统计学第七章、第八章课后题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学复习笔记
第七章参数估计
一、思考题
1.解释估计量和估计值
在参数估计中,用来估计总体参数的统计量称为估计量。估计量也是随机变量。如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2.简述评价估计量好坏的标准
(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。对同一总体参数的两个无偏估
计量,有更小方差的估计量更有效。
(3)—致性:是指随着样本量的增大,点估计量的值越来越接近被估总体
的参数。
3.怎样理解置信区间
在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。置信区间的论述是由区间和置信度两部分组成。有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。在公布调查结果时给出被调查人数是负责任的表现。这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4.解释95%的置信区间的含义是什么
置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。也就是说,无穷次重复抽样所得到的所有区间中有95% (的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5.简述样本量与置信水平、总体方差、估计误差的关系。
1.估计总体均值时样本量n为
其中:
E2
2.样本量n与置信水平1- a、总体方差•:、估计误差E之间的关系为
与置信水平成正比,在其他条件不变的情况下,置信水平越大,所 需
要的样本量越大;
与总体方差成正比,总体的差异越大,所要求的样本量也越大; 与与
总体方差成正比,样本量与估计误差的平方成反比,即可以接 受的估
计误差的平方越大,所需的样本量越小。
二、练习题
1. 从一个标准差为5的总体中采用重复抽样方法抽出一个样本 量为40的样本,样本均值为25。
1) 样本均值的抽样标准差C x 等于多少?
2) 在95%的置信水平下,估计误差是多少?
解:已知总体标准差(T =5,样本容量n =40,为大样本,样本均值 x =25,
(1 )样本均值的抽样标准差 (r x =乙=-^ =0.7906
V n V40
(2)已知置信水平1- a =95%得Z a /2 =1.96,
2. 某快餐店想要估计每位顾客午餐的平均花费金额,在为期 3 周的时间里选取49名顾客组成了一个简单随机样本。
1) 假定总体标准差为15元,求样本均值的抽样标准误差
2) 在95%的置信水平下,求估计误差。
如果样本均值为120元,求总体均值□的95%的置信区间。
已假定总体标准差为(T =15元,
则样本均值的抽样标准误差为 (T 廿 牛=芝 =2.1429
于是,允许误差是 E = Z /2丄 a "你 =1.96 X 0.7906=1.5496。
3)
U n V49