给某个接收单位。
那个物资调运预处理是一个数据处理模型,用数据库中投影操作来完成。
该模型完成了物资调用预处理后,接着就能够进行物资运输调拨了,当求出具体解后,由调拨方案的解回到原数据库中的位置,由数据库反投影操作来完成。
该模型和数据库之间的关系如图:
图4 物资调拨预处理模型和数据库的关系
四、制定物资运输方案
利用运输问题数学模型的具体求解方法,制定各物资的运输方案。
该模型和数据库之间的关系:
图5 运输问题模型和数据库的关系
运输问题的运算机算法:
物资调拨数据库中每条记录表示有各仓库运给各单位的具体数量。
五、制定物资调拨方案
利用物资调拨数据库中调拨物资的数量,通过物资调拨模型将所有物资仓库调拨给单位所有的数量,转换成个仓库的发货数据库和各单位的接收数据库,在制定表格,打印各仓库的发货报表和各单位的收货报表。
制定物资调拨方案包括物资调拨模型和制表模型,他们差不多上数据处理模型。
其中物资调拨模型完成物资调拨汇总工作(类似于打算汇总的旋转处理),同时修改库存和物资的两个数据库。
制表模型完成发货和收货报表的打印。
它们和数据库之间的关系如图:
图6 物资调拨与制表模型与数据库的关系
六、物资分配调拨决策支持系统体系结构
1、差不多方案
从上面的详细分析能够看到,该决策问题涉及10个数据库:
(1)单位申请数据库;(2)仓库库存数据库;(3)物资总申请数据库;(4)物资总库存数据库;(5)物资分配数据库;(6)距离数据库;(7)物资调拨数据库;(8)仓库发货数据库;(9)单位收货数据库;(10)单位物资数据库。
该决策问题共涉及6个模型:汇总模型,预处理模型、分配模型、运输优化模型、调拨模型、制表模型。
其中汇总、预处理、调拨、制表模型差不多上数据处理模型,属于治理业务工作。
分配和运输优化属于数学模型。
分配模型属于平稳分配决策,它要达到的目标是使物资分配尽量合理,该模型的运算公式是分配决策方法之一,也能够采纳别的分配方法。
运输模型属于优化决策,它使运输过程达到总吨公里数最小。
该6个模型以程序形式显现,均放入模型库中。
为了使模型部件和数据部件有机结合,要建立总控程序,即操纵各模型有序运行,数据有效存取,同时进行必要的人机对话,承诺决策用户修改分配方案和调拨方案,形成决策支持系统,达到人机共同进行决策。
该决策支持系统的差不多方案按目前分析的模型和数据库进行组合运算,得到辅助决策信息。
其运行结构如图:。