数字电位器的应用操作分

合集下载

数字电位器

数字电位器

数字电位器1. 简介数字电位器,也称为数字可变电阻器,是一种电子元件,可通过输入数字信号来控制电阻值的大小。

它是传统电位器的数字化版本,通过数字输入控制器(比如:微处理器、FPGA等)来调节电阻的数值。

数字电位器广泛应用于模拟电路、数字电路和通信系统等领域。

数字电位器的基本原理是通过调节开关阵列的开关通断情况来改变电阻的数值。

开关阵列通常由多个独立的开关组成,通过一个二进制编码的数字信号来选择需要通断的开关,从而改变电位器的电阻值。

2. 结构和工作原理数字电位器通常由以下几个主要部分组成:2.1 电阻元件电阻元件是数字电位器的核心部分,它决定了电位器的电阻范围和分辨率。

常见的电阻元件包括电阻网络、可调电阻等。

2.2 开关阵列开关阵列是用来控制电阻值的关键部分,它通常由多个开关组成。

每个开关可以独立地控制一个电阻单元的通断情况。

开关阵列的结构和排列方式会影响数字电位器的性能和特性。

2.3 数字编码器数字编码器用于将输入的数字信号转换为对应的开关控制信号。

常见的数字编码方式有二进制编码、格雷码等。

数字电位器的工作原理如下: 1. 输入数字信号经过数字编码器产生对应的开关控制信号。

2. 开关控制信号驱动开关阵列中的开关进行通断操作。

3. 根据开关阵列的通断情况,电阻元件的电阻值发生相应的改变。

4. 输出电路读取电位器的电阻值并进行相应的处理。

3. 应用数字电位器在电子工程领域有着广泛的应用,包括但不限于以下几个方面:3.1 模拟电路中的电压和电流调节数字电位器可以通过改变其电阻值来调节模拟电路中的电压和电流大小。

通过精确控制数字输入信号,可以实现对电路参数的精确调节。

3.2 数字电路中的电压参考数字电路中常需要精确的电压参考值,数字电位器可以用作电压参考源。

通过调节电位器的电阻值,可以实现对电路中的电压参考值的调节和校准。

3.3 通信系统中的增益和衰减控制数字电位器可以用于调节通信系统中的信号增益和衰减。

数字电位器常见问题及应用经验总结

数字电位器常见问题及应用经验总结

对于设计人员而言,数字电位器正变得越来越重要,它们具有很多优点,但也存在很多限制。

下面比较机械电位器,数字电位器的共同点和区别,并由此帮助读者了解如何使用数字电位器。

电位器的出现有很长的历史,它以各种方式应用在广泛的领域,如常数调整和测量领域。

最常见的莫过于设定和微调电阻值来微调电路,设置电平和调整增益等。

电位器也被用来设计机器人和工业设备中的位置反馈。

针对电位器需要考虑的各个方面,需针对特定应用的各种需求来设置。

如电位器上的最大电压,各臂所能提供的最大电流,能允许消耗的最大功率以及最需要考虑的电阻问题。

从功率到噪声的各个方面。

单个电阻的误差通常有+/-20%到+/-5%,温度也会造成电阻值的漂移,所以需要考虑电位器的精度,线性,单调性与否,是否考虑设计中其它因素。

比如人耳对声音的频率响应将比较重要。

断电与加电时电阻的变化,成本和体积,还有可靠性如装配,潮湿等。

在爱迪生一千多项的发明当中,电位器总是为人们所遗忘。

它是在十九世纪七十年代被发明并应用在开关中。

如图一所示。

经一百年来,随着材料及外形的改变,机械电位器在一些初级的应用中受到极大的关注。

无可置疑机械电位器和数字电位器有许多区别,而它们的共性却令人惊讶。

其中最大相同就是它们都具有可调性,能提供大范围的端到端电阻。

机械电位器可耐上千伏的高压,数字电位器受制于小体积通常电压在30伏以内。

机械电位器电阻容量也比数字电位器大。

然而我们只要稍加考虑就可以解决上述问题。

机械电位器受振动发生电阻飘移的时候会给设计造成问题。

机械电位器的接触点因磨损,老化而造成电阻增大或失效,进而使机械电位器的性能无法预知。

数字电位器则无因机械结构造成上述的问题,可以经上万次开关操作而依然保持一致。

数字电位器通常采用多晶硅或薄膜电阻材料,具有低噪声,高精度和优良的温度系数。

机械电位器和数字电位器尺寸大小比对如图二所示。

数字电位器另一个显著优点是可编程性,它可以象EEPROM一样电压编程来调节电阻,可以取代电压跟随器,还可以象数模转换器一样来控制或设置电压电流。

数字电位器的原理与应用

数字电位器的原理与应用

数字电位器的原理与应用1. 什么是数字电位器数字电位器(Digital Potentiometer)是一种可编程的电阻器,它可以模拟传统的机械电位器,但具有更高的精度和可编程功能。

数字电位器提供了一种数字控制方式来改变电阻值,使得电路调节更加灵活和精确。

2. 数字电位器的原理数字电位器的原理基于模拟信号转换为数字信号的思想。

简单来说,数字电位器由电压调节器、控制逻辑和电阻网络组成。

2.1 电压调节器电压调节器是数字电位器的关键组成部分,它可以将输入的电压信号转换为有效的控制信号。

电压调节器可以将输入电压分成多个离散的电平,并通过控制逻辑来选择输出。

这种方式可以实现电阻值的精确调节。

2.2 控制逻辑控制逻辑是数字电位器中的控制中心,它接收外部的数字控制信号,并将其转换为电阻值的变化。

控制逻辑通常由微控制器或FPGA实现,可以根据需要编程,实现各种功能和算法。

2.3 电阻网络电阻网络是数字电位器的核心组成部分,它由一系列离散的电阻单元组成。

电阻网络可以通过调整电阻单元的开关状态来改变总的电阻值。

通过控制逻辑的指令,电阻网络可以实现电阻值的调节。

3. 数字电位器的应用数字电位器由于其可编程性和精确性,在各种领域得到了广泛的应用。

以下是几个常见的应用领域:3.1 模拟信号调节数字电位器可以用于模拟电路中的信号调节,如音频放大器、滤波器等。

通过调整数字电位器的电阻值,可以实现对信号的增益、频率响应等参数的调节,从而实现音频信号的精确控制。

3.2 数字控制电路数字电位器可以用于数字控制电路中,如数字电源、自动控制系统等。

通过数字电位器的电阻值调节,可以精确控制电路的参数,实现高精度的数字控制。

3.3 数字电位器阻值校准数字电位器可用于阻值的校准和测试。

在一些测量系统中,数字电位器可以用来调节信号源的输出,以完成对测量设备的校准。

数字电位器的可编程性保证了校准过程的精确性和稳定性。

3.4 数据传输数字电位器也可用于数据传输中,如数字通信、存储器等。

详解数字电位器的原理与应用

详解数字电位器的原理与应用

详解数字电位器的原理与应用数字电位器(DigitalPotenTIometer)亦称数控可编程电阻器,是一种代替传统机械电位器(模拟电位器)的新型CMOS数字、模拟混合信号处理的集成电路。

数字电位器采用数控方式调节电阻值的,具有使用灵活、调节精度高、无触点、低噪声、不易污损、抗振动、抗干扰、体积小、寿命长等显著优点,可在许多领域取代机械电位器。

数字电位器一般带有总线接口,可通过单片机或逻辑电路进行编程。

它适合构成各种可编程模拟器件,如可编程增益放大器、可编程滤波器、可编程线性稳压电源及音调/音量控制电路,真正实现了“把模拟器件放到总线上”(即单片机通过总线控制系统的模拟功能块)这一全新设计理念。

目前,数字电位器正在国内外迅速推广,并大量应用于检测仪器、PC、手机、家用电器、现代办公设备、工业控制、医疗设备等领域。

1.基本工作原理由于数字电位器可代替机械式电位器,所以二者在原理上有相似之处。

数字电位器属于集成化的三端可变电阻器件其等效电路,如图l所示。

当数字电位器用作分压器时,其高端、低端、滑动端分别用VH、VL、VW表示;而用作可调电阻器时,分别用RH、RL和RW表示。

图2所示为数字电位器的内部简化电路,将n个阻值相同的电阻串联,每只电阻的两端经过一个由MOS管构成的模拟开关相连,作为数字电位器的抽头。

这种模拟开关等效于单刀单掷开关,且在数字信号的控制下每次只能有一个模拟开关闭合,从而将串联电阻的每一个节点连接到滑动端。

数字电位器的数字控制部分包括加减计数器、译码电路、保存与恢复控制电路和不挥发存储器等4个数字电路模块。

利用串入、并出的加/减计数器在输入脉冲和控制信号的控制下可实现加/减计数,计数器把累计的数据直接提供给译码电路控制开关阵列,同时也将数据传送给内部存储器保存。

当外部计数脉冲信号停止或片选信号无效后,译码电路的输出端只有一个有效,于是只选择一个MOS管导通。

数字控制部分的存储器是一种掉电不挥发存储器,当电路掉电后再次上电时,数字电位器中仍保存着原有的控制数据,其中间抽头到两端点之间的电阻值仍是上一次的调整结果。

数字电位器应用实例

数字电位器应用实例

数字电位器应用实例数字电位器是一种常见的电子元件,广泛应用于各种电子设备中。

它通过改变电阻器的阻值来调节电路中的电压或电流,具有精密调节、稳定性好等特点。

下面将介绍几个数字电位器的应用实例,以展示其在不同领域中的作用。

首先,数字电位器在音频调节中起着重要的作用。

比如在音响系统中,数字电位器可以用于调节音量大小。

用户只需要转动数字电位器,就能够改变电路中的电阻值,从而改变声音的音量大小。

这使得用户可以方便地根据自己的需求来调整音量,提高音响系统的使用体验。

其次,数字电位器还可以用于调节光的亮度。

在LED照明系统中,数字电位器可以用来调节LED灯的亮度。

通过改变数字电位器的电阻值,可以控制LED灯的电流大小,从而改变亮度。

这种调节方式比传统的调光开关更加精确,可以满足不同场合对照明亮度的要求。

此外,数字电位器还可以用于电子设备的校准和调试。

比如在温度传感器中,数字电位器可以用来校准温度测量的准确性。

通过调节数字电位器的电阻值,可以模拟不同的温度值,并与实际测量值进行对比,以判断温度传感器是否工作正常。

这种方式可以提高温度测量的精度和可靠性。

另外,数字电位器还可以应用于电子设备的电源管理中。

比如在电池充电管理系统中,数字电位器可以用来调节电流大小,以实现对电池的充电和放电控制。

通过调节数字电位器的阻值,可以调整电路中的电压和电流,从而实现对电池的有效管理,延长电池的使用寿命。

总之,数字电位器作为一种重要的电子元件,在各个领域中有着广泛的应用。

无论是在音频调节、光控调节、设备校准还是电源管理等方面,数字电位器都发挥着重要的作用。

通过了解数字电位器的原理和应用场景,我们可以更好地理解其作用,并在实际应用中灵活运用,实现更好的控制和调节效果。

希望本文对读者有所启发,引发对数字电位器应用的更多思考和研究。

数字电位器作用

数字电位器作用

数字电位器作用
数字电位器是一种常见的电子元件,它在电路中起到调节电阻值的作用。

它可以通过调节旋钮或滑动杆来改变电阻值,从而控制电路中的电流或电压。

数字电位器的作用十分重要,它广泛应用于各种电子设备和系统中。

数字电位器可以用于控制音频设备的音量。

我们常常使用手机、电视、音响等设备来收听音乐或观看电影,而数字电位器正是控制这些设备音量的关键。

通过调节数字电位器,我们可以增大或减小音量,使音乐或影片的声音更适合我们的需求。

数字电位器还可以用于调节光亮度。

在一些电子产品中,比如电视、显示器、电子灯等,数字电位器可以控制光亮度的高低。

通过调节数字电位器,我们可以使屏幕的亮度更加明亮或更加柔和,以满足不同环境下的观看需求。

数字电位器还常用于控制温度。

在一些家用电器中,比如空调、加热器等,数字电位器可以调节设备的温度。

通过调节数字电位器,我们可以使室内温度升高或降低,以获得舒适的生活环境。

数字电位器还可以用于控制电子设备的频率。

在无线电通信领域,数字电位器可以通过调节频率来实现信号的调制和解调。

它在无线电收发器、调频电台等设备中起到了至关重要的作用。

数字电位器在电子设备和系统中发挥着重要的作用。

它可以用于调
节音量、光亮度、温度和频率等参数,以满足人们的各种需求。

无论是在家庭生活中还是在工业生产中,数字电位器都扮演着不可或缺的角色。

它的出现使得我们的生活更加便利,也推动了科技的发展和进步。

什么是电子电路中的数字电位器它们有什么作用

什么是电子电路中的数字电位器它们有什么作用

什么是电子电路中的数字电位器它们有什么作用在电子电路中,数字电位器是一种用于调节电路中电压或电流的元件。

它们被广泛应用于各种电子设备中,如通信设备、计算机和消费类电子产品。

数字电位器通过改变电阻值来调节电路的参数,从而实现电路的功能控制和调整。

数字电位器通常由一个调节旋钮和一组电子开关组成。

调节旋钮用于手动控制电位器的数值,而电子开关用于根据输入信号或电路需求自动调节电位器的数值。

这些开关可以实现数字信号的转换和控制,使得电路可以根据需要实现不同的功能。

数字电位器可以分为单通道和多通道两种类型。

单通道数字电位器只有一个可调节的输出通道,而多通道数字电位器则可以同时调节多个输出通道。

多通道数字电位器的应用范围更广,可以同时调节多个电路参数,提高电路的灵活性和功能性。

数字电位器在电子电路中有许多重要的作用。

以下是其中几个常见的应用:1. 电压调节:数字电位器可以用于调节电路中的电压,使得电路可以适应不同的电源电压或需求。

通过改变电位器的数值,可以调整电压引脚之间的电压差,从而实现对电路功能的控制。

2. 电流控制:数字电位器可以用于控制电路中的电流大小。

通过改变电位器的数值,可以调节电流引脚之间的电阻,从而改变电路中的电流流动。

这在一些需要对电流进行精确控制的应用中非常重要。

3. 信号选择:数字电位器可以用于选择不同的输入信号或输出信号。

通过改变电位器的数值,可以选择不同的输入通道或输出通道,从而实现对信号的选择和切换。

4. 数字转换:数字电位器可以用于将模拟信号转换为数字信号或数字信号转换为模拟信号。

通过改变电位器的数值,可以将输入信号转换为数字形式进行处理或将数字信号转换为模拟形式进行输出。

5. 参数调节:数字电位器可以用于调节电路中的各种参数,如频率、幅度、相位等。

通过改变电位器的数值,可以实现对电路参数的精确控制,从而满足不同的应用需求。

总之,数字电位器在电子电路中具有重要的作用。

它们通过调节电路的电压、电流和信号选择等功能,实现了电子设备的灵活性和可控性。

数字电位器知识

数字电位器知识

数字电位器的应用(整理转摘)1用数字电位器替代机械式电位器数字电位器的写次数很容易达到50000次,而机械式电位器的调节次数一般只有几千次,甚至几百次。

目前市场上提供的数字电位器的分辨率在32级(5位)到256级(8位)甚至更高。

对于像LCD显示器对比度调节或其它动态范围要求不高的应用,设计时可以选用低分辨率、低成本的数字电位器。

而高分辨率的数字电位器则被广泛用于动态范围高达90dB的音频和Hi-Fi设备中。

数字电位器具有易失和非易失两种类型,非易失数字电位器与机械式电位器很相似,它们无论上电与否都可以保持电阻值设置,特别是MAX5427/MAX5428/MAX5429数字电位器,更具有独特的编程特性,每个器件带有一个一次性编程(OTP)存储器,能够在上电复位(POR)时将抽头位置设置在用户定义的数值,且抽头位置保持可调,但在上电时总是返回到所设置的位置。

另外,利用OTP功能也可以关闭接口操作,使抽头位置始终保持在所希望的地方。

这样,器件就像一个阻值固定的分压器,而不是电位器。

大多数数字电位器可以通过传统的I2C或SPI接口进行编程,有些器件则采用上/下脉冲计数调节方式。

采用数字电位器有很多优势,首先,这些电位器对灰尘、污垢和潮湿的环境不敏感,而这些因素对于机械式电位器来说则是致命的。

数字电位器几乎能够在任何电子系统中替代老式的机械电位器,而不仅仅是在音频产品,图1列出了数字电位器的几种典型应用。

2数字电位器在音频设备中的应用与机械式电位器相比,数字电位器的另一优势是可以直接安装在电路板的信号通道上,而不需要复杂、昂贵的机械与电控的整合方案。

数字电位器可提高电子噪声抑制能力,不存在机械电位器连线拾取的干扰信号。

传统的数字电位器只是简单地直接取代机械式电位器,它们具有相同的使用方法,因而无需做过多的说明。

然而,对于特殊用途的器件,(如低成本立体声音量控制),使用时可能会出现一些特殊问题。

数字电位器可以提供对数和线性变化函数,对数变化的数字电位器常用于Hi-Fi音频设备中的音量调节,可为具有非线性响应特性的人耳建立一个线性变化的音量控制。

数字电位器是啥

数字电位器是啥

数字电位器是啥数字电位器是啥数字电位器(DigitalPotenTIometer)亦称数控可编程电阻器,是一种替代传统机械电位器(仿照电位器)的新式CMOS数字、仿照混合信号处理的集成电路。

数字电位器由数字输入操控,发作一个仿照量的输出。

根据数字电位器的纷歧样,抽头电流最大值能够从几百微安到几个毫安。

数字电位器选用数控办法调度电阻值的,具有运用活络、调度精度高、无触点、低噪声、不易污损、抗振荡、抗烦扰、体积小、寿数长等显着利益,可在很多范畴替代机械电位器。

数字电位器WDH22也称为非触摸式电位器,是一种用数字传感器查看转轴的视点改动,并将这个视点改动用多种信号类型反响输出的器材。

数字电位器WDH22与机械式电位器FCP22E比照,具有可程控改动有用电气视点及输出计划、耐哆嗦、噪声小、寿数长等利益,因而,已在主动查看与操控、智能仪器外表、船只设备、风力发电等很多首办法域得到成功运用。

数字电位器撤消了电阻基片和电刷,是一个半导体集成电路。

其利益为:调度精度高;没有噪声,有极长的作业寿数;无机械磨损;用于主动操控系统能够完毕对视点方位的精确丈量,也能够运用输出反响信号与视点改动成线性份额的特性,经过驱动转轴完毕输出调度功用。

数字电位器通常由视点传感器电路、数据处理电路、信号改换电路构成。

视点传感器电路是数字电位器的首要构成有些,它将视点改动量搜集改换成随视点改动的仿照信号。

数据处理电路是一种分外的模/数改换电路,改换后的数字量代表0~360deg;的视点值。

信号改换电路根据需求将视点值改换成仿照量(电压/电流)信号或串行数字信号输出。

数字电位器通常带有总线接口,可经过单片机或逻辑电路进行编程。

它适宜构成各种可编程仿照器材,如可编程增益拓宽器、可编程滤波器、可编程线性稳压电源及腔调/音量操控电路,真实完毕了把仿照器材放到总线上(即单片机经过总线操控系统的仿照功用块)这一全新计划理念。

因为数字电位器可替代机械式电位器,所以二者在原理上有相似的本地。

x9c103s 用法 -回复

x9c103s 用法 -回复

x9c103s 用法-回复什么是x9c103s?x9c103s是一种数字电位器(IC),它可以用于模拟信号控制和存储器读写电路。

x9c103s采用串行接口进行通信,并且可以模拟一个可调电阻,具有多种应用和用途。

一般情况下,x9c103s以DIP封装形式出售,有8个引脚,并且需要外部电源提供供电。

它还可以工作在2.5V至5.5V的电源范围内,并且具有低功耗特性,使其适用于各种电子设备和应用。

如何使用x9c103s?1. 连接电源:首先,将x9c103s的引脚连接到电源,其中引脚1和引脚5用于供电。

引脚1需要接地,而引脚5需要连接电源正极。

确保电压在允许的范围内。

2. 连接串行接口:x9c103s使用串行接口进行通信。

引脚2和引脚3用于与控制器或微处理器之间的数据传输。

引脚2(SDI)接收串行数据输入,引脚3(SDO)发送串行数据输出。

3. 连接模拟信号输入和输出:x9c103s具有模拟信号输入和输出引脚,分别为引脚6(A、Ax)和引脚7(Bx)。

根据需要,将模拟输入和输出引脚连接到其他电路中,以便进行模拟信号控制。

4. 配置和操作:使用控制器或微处理器来配置和操作x9c103s。

通过串行接口发送特定的命令和数据,可以设置电位器的初始阻值,或者以增量或减量的方式调整电位器阻值。

可以根据应用的需求,选择单端或双端操作模式。

5. 监测反馈:在操作x9c103s时,可以使用串行输出引脚(引脚3)来获取电位器的当前阻值。

通过监测此输出,可以实时了解电位器的状态,并相应地调整控制器或其他电路。

6. 保存参数:x9c103s还具有非易失性存储器功能,可以在断电后保持电位器的当前阻值。

这在需要长期保存设置或参数时非常有用。

x9c103s的应用领域:由于x9c103s具有可调电阻的功能,它在许多应用领域中都非常有用。

以下是几个常见的应用场景:1. 音频设备:x9c103s可以用于音频设备中,例如音量控制。

通过控制电位器的阻值,可以调整音频信号的增益或衰减,实现音量控制。

3.4 数字电位器

3.4 数字电位器

X9AX5400 1
MAX5401
X9110
1
数字接口 按键 脉冲线 脉冲线
I2C 接口 SPI
SPI
总阻值
抽头数 易失性
10kΩ
32

(2.1/5/10/50) kΩ 64

(10/50) kΩ
100

(2/10/50) kΩ
64

(50/100) kΩ
256 非
电源电压 ±5V
端位置是跨步变化的,由模拟开关闭合位置决定。模拟开关闭合位置受数字接口控制,因此称数字电位器。数字电位
器内的电阻是由半导体制成,阻值精度低(误差为 15%~20%), 但各电阻阻值一致性好,相对误差<1%。
数字电位器在应用中有 2 种接法:可调分压器、可调电阻器。在可调分压器应用中,滑动端的负载电阻通常很大,滑 动端分压取决于抽头位置比值,与数字电位器总阻值无关,数字电位器总阻值无关。在可调电阻器中,数字电位器作 为可调电阻,其阻值为总阻值乘以抽头位置比,阻值精度与数字电位器阻值精度相当。
滑动端位置建立时间:>0.3uS。 5. 滑动端输出电流:输出电流通常只有±1mA。有的数字电位器具有输出缓冲器,输出电流可达到±20mA 6. 滑动端电阻:即模拟开关电阻,数值在几十Ω到一百几十Ω。
五. 数字电位器典型产品(直线型)
类型 步 进 式 数 置 式
型号
通道数
X9511
1
MCP4011 1
2. 数置式,步进式 数置式数字电位器的抽头位置控制是通过写入位置代码 实现的,数字接口形式为 SPI、I2C 等。 步进式数字电位器的抽头位置是脉冲控制的,管脚 1 个脉冲使抽头步进 1 个位置。数字接口形式 为按键式、脉冲线式等。

数字电位器使用方法

数字电位器使用方法

数字电位器使用方法数字电位器是一种常用的传感器,它采用了数字技术,能够检测出变化中的物体的电位变化,给出一个准确的数字值,常用于控制系统中。

这类电位器有很多种类型,主要有单通道数字电位器、分压数字电位器和带ADC的电位器。

二、工作原理数字电位器的工作原理是通过一个可调的电位器来检测变化中的电位变化,然后通过一个外部读数装置将变化的电位数字值进行采集,然后再将读数数字值通过一定的转换规则转换成一个准确的数字值。

三、通用参数数字电位器的技术参数是控制系统必不可少的要求,它的主要技术参数有量程、精度、分辨率、温度系数、工作电压和使用温度等。

前面提到的量程是指这类电位器的可检测的最小到最大的电位变化范围;精度是指在检测的数字值和实际的数值之间的差异;分辨率是指每次检测出的电位变化值的最小变化量;温度系数是指电位器在不同工作温度下对电位变化值的影响程度;工作电压是指使用数字电位器时电位器工作所需要的电源电压;使用温度是指电位器在工作时允许的最高温度。

四、安装方法数字电位器的安装主要包括安装环境的控制、接线、测量安装调试等,首先,在安装数字电位器之前,需要提前对环境进行控制,以确保检测准确度;其次,安装数字电位器时,要确保电位器的防水、防尘、防湿等的接线;然后用有源对地电源,对有源接点N、中间接点E和对地接点E进行接线,然后再把电源电压接入变压器;最后,进行测量安装调试,确保电位器检测的精度。

五、应用数字电位器主要用于控制系统中,它可以检测出变化中的物体的电位变化,给出一个准确的数字值,可以帮助控制系统更准确的检测变化,并为控制系统提供必要的数字值。

数字电位器的应用非常广泛,可以应用在机床控制、发动机燃油控制、空调系统控制等系统中。

六、功能特性数字电位器具有一些优秀的功能特性,主要有:(1)可以检测出精度高达0.01°,提供准确的数字值。

(2)电位器外壳采用金属材质,具有良好的防水防尘和抗腐蚀性能。

数字电位器在DC-DC变换器中的应用

数字电位器在DC-DC变换器中的应用

数字电位器在DC-DC变换器中的应用在升压和降压DC-DC变换器中,可以用数字电位器的工作达到对输出电压进行校准和调节的目的。

关键词:数字电位器 DC-DC变换器电压应用1 引言数字电位器(DCP)是数控电阻大小的器件,数控的接口方式有直接按键方式、三线接口方式(选片线、方向线、脉冲线)、SPI接口方式和I2C接口方式。

通常用于校准系统精度和控制系统参数的大小。

2 脉宽调制模式早上20世纪60年代,电源的开关调节首先应用在军用电源的设计中。

它的优势在于重量轻和效率高,可以控制均衡电量的加载,就是控制均衡电压的供给,通过高速动作的开关量的开和关来实现。

如图1所示,加载到电阻器上的平均电压Vo(avg)=(ton/T)×Vi,这种控制方法就称为脉宽调制模式。

本文概述在二种类型DC-DC变换器中数字电位器的应用,包括如何调节反馈电阻来获得输出电压。

点击此处查看全部新闻图片3 降压型DC-DC变换器图2所示为降压型DC-DC变换器的典型电路,当控制器IC感应到输出电压Vo太低时,启动通道上的晶体管Q给电感器L充电,同时也对电容器C充电,当输出电压V0上升到一个预定值时,控制器关闭通道上的晶体管Q,电感器L和电容器C上获取的能量通过肖特基二极管构成的回路自由释放,从电感器L到电容器C进行有效的能量传输会消耗一部分能量,因此加载在负载上的电压有所下降。

以TI公司的TPS62000型电路为例,如图3所示,它是低噪声同步降压型DC-DC变换器,内部采用电流模式PWM控制器,工作频率典型值为750kHz。

在关闭模式下,电流损耗可降低到1μA,非常适合于1节锂离子电池、2节到3节镍铬、镍氢电池或碱性电池。

2节电池供电时,输出最大电流为200mA;3节电池供电时,输出最大电流为600mA。

点击此处查看全部新闻图片TPS62000DGS的输出电压可调,通过调整反馈引脚FB的电压值来达到输出电压V0的变化,采用数字电位器来调节反馈引脚FB的电压。

数字电位器的基本原理及典型应用

数字电位器的基本原理及典型应用

数字电位器的基本原理及典型应用1. 引言数字电位器是一种常见的电子元件,用于调节电路中的电阻值。

它通过改变内部的电阻分配来实现对电路的调节。

本文将介绍数字电位器的基本原理及其在典型应用中的作用。

2. 数字电位器的基本结构数字电位器通常由可变电阻、编码器、数字控制电路和输出接口组成。

它的基本结构如下:•可变电阻:数字电位器内部包含一个可调节的电阻元件,其阻值可根据输入信号进行调节。

•编码器:数字电位器通过编码器将旋转的电位器位置转换为可以被控制电路理解的数字信号。

•数字控制电路:数字电位器内部包含一个数字控制电路,它接收编码器的信号并将其转换为相应的控制信号。

•输出接口:数字电位器通过输出接口将调节后的电阻值传递给外部电路。

3. 数字电位器的工作原理数字电位器的工作原理基于可变电阻的改变。

当旋转数字电位器时,编码器会通过与可变电阻相连的输出轴来检测旋转的位置,并将其转换为数字信号。

数字控制电路会接收这些编码器的信号,并将其转换为对应的控制信号。

控制信号会调节数字电位器内部的电阻分配,从而改变电阻值。

数字电位器通常使用二进制或十六进制编码器,因为这些编码器的输出可以直接与数字电路兼容。

通过使用不同的编码器,数字电位器可以提供不同的位数和调节精度。

4. 数字电位器的典型应用数字电位器在各种电子设备中有广泛的应用。

以下是几个典型的应用场景:4.1 电子设备的音量控制数字电位器经常用于电子设备的音量控制。

通过旋转数字电位器,用户可以调节音量大小。

数字电位器将旋转位置转换为相应的控制信号,从而改变音量电路中的电阻值,实现音量的调节。

4.2 微控制器的模拟输入数字电位器可以作为微控制器的模拟输入,用于接收来自外部传感器或电路的模拟信号。

通过数字电位器,微控制器可以调节电阻值以适应不同的输入信号范围,并对其进行数字化处理。

4.3 自动化系统的校准与控制在自动化系统中,数字电位器常用于校准和控制不同模块之间的参数。

数字电位器的基本原理及典型应用

数字电位器的基本原理及典型应用

数字电位器的基本原理及典型应用数字电位器,是采用CMOS 工艺制成的数字-模拟混合信号处理集成电路,亦称数控可编程电阻器,简称数控电位器(Digitally Controlled Potemi- ometers,DCP)。

数字电位器是一种新概电子器件。

它与机械电位器相比,具有许多优点,是机械电位器的理想替代品,可广泛用于可编程稳压器、仪器仪表、计算机、通信设备、家用电器、工业控制等领域。

数字电位器的基本原理数字电位器属于集成化的三端可变电阻器件,其等效电路如图2-5-1 所示。

当数字电位器作分压器使用时,其高端、低端、滑动端分别用Uh、UL、Uw表示;作可调电阻器使用时,分别用RH、RL、RW、(或H、L、W)来表示。

数字电位器的内部简化电路如图2-5-2 所示。

将n 只阻值相同或不同的电阻串联在UH、UL 端(亦称作RH、RL 端)之间,每只电阻的两端分别经过一个由CMOS 管或NMOS 管构成的模拟开关连在一起,作为数字电位器(DCP)的抽头。

这种模拟开关等效于单力单掷开关,且在数字信号的控制下每次只能有一个模拟开关闭合,从而将中联电阻的一个节点连接到滑动端。

数字电位器的原理示意图如图2-5-3 所示。

假定数字电位器为16 抽头,步进量为660&Omega;,滑动端每移动一步,输出电阻就增加660&Omega;。

考虑到滑动端无论处于哪一位置,都接着一只模拟开关,该模拟开关的电阻值就是滑动端电阻,也是数字电位器的起始电阻。

现假定滑动端电阻为100&Omega;,当滑动端移动15 步时就到达Rh 端,此时Rw 端与RL 端之间的输出电阻应为100&Omega;+660&Omega;x15 =10k&Omega;。

tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

数字电位器使用方法

数字电位器使用方法

数字电位器使用方法
数字电位器使用方法
数字电位器是一种常用的增量式位置调节器,是一种非常值得信赖的可靠性电子元件。

它主要结合电阻原理,依靠旋转的调节旋钮来改变电路的导通程度,从而实现设定值的调节。

使用数字电位器的首要步骤是把它连接到电源上,并用一支测试笔接在电源和“控制”端口之间,进而检测出电位器中电阻的大小。

随后,根据需要调节电阻值,可沿着旋转调节旋钮旋转,以此调节电阻。

数字电位器一般还搭载有显示屏,可以显示调节值,便于使用者在没有测试仪器的情况下,也可以了解电位器的调节情况,增强使用的便利性。

电位器的应用原理

电位器的应用原理

电位器的应用原理1. 电位器的概述电位器,也称作可变电阻,是一种可以调节电阻值的元件。

电位器通常由固定电阻和滑动触点组成,通过调节滑动触点的位置,可以改变电位器的电阻值。

电位器被广泛应用于各种电子设备中,其应用原理可以归纳为以下几个方面。

2. 数字电位器数字电位器是电位器的一种特殊形式,它通过数字信号来控制电位器电阻值的调节。

数字电位器通常由可编程逻辑控制器(PLC)或微控制器(MCU)控制,可以通过软件编程实现电阻值的变化。

数字电位器的应用范围非常广泛,包括音频设备、通信设备、电子测量仪器等。

在数字电位器的应用中,常见的原理包括以下几种: - 串行控制:通过串行接口(如I2C、SPI等)与主控设备进行通信,主控设备发送控制指令,数字电位器根据指令调节电阻值。

- 并行控制:通过并行输入信号进行电阻值调节,每个输入信号对应一个电位器的某个控制端,可以通过设置不同的输入信号组合来调节不同的电阻值。

- 存储器控制:数字电位器内部包含一个存储器单元,可以将电阻值存储在存储器中,然后根据需求读取存储器中的电阻值。

3. 模拟电位器模拟电位器是电位器的另一种常见形式,它通过模拟信号来控制电阻值的调节。

模拟电位器通常由旋钮或滑动触控方式进行调节,通过改变旋钮或滑动触点的位置,可以改变电位器的电阻值。

模拟电位器主要用于模拟电路中的信号调节和增益控制。

在模拟电位器的应用中,常见的原理包括以下几种: - 直接控制:通过直接旋转或滑动电位器旋钮或触点,改变电位器的电阻值,从而实现信号的调节和控制。

- 电压控制:将外部电压信号输入到电位器中,通过控制外部电压信号的大小来控制电位器的电阻值,实现对信号的增益控制。

4. 电位器的应用案例•音频设备:在音频设备中,电位器常用于音量控制。

通过调节电位器的电阻值,可以改变音频信号的强度,实现音量的调节。

此外,电位器还可以用于音频平衡控制和音调控制等。

•通信设备:在通信设备中,电位器常用于增益控制和灵敏度调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字电位器的应用
数字电位器介绍
简单的说,数字电位器由数字输入控制,产生一个模拟量的输出。

这个定义类似于数模转换器(DAC),所不同的是:DAC具有一个缓冲输出,大多数数字电位器没有输出缓冲器,因而不能驱动低阻负载。

依据数字电位器的不同,抽头电流最大值可以从几百微安到几个毫安。

因此,不论是普通电位器还是数字电位器,如果与低阻负载连接,都应保证在最恶劣的条件下,抽头电流不超出所允许的IWIPER 范围。

所谓“最恶劣的条件”发生在抽头电压VW接近于端电压VH,而且线路中没有足够限流电阻的情况下。

有些应用中,抽头流过较大的电流,这时应该考虑电流流经抽头时产生的压降,这个压降会限制数字电位器的输出动态范围。

数字电位器的应用
数字电位器的应用非常广泛,某些特定情况下可能需要增加元件以配合电路调整。

例如,数字电位器的端到端电阻一般为10~200K ,
而调整LED亮度时通常需要非常低的阻值。

针对这个问题,可以选用DS3906。

当DS3906外部并联一个固定105 的电阻时,可以提供70~102 的等效电阻,这种结构能够按照0.5 的步进值精确调节LED的亮度。

有些情况下还会需要特殊性能的数字电位器,例如对电压或电流进行温度补偿,光纤模块中对激光驱动器偏置的调节就是一个典型范例(见图1),温度补偿数字电位器MAX1858内部带有一个用EEPROM保存的查找表,校准值在查找表内按温度顺序排列。

数字电位器内部的温度传感器对温度进行检测,然后根据检测的温度值从查找表里得到对应的校准电阻。

非易失性是数字电位器常见的一个附加功能。

基于EEPROM 的非易失数字电位器在上电复位时可以保持在某个已知状态。

现有的EEPROM 技术可以很容易保证50000次的擦写次数,相对于机械式电位器,非易失数字电位器的可靠性更高。

一次性编程(OTP)数字电位器(如MAX5427-MAX5429),可以在编程后永久保存缺省的抽头位置。

与基于EEPROM的数字电位器一样,上电复位后,OTP 数字电位器初始化到已知状态。

但是一经编程,OTP数字电位器的上电复位状态不能够再更改。

数字电位器可以协助自动完成电源系统中电压或电流的校准,或用
于其他需要工厂校准的系统中。

手工调节的机械电位器相对耗时较大,而且存在很大的人为误差。

而数字电位器的电调节方式则可以简化生产流程,提高校准精度和可重复性。

另外,数字电位器的数控方式便于实现远程调试和校准,当系统需要对多个电压或电流进行校准时,可选用DS3904/DS3905非易失数字电位器(见图2),利用一个小尺寸IC可以替代3个机械电位器。

数字电位器也增加了电路板布线的灵活性,因为装配和维护都不需要工程人员直接接触器件。

OTP或者EEPROM写保护特性在系统校准等典型应用中非常实用。

DS4303不完全是一个数字电位器,它是一个基于采样保持的电压基准,具有简单的单引脚数字控制接口和紧凑的空间,也可以在生产线上完成类似的校正功能(见图3)。

校准时,DS4303输出电压跟
踪加在输入端的电压,直到由控制输入锁定。

锁定之后不管输入电压如何变化,输出锁定都不会变化,直到重新编程或断开电源。

断电后,最近一次锁定的电压值保存在EEPROM 中,每次上电时,输出电压回到设定值。

数字电位器的一种新型接口是按键接口,进一步补充了传统的串行接口(SPI、I2C、增/减控制等)。

MAX5457就利用了这样的按键接口,去抖动按键接口可以根据按键持续时间,形成不同的调整量,用来调整中心抽头的位置。

按键接口不需要微处理器,因此可以降低系统的复杂度。

去抖动按键接口尤其适用于音量控制。

针对音频应用的数字电位器经常有过零检测电路。

过零检测电路可以减少当中心抽头由一个位置调整到另一个位置时产生的听得见的“咔嗒”声。

工作时,在VL 大致接近VH之前,过零检测延迟中心抽头的变动。

许多过零检测电路也可以有一个最大抽头变动延迟时间以保证DC的应用和其他特殊应用要求。

小结
许多系统设计中仍然采用简单的易失性数字电位器,而针对特定应用的数字电位器和数字可变电阻提供了更多的功能。

无论是代替机械电位器,提高系统的可靠性或者提供宽温度范围的性能,消除系统微控制器,还是减少可以听得见的“咔嗒”声,数字电位器都可以体现它的应用价值。

相关文档
最新文档