分式单元测试试卷(20200612095002)
八年级上册数学《分式》单元测试题附答案
故答案选B.
[点睛]本题主要考查分式的混合运算,熟练掌握分式的运算顺序和运算法则是解题的关键.
5.已知A=-0.32,B=-3-2,C=(- )-2,D=(- )0,比较A,B,C,D的大小关系,则有()
A.A<B<C<DB.A<D<C<BC.B<A<D<CD.C<A<D<B
故答案为:1.239×10-3.
[点睛]本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.
12.当A=2016时,分式 的值是_____.
[答案]2018
[解析]
= =A+2,
把A=2016代入得:
原式=2016+2=2018.
故答案为2018.
13.A,B互为倒数,代数式 的值为__.
[答案]1
11.已知空气的密度是0.001239 ,用科学记数法表示为________
[答案]1.239×10-3.
[解析]
[分析]
绝对值小于1的数也可以利用科学记数法表示,一般形式为A×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
[详解]0.001239=1.239×10-3
八年级上册数学《分式》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(每小题3分,共30分)
1.分式 , , 最简公分母是()
A.12B.24x6C.12x6D.12x3
2.下列各分式与 相等的是()
A. B. C. D.
3.分式 的值为0,则()
A.x=-3B.x=2C.x=-3或x=2D.x=±2
19.计算或化简:
(1) -2-1+| -1|;
初二数学分式单元测试卷附答案
初二数学分式单元测试卷附答案初二数学分式单元测试卷附答案一、填空题(每空2分,共20分)1.下列有理式:其中分式有________.2.当__________时,分式有意义.3.当__________时,分式的值为零.4.不改变分式的值,把分式的分子、分母各项系数都化为整数,得__________5.分式与的最简公分母是__________.6.化简:__________.7.若分式与的值相等,则x=__________.8.当m=__________时,方程的.根为.9.若方程有增根,则a=__________.10.甲、乙两人在电脑上合打一份稿件,4小时后甲另有任务,余下部分由乙单独完成又用6小时.已知甲打6小时的稿件乙要打7.5小时,若设甲单独完成需x小时,则根据题意可列方程__________.二、选择题(每题3分,共30分)11.如果分式,那么a、b满足()A.a=2bB.a≠一bC.a=2b且a≠一bD.a=一612.分式中,最简分式有()A.4个B.3个C.2个D.1个13.分式约分等于()A.B.C.D.14.若把分式中的x、y都扩大2倍,则分式的值()A.扩大为原来的2倍B.不变C.缩小为原来的2倍D.缩小为原来的4倍15.下列计算正确的是()A.B.C.D.16.计算的结果为()A.B.C.D.17.满足方程的的值是()A.0B.1C.2D.没有18.要使的值和的值互为倒数,则的值是()A.0B.一1C.D.1A.11B.3C.9D.1320.甲、乙两人承包一项任务,合作5天能完成,若单独做,甲比乙少用4天,设甲单独做需x天,则可列方程为()A.B.C.D.三、解答题(共50分)21.计算(每题4分,共16分)(1)(2);22.解分式方程(每题5分,共10分)(1)(2).23.(6分)先化简,再求值:其中a=一2,b=一1.24.(6分)已知x,y满足求的值.26.(6分)用价值为100元的甲种涂料与价值为240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,新涂料的总价值不变,求这种涂料每千克售价多少元?参考答案1.2.3.4.5.6.17.68.29.410.11.C12.C13.D14.B15.C16.A17.A18.B19.B20.C21.(1)2(2)(3)一(x+1)(4)322.(1)(2)x=1523.224.25.原来准备参加春游的学生有300人.26.17元.高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为()A.(,1)B.(,∞)C.(1,+∞)D.(,1)∪(1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为()A.(,1,1)B.(1,,1)C.(1,1,)D.(,,1)3.若,,,则与的位置关系为()A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为()A.B.C.D.5.设,则的大小关系是()A.B.C.D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为()A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是()A.B.C.D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是()A.B.C.D.9.已知,则直线与圆的位置关系是()A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是()A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是()A.B.C.D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则.14.已知,则.15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3cm,则球的体积是.16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足,且.若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,,分别是棱上的点(点不同于点),且为的中点.求证:(1)平面平面;(2)直线平面.21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBADBDCADBC二、填空题13.14.1315.16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵是直三棱柱,∴平面。
初中数学:《分式》单元测试(有答案)
初中数学:《分式》单元测试一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠05.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.8.akg盐溶于bkg水,所得盐水含盐的百分比是.9.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧天.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=时,该分式的值为0.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有,分式有(填序号).13.分式所表示的实际意义可以是.14.已知分式的值为0,则x的值是.15.若分式的值为负数,则x的取值范围是.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===,﹣===;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.三、判断正误(正确的打“√”,错误的打“×”)20.=;.(判断对错)21.==;.(判断对错)22.3x﹣2=..(判断对错)四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.25.当a取什么值时,分式的值是正数?26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).《第10章分式》参考答案与试题解析一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.【考点】分式有意义的条件.【专题】计算题.【分析】这几个式子有意义的条件是分式有意义,即分母一定不等于零.【解答】解:A、当x=0时,分母为零,分式没有意义,故选项错误;B、当x=±1时,分母为零,分式没有意义,故选项错误;C、无论x为何值,分母都不为零,分式有意义,故选项正确;D、当x=﹣1时,分母为零,分式没有意义,故选项错误.故选C.【点评】本题考查了分式有意义的条件:分母不为零,分式有意义.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m、n都扩大为原来的3倍可变为==.故选A.【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键.4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠0【考点】分式的基本性质.【分析】把等式右边的式子与左边相比较即可得出结论.【解答】解:∵等式的左边=,右边=,∴x+2≠0.故选D.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.5.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半【考点】分式的基本性质.【分析】把x,y换为2x,y代入所给分式化简后和原来分式比较即可.【解答】解:新分式为:==4•,∴分式的值是原来的4倍.故选C.【点评】本题考查了分式的基本性质的应用,解决本题的关键是得到把相应字母的值扩大或缩小后新分式的值.6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.【考点】分式的基本性质.【分析】要不改变分式的值,将分子分母中x的最高次项的系数变为正数,即要上下同乘﹣1.【解答】解:依题意得:原式=,故选D.【点评】此题利用分式的性质变形时必须注意所乘的(或所除的)整式上下相同,且不为0.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.【考点】列代数式(分式).【分析】根据题意利用路程÷时间=速度进而得出答案.【解答】解:∵小明th走了skm的路,∴小明走路的速度是:km/h.故答案为:.【点评】此题主要考查了列代数式,根据路程与速度和时间直接的关系得出是解题关键.8.akg盐溶于bkg水,所得盐水含盐的百分比是.【考点】列代数式(分式).【分析】利用盐的质量÷(盐+水)的质量可得答案.【解答】解:由题意得:×100%=,故答案为:.【点评】此题主要考查了由实际问题列出代数式,关键是正确理解题意.9.(2016春•泰兴市校级期中)某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧(﹣)天.【考点】列代数式(分式).【分析】根据“多用的天数=节约后用的天数﹣原计划用的天数”列式整理即可.【解答】解:这些煤可比原计划多用的天数=实际所烧天数﹣原计划所烧天数=(﹣)天.故答案为:(﹣).【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.本题的等量关系为:多用的天数=后来可用的天数﹣原计划用的天数.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.【考点】列代数式(分式);加权平均数.【分析】首先根据题意得出总环数除以总次数得出即可.【解答】解:∵a次投了m环,b次投了n环,∴则小华此次比赛的平均成绩是:.故答案为:.【点评】此题主要考查了列代数式以及加权平均数,正确利用加权平均数得出是解题关键.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=3时,该分式的值为0.【考点】分式的值;分式的定义;分式的值为零的条件.【分析】除法运算中,被除式为分子,除式为分母,即可写成分式的形式,要使分式的值为0,分式的分子为0,分母不能为0.【解答】解:将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为==;当3﹣m=0且m+2≠0,即m=3时,该分式的值为0.故答案为:,;3.【点评】考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有①③④⑥⑦,分式有②⑤(填序号).【考点】分式的定义;整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在式子:①﹣3x;②;③x y﹣7xy;④﹣x;⑤;⑥;⑦中,整式有①③④⑥⑦,分式有②⑤.故答案为:①③④⑥⑦;②⑤.【点评】本题考查整式、分式的概念,要熟记这些概念.13.分式所表示的实际意义可以是如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【考点】分式的定义.【专题】开放型.【分析】根据分式的意义进行解答即可.【解答】解:本题答案不唯一,如:如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【点评】考查了分式的定义,本题属开放性题目,答案不唯一,只要写出的题目符合此分式即可.14.已知分式的值为0,则x的值是﹣1.【考点】分式的值为零的条件.【分析】分式等于零时:分子等于零,且分母不等于零.【解答】解:由分式的值为零的条件得|x|﹣1=0且x2+x﹣2≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2+x﹣2≠0,得x≠﹣2或x≠1,综上所述,分式的值为0,x的值是﹣1.故答案为:﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为负数,则x的取值范围是x>1.5.【考点】分式的值.【分析】因为分子大于0,整个分式的值为负数,所以让分母小于0列式求值即可.【解答】解:由题意得:3﹣2x<0,解得:x>1.5.故答案为:x>1.5.【点评】考查了分式的值,分式的值为负数,则分式的分子分母异号.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.【考点】分式的值为零的条件;分式有意义的条件.【专题】计算题.【分析】根据分式无意义可以求出a,分式值为0求出b,进而求出a+b.【解答】解:当x=﹣2时,分式无意义,即﹣2+a=0,a=2;当x=4时,分式的值为0,即b=4.则a+b=6.故当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.故答案为6.【点评】分式有意义分母不为0,分式值为0,分子为0,分母不为0.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.【考点】分式的基本性质.【分析】(1)分式的分子、分母同乘以2b;(2)分子、分母同时乘以(x﹣2y);(3)分子、分母同时除以2a.【解答】解:(1)==.故答案是:2(a+b)b;(2)==.故答案是:(x﹣2y);(3)=3a﹣b.故答案是:2a.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.【考点】分式的基本性质.【分析】(1)根据分式的性质,分母的变化,可得分子;(2)根据分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变,分母的变化,可得分子.【解答】解:(1);(2);故答案为:a2+ab,x+y.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===﹣,﹣==﹣=;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.【考点】分式的基本性质.【分析】根据分式的性质,可得分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【解答】解:(2):﹣===﹣,﹣==﹣=;(3)分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【点评】本题考查了分式的性质,分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.三、判断正误(正确的打“√”,错误的打“×”)20.=;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断.【解答】解:分式的分子、分母同时乘以x(x≠0)可以得到.故答案应为“×”.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.==;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断即可.【解答】解:根据分式的基本性质得出:原式不正确,即==错误,故答案为:×.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.22.3x﹣2=.×.(判断对错)【考点】约分.【分析】根据分式有意义的条件进而得出.【解答】解:当3x+2≠0时,3x﹣2=,∴原式错误.故答案为:×.【点评】此题主要考查了分式的基本性质,熟练根据分式性质得出是解题关键.四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时:分母等于零;分式有意义时:分母不等于零;分式等于零时:分子等于零,且分母不等于零.【解答】解:(1)当分母x=0时,分式无意义;当分母x≠0时,分式有意义;当分子x+1=0,且分母x≠0时,分式值为0;(2)当分母x﹣1=0,即x=1时,分式无意义;当分母x﹣1≠0,即x≠1时,分式有意义;当分子x+3=0且分母x﹣1≠0,即x=﹣3时,分式值为0.【点评】本题考查了分式的值为零的条件、分式有意义的条件.注意:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.【考点】分式的值.【分析】(1)将a=﹣2代入,列式计算即可求解;(2)先化简,再将x=﹣2,y=2代入化简后的式子,列式计算即可求解.【解答】解:(1)∵a=﹣2,∴==﹣8;(2)==﹣,∵x=﹣2,y=2,∴原式=1.【点评】本题考查了分式的值,约分.分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.25.当a取什么值时,分式的值是正数?【考点】分式的值.【分析】根据分式的值是正数得出不等式组,进而得出x的取值范围.【解答】解:∵分式的值是正数,∴或,解得a<﹣1或a>3.故当a<﹣1或a>3时,分式的值是正数.【点评】此题主要考查了分式的值以及不等式组的解法,得出分子与分母的符号是解题关键.26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).【考点】分式的基本性质.【分析】(1)先将分母按字母a进行降幂排列,添上带负号的括号,再根据分式的符号法则,将分母的负号提到分式本身的前边;(2)先将分子、分母均按字母y进行降幂排列,并且都添上带负号的括号,再根据分式的基本性质,将分子、分母都乘以﹣1.【解答】解:(1)==;(2)==.【点评】本题考查了分式的基本性质及分式的符号法则,解题的关键是正确运用分式的基本性质.规律总结:(1)同类分式中操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式符号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).【考点】分式的基本性质.【分析】(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.【解答】解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.【点评】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).【考点】分式的基本性质.【分析】(1)把分式的分子、分母同时乘以10即可得出结论;(2)把分式的分子、分母同时乘以100,再同时除以5即可.【解答】解:(1)分式的分子、分母同时乘以10得,=;(2)分式的分子、分母同时乘以100得,==.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.。
数学八年级上册《分式》单元测试卷(附答案)
故答案为: .
[点睛]本题考查了数轴、分式方程的应用,弄清题意,找准等量关系正确列出方程是解题的关键.
18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
[答案]28
[解析]
设这种电子产品的标价为x元,
[详解]∵ •|m|= ,
∴|m|=1或 ∴m= 1,m=4
∵ ∴m -1,
∴m=1或4
故答案为1或4
[点睛]此题考查了分式的值不为0的条件,以及绝对值等知识,熟练掌握相关知识是解题关键.
15.已知关于x的方程 =3的解是非负数,则m的取值范围是________.
[答案]m≥﹣9且m≠﹣6
[解析]
[分析]
故答案为D
[点睛]本题考查的知识点是分式的性质,解题关键是熟记分式的性质:分式的分子分母都乘或除以同一个不为0的整式,分式的值不变.
6.化简 的结果为()
A. ﹣ B. ﹣yC. D.
[答案]D
[解析]
[分析]
先因式分解,再约分即可得.
[详解]
故选D.
[点睛]本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
[详解](1)原式=A2﹣4A B+4B2﹣2B2+4A B=A2+2B2;
(2)原式= +(A+2﹣ )
=
= .
[点睛]本题考查了整式的混合运算和分式的混合运算法则,能正确根据整式和分式的运算法则进行化简是解此题的关键.
20.解分式方程:
[详解]解:设乙队单独施1个月能完成总工程 ,
数学八年级上册《分式》单元检测题带答案
[答案]≠
[解析]
[分析]
根据分母不等于0计算即可.
详解]∵2A+3≠0,
∴A≠-1.5
[点睛]本题考查了分式有意义 条件,是基础题.
11.当x=________时,分式 的值为1.
[答案]
[解析]
由题意得:4x+3=x-5,解得:x= ,
当x= 时,分母x-5≠0,原分式有意义,
.
故选D.
[点睛]没有工作总量的可以设出工作总量,由工作时间=工作总量÷工作效率列式即可.
二.填空题(每小题3分,共15分)
9.扫描隧道显微镜发明后,世界上便诞生了一门新学科,就是“纳米技术”已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为米;
[答案]
[解析]
绝对值<1的正数也可以利用科学记数法表示,一般形式为A×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.000 000 052=5.2×10﹣8
解得x=3,将检验当x=3时最简公分母 ,所以x=3是分式方程的增根,方程无解
点睛:解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时不要漏乘不含未知数的项﹣1.
五.列方程解应用题(7分)
23.列方程或方程组解应用题:
京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 .小王用自驾车方式上班平均每小时行驶多少千米?
初中数学-分式单元测试题及答案(有答案)
根据题意得:
………………………………………4分
解得:x=1.8
经检验:x=1.8是原方程的解
答:该市今年居民用水的价格为2.25元/m3…………………………………7分
5.小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时?
解:设规定日期是x天,则甲队独完成需要x天,乙队独完成需要(x+3)天,
由题意得:
+ =1
解之得:x=6
经检验:x=6是原方程的根且符合题意
∴原方程的根是x=6
答:规定日期是6天
4、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.
去分母:方程两边同乘以(x-7)(x-1),
得:(x-3)(x-7)-(x-5)(x-1) = (x-7)(x-1)-(x2-2)
去括号:x2-10x+21-x2+6x-5 = x2-8x+7-x2+2
合并同类项:-4x+16 = -8x+9
移项:-4x+8x = 9-16
合并同类项:4x = -7- ]+1
= ÷ +1
= × +1
= +1
《分式与分式方程》单元测试卷含答案精选全文完整版
可编辑修改精选全文完整版《分式与分式方程》单元测试卷班级:姓名:得分:一.选择题(共10小题)1.(2020•衡阳)要使分式有意义,则x的取值范围是()A.x>1B.x≠1C.x=1D.x≠0 2.(2020•雅安)分式=0,则x的值是()A.1B.﹣1C.±1D.0 3.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=4.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.5.(2016•来宾)当x=6,y=﹣2时,代数式的值为()A.2B.C.1D.6.(2020•随州)÷的计算结果为()A.B.C.D.7.(2020•天津)计算+的结果是()A.B.C.1D.x+1 8.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.9.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3B.1C.0D.﹣1 10.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59二.填空题(共10小题)11.(2020•柳州)分式中,x的取值范围是.12.(2019•内江)若+=2,则分式的值为.13.(2020•河池)方程=的解是x=.14.(2020•济南)代数式与代数式的值相等,则x=.15.(2020•潍坊)若关于x的分式方程+1有增根,则m=.16.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.17.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.18.(2017•沈阳)•=.19.(2020•济宁)已知m+n=﹣3,则分式÷(﹣2n)的值是.20.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.三.解答题(共7小题)21.(2020•宜宾)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).22.(2020•西宁)先化简,再求值:,其中.23.(2020•郴州)解方程:=+1.24.(2019•西宁)若m是不等式组的整数解,解关于x的分式方程+1=.25.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?26.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?27.(2020•山西)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.参考答案一.选择题(共10小题)1.B;2.A;3.D;4.D;5.D;6.B;7.A;8.B;9.C;10.B;二.填空题(共10小题)11.x≠2;12.﹣4;13.﹣3;14.7;15.3;16.﹣=2;17.x=1;18.;19.;20.a≤4且a≠3;三.解答题(共7小题)21.;22.;23.;24.;25.;26.;27.三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;。
八年级上册数学《分式》单元测试题(带答案)
[答案]B
[解析]
[详解]解:去分母得:
由分式方程无解,得到 即
把 代入整式方程得:
故选B.
5.一份工作,甲单独做需A天完成,乙单独做需B天完成,则甲乙两人合作一天的工作量是()
A.A+BB. C. D.
[答案]D
[解析]
[分析]
甲、乙合做一天的工作量=甲一天的工作量+乙一天的工作量,把相关数值代入即可.
15.已知 ,则 =_____.
16.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他 步行速度为_____千米/小时.
三.解答题(共72分,共8小题)
17.解下列分式方程:
(1) ;
(2) .
18.化简求值: ,其中x=1.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
参考答案
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以
C.分子与分母同时乘 D.分子与分母同时除以
[答案]B
[解析]
[分析]
把 中的分母利用平方差因式分解,再根据分式的基本性质即可解答.
[详解]根据分式的基本性质可得:
∴ = × ,
解得x=27,
经检验x=27是原方程的解,且符合题意.
即:小王用自驾车方式上班平均每小时行驶27千米.
故答案选:B.
[点睛]本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
人教版数学八年级上册《分式》单元测试题带答案
解得:x=28.
经检验,x=28是原方程的解.
【解析】
【分析】根据分式值为0 条件,分子为0分母不为0列式进行计算即可得.
【详解】∵分式 的值为零,
∴ ,
解得:x=1,
故选B.
【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.
3.如果分式 的值为0,则x的值是
A. 1B. 0C.-1D. ±1
【答案】A
【解析】
请你解决如下问题:求分式 的取值范围.
【答案】
【解析】
试题分析:利用配方法可得x2-4x+5≥1,则可得0< ≤1,把所求范围的分式适当变形即可求出它的范围.
试题解析:x2-4x+5=x2-4x+4+1=(x-2)2+1,(x-2)2≥0,
∴x2-4x+5≥1,
∴0< ≤1,
∴1<1+ ≤2,
∵ = =1+ ,
【答案】
【解析】
原式= .
18.若关于若关于x的分式方程 的解为正数,那么字母a的取值范围是___.
【答案】a>1且a≠2
【解析】
【详解】分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,
根据题意得:a﹣1>0,解得:a>1.
又当x=1时,分式方程无意义,∴把x=1代入x=a﹣1得a=2.
∴要使分式方程有意义,a≠2.
13.已知x为正整数,当时x=________时,分式 的值为负整数.
14.我国医学界最新发现的一种病毒其直径仅为0.000512mm,这个数字用科学记数法可表示为________mm.
数学八年级上册《分式》单元检测卷(带答案)
17.已知A2-6A+9与(B-1)2互为相反数,则式子 ÷(A+B)的值是_______.
18.定义新运算:对于任意实数A,B(其中A≠0),都有A B= ,等式右边是通常的加法、减法及除法运算,比如:2 1= =0.若x 2=1(其中x≠0),则x的值是________.
19.计算或化简:
(1)(-2016)0-(-2)-2-( )-3-(-3)2;
(2) ;
(3) .
[答案](1)- ;(2) ;(3) .
[解析]
分析:(1)按照0指数幂、负整数指数幂、乘方的意义逐项计算即可;
(2)、(3)先把括号里通分化简,再根据除法法则把除法转化为乘法,然后把分子、分母分解因式约分化简即可.
[答案]A
[解析]
[分析]
根据分式的运算法则逐一作出判断
[详解]A、 ,故本选项错误;
B、 ,故本选项正确;
C、 ,故本选项正确;
D、 ,故本选项正确.
故选A.
8.分式方程 的解为()
A.x=0B.x=3
C.x=5D.x=9
[答案]D
[解析]
试题分析:方程两边同乘以x(x-3)可得2x=3(x-3),解得x=9,经检验x=9是分式方程的解,故答案选D.
21.(1)先化简,再求值: ,其中x=1;
(2)先化简,再求值: ,从不大于4的正整数中,选择一个合适的值代入x求值.
[答案](1) ,2(2)取x=4,原式=
[解析]
试题分析:(1)通分,化简,代入求值.
(2)通分,化简,代入求值.
试题解析:
(1)原式= ,
当x=1时,原式=2.
新人教版八年级数学上册分式单元测试题及答案
新人教版八年级数学(上)分式单元测试姓名: 分数:一、选择题(每题3分,共30分)1. 下列各式:()2221451, , , 532x x y x x xπ---其中分式共有( ) A .1个 B .2个 C .3个 D .4个2.下列计算正确的是( )A.m m m x x x 2=+B.22=-n n x xC.3332x x x =⋅D.264x x x -÷=3. 下列约分正确的是( )A .313m m m +=+B .212y x y x -=-+C .123369+=+a b a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( ) A.y x 23 B.223y x C.y x 232 D.2323yx 5.计算xx -++1111的正确结果是( ) A.0 B.212x x - C.212x - D.122-x 6. 化简的结果是( ) A . B . C . D .7. 某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A .x +48720─548720= B .x +=+48720548720 C .572048720=-xD .-48720x +48720=5 8. 若0≠-=y x xy ,则分式=-xy 11( ) A .xy1 B .x y - C .1 D .-1 9. 已知xy x y +=1,yz y z +=2,zx z x+=3,则x 的值是( ) A .1 B.125 C.512 D.-110.下列计算正确的是( )A .3x 2y +5xy=8x 3y 2B .(x +y )2=x 2+y 2C .(﹣2x )2÷x=4xD .+=1二、填空题(每题3分,共24分) 11. 分式12x ,212y ,15xy-的最简公分母为 . 12. 约分:(1)=ba ab 2205__________,(2)=+--96922x x x __________. 13. 方程xx 527=-的解是 . 14. 使分式2341x x -+的值是负数x 的取值范围是 . 15. 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.16. 一个两位数的十位数字是6,如果把十位数字与个位数字对调,那么所得的两位数与原来的两位数之比是74,原来得两位数是______________. 17. 若13x x+=,则4221x x x ++___ _______. 18. 计算:= .三、解答题 19.计算:(每题3分,共18分)(1) 333x x x --- (2) 222246⎪⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y(3)bc c b ab b a +-+ (4)÷+--4412a a a 214a a --(5)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛----42318521q p q p (6)2222221m n mn n mn m mn n m n n ⎡⎤-+-⋅⎢⎥-+--⎣⎦20.解分式方程:(每题4分,共8分)(1)3215122=-+-x x x (2)1637222-=-++x x x x x21.先化简,再求值:(每题6分,共12分)(1)已知x=2,求x x x x x x x 112122÷⎪⎭⎫⎝⎛+---+的值(2)已知x=1,求÷(x +2﹣)的值22.(8分)若关于方程9-x 3+9x2m -=3x 2+有增根,求m 的值四.应用题(每题10分,共20分)23.甲、乙两人分别从距离目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.24.从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.八年级数学第十六章分式单元测试答案一、选择题1.A 2.D 3.C 4.A 5.C 6.C 7.D 8.C 9.A 10.B(提示:设全程为1,小明所用时间是1122a b+=1()2a b ab +,小刚所用时间是1a b +,小明所用时间减去小刚所用时间得1()2a b ab +-1a b+=21()2()a b ab ab a b +-+=221()2()a b ab a b ++>0,显然小明所用时间较多) 二、填空题11.210xy 12.(1)14a (2)33x x +- 13.x =-5 14.x >34 15.xy x y + 16.63 17.18(提示:由13x x +=得21()9x x +=,2217x x +=,∴4221x x x ++=22118x x++=)18.2007(提示:原式=12007+12006+…+13+12+12+23+…12006+20062007= (12007+20062007)+(12006+12006)+…+(12+12)=2007 三、解答题19.(1)原式=3(3)33x x x x ---=--=-1 (2)原式=24423616y y x x ÷=22441636y x x y g =2249x y 20.(1)原式=()()c a b a b c abc abc ++-=()()c a b a b c abc abc ++-=ac bc ab ac abc+-- bc ab abc -=()b c a abc -=c a ac- (2)原式=211(2)(2)(2)a a a a a --÷-+-=21(2)(2)(2)1a a a a a -+---g =2a + 21.原式=1(2)3(4)15()28p q ------÷-=45pq - 22.原式=2()()()()1m n n m n mn m n m n m n n ⎡⎤-+-⎢⎥-+--⎣⎦g =1()1n mn m n m n n ----g 1 1n mn m n n ---g =mn m n-- 23.(1)原方程变形为252121x x x ---=3,方程两边同乘以(21)x -,得253(21)x x -=-, 解得x =12-,检验:把12x =-代入(21)x -,(21)x -≠0,∴12x =-是原方程的解,∴原方程的解是12x =-. (2)原方程变形为736(1)(1)(1)(1)x x x x x x +=+-+-,方程两边同乘以最简公分母(1)(1)x x x +-,得7(1)3(1)6x x x -++=,解得x =1,检验:把1=x 代入最简公分母(1)(1)x x x +-,(1)(1)x x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.原式=211(1)(1)x x x x x x ⎛⎫+-÷ ⎪--⎝⎭=222(1)(1)1(1)(1)x x x x x x x x ⎛⎫+--÷ ⎪--⎝⎭ =22211(1)x x x x x --÷-=21(1)x x x --g =21(1)x --, 当12+=x 时,原式=1-=12- 25.光纤的横截面积为:1×π)10400()21080(323⨯÷⨯⨯-=4π910-⨯(平方米),∴()9410410--⨯÷π≈8.0310⨯.答:平方厘米是这种光纤的横截面积8.0310⨯倍.26.设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得:6004804.52x x-=,解得x =8,经检验,x =8是原方程的根,答:客车由高速公路从甲地到乙地需8小时.27.(1)m n <11++m n (m >n >0) 证明:∵m n -11++m n =()1+-m m m n ,又∵m >n >0,∴()1+-m m m n <0,∴m n <11++m n(2)m n <k m kn ++(m >n >0,k >0)(3)设原来的地板面积和窗户面积分别为x 、y ,增加面积为a ,则由(2)知:a x a y ++>x y ,所以住宅的采光条件变好了。
八年级数学下册《分式》单元测试卷(附答案解析)
八年级数学下册《分式》单元测试卷(附答案解析) 一、单选题1.在式子3y ,2xyπ,2y6+x,x+2yx,xyx中,是分式的有().A. A.2个B. B.3个C. C.4个D. D.5个2.使分式xx+1有意义的x的取值范围是()A. x≠-1.B. x≠1.C. x<-1.D. x>-1.3.原价为a元的某种常用药降价40%,则降价后的价格为()A. a0.4元 B. a0.6元 C. 60%a元 D. 40%a元4.计算y2x−y +2xy−2x的结果是()A. −1B. 1C. x+yD. 2x+y5.解分式方程3x−1−2=11−x,去分母得()A. 3−2(x−1)=−1B. 3−2(x−1)=1C. 3−2x−2=−1D. 3−2x−2=16.0.0000031用科学记数法表示应为()A. 3.1×10−5B. 3.1×10−6C. 0.31×10−5D. 31×10−67.如果a2+2a−1=0,那么(a−4a )·a22a−4代数式的值是()A. 1B. 2C. 12D. −18.若关于x的方程ax−1x−2−1=5x−2有增根,则a的值是()A. 1B. 2C. 3D. 729.若m、n为正整数,则下列各式错误的是()A. a m÷a n=a m⋅a−nB. (ab)n=a n b−nC. (a−m)−n=a mnD. am−n=1amn10.某项工程需要在规定日期内完成,若甲工程队单独做,恰好如期完成;若乙工程队单独做,则超过规定日期3天,现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为x天,下面所列方程中错误的是()A. 2x +xx+3=1 B. 2x=xx+3C. 1x +xx+3=1 D. 2x+2x+3+x−2x+3=1二、填空题11.4.当分母B_______0时,分式AB 才有意义;当分母B=0时,分式AB__________意义.12.若|x|−1x2−2x+1=0,则x=______ .13.计算:x 2+xyxy+xy−x2xy=______.14.已知a2−4a−1=0.则a3−1a3=______ .15.王小明腿有残疾,他的好朋友李阳非常关心他如图,李阳家到学校的路程是0.5km,到王小明家的路程是3km.李阳原来是步行上学.为让王小明每天准时到学校上课,他坚持骑小三轮车接送王小明,已知李阳骑小三轮车的速度是他步行速度的3倍,接送王小明上学要比他自己步行上学多用20min,求李阳步行速度和骑车速度各是多少?如果设李阳步行的速度为xkm/ℎ,根据题意,可列方程为 ______.16.设a,b,c,d为有理数,现规定一种新运算|a bc d|=ad−bc,则满足等式|xx+13x2−121|=1的x的值为______.三、解答题17.计算与化简.(1)(4x2−4+1x+2)÷1x−2;(2)a+1a−3−a−3a+2÷a2−6a+9a2−4.18.(1)计算:|√3−2|−(12)−1+(π−3.14)0+√8cos45°.(2)化简求值:(5x−2−x−2)÷x2−6x+9x−2+xx−3,再从−1<x<4的范围内选取一个你喜欢的整数代入求值.19.阅读下面同学们作业中的一些片段.解方程:3−xx−4+14−x=1解法一:3−xx−4−1x−4=1①3−x−1=1②−x=−1③x=1④检验:当x=1时,x−4≠0⑤所以x=1是原分式方程的解.解法二:3−xx−4=1−14−x①3−x x−4=3−x4−x②x−4=4−x③x=4④检验:当x=4时,x−4=0⑤所以x=4是原分式方程的增根,原分式方程无解.(1)分析一下上面的解法是否有错误?如有错误,请指出出错的地方,并说明错误原因.(2)请你写出正确的解题过程.(3)为预防出现类似错误,你有什么好的建议?20.一台收割机的工作效率和当于一个农民工作效率的150倍,用这台机器收割10hm2小麦比100个农民人工收割这些小麦要少用1h,这台收割机每小时收制多少公顷小麦?21.外出时佩戴口罩可以有效防控流感病毒.某药店用4000元购进若干包医用外科口罩,很快售完,该店又用7500元钱购进第二批同种口罩,第二批购进的包数比第一批多50%,每包口罩的进价比第一批每包的进价多0.5元.请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持不变,若售完这两批口罩的总利润不高于3500元,那么药店销售该口罩每包的最高售价是多少元?22.计算:(1)a2a−1−a+1;(2)(x2−4y2)÷2y+xxy ⋅1x(2y−x).参考答案与解析1.【答案】C; 【解析】略2.【答案】A; 【解析】略3.【答案】C; 【解析】略4.【答案】A;【解析】解:原式=y2x−y −2x2x−y=y−2x2x−y=−1.故选:A.将式子变号、通分、化简即可求解.此题主要考查了分式的加减法,关键在于对式子的正确通分变形.5.【答案】A;【解析】解:3x−1−2=11−x,去分母,得3−2(x−1)=−1,故选:A.将分式方程去分母即可.此题主要考查了解分式方程,熟练掌握解分式方程的步骤是解答该题的关键.6.【答案】B;【解析】此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1⩽|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.根据用科学记数法表示较小的数的方法解答即可.解:0.0000031=3.1×10−6.故选B.7.【答案】C;【解析】解:(a−4a )·a22a−4=a2−4a ⋅a2 2(a−2)=(a+2)(a−2)a ⋅a2 2(a−2)=a2+2a2,∵a2+2a−1=0,∴a2+2a=1,∴原式=12.故选:C.先化简,再将a2+2a−1=0变形后整体代入即可.此题主要考查分式化简求值,解答该题的关键是掌握分式基本性质,把所求式子化简及整体思想的应用.8.【答案】C;【解析】解:关于x的方程ax−1x−2−1=5x−2有增根,则x=2是增根,将原分式方程去分母得,ax−1−x+2=5,而x=2是方程ax−1−x+2=5的解,所以a=3,故选:C.得出增根x=2,而x=2是分式方程去分母后整式方程的根,代入计算即可.此题主要考查分式方程的增根,理解增根的意义,明确增根产生的原因是解决问题的前提.9.【答案】D;【解析】解:A、a m÷a n=a m⋅a−n,故A不符合题意;B、(ab)n=a n b−n,故B不符合题意;C、(a−m)−n=a mn,故C不符合题意;D、am−n=am n,故D符合题意;故选:D.利用同底数幂的除法的法则,同底数幂的乘法的法则,负整数指数幂,分式的乘法的法则对各项进行运算即可.此题主要考查分式的乘除法,同底数幂的乘法,同底数幂的除法,负整数指数幂,解答的关键是对相应的运算法则的掌握.10.【答案】C;【解析】略11.【答案】≠;无;【解析】略12.【答案】-1;【解析】解:根据题意,得|x|−1=0且x2−2x+1=(x−1)2≠0.解得x=−1.故答案是:−1.分式的值为零时:分子=0,分母≠0.此题主要考查了分式的值为零的条件和绝对值,注意:“分母不为零”这个条件不能少.13.【答案】2;【解析】解:原式=x(x+y)xy +x(y−x)xy , =x+y y +y−x y , =2y y ,=2.故答案为:2.将分式化简后再进行加法运算即可.此题主要考查了分式的加法运算,熟记运算法则是解答该题的关键.14.【答案】76;【解析】解:∵a 2−4a −1=0,且a ≠0,∴a −4−1a ,∴a −1a =4,∴a 2+1a 2−2=16,∴a 2+1a 2=18. ∴a 3−1a 3=(a −1a )(a 2+1+1a 2)=4×19=76.根据分式的运算法则即可求出答案.此题主要考查分式的运算,解答该题的关键是熟练运用分式的运算,本题属于基础题型.15.【答案】6.53x -0.5x =13;【解析】解:设李阳步行速度为xkm/ℎ,则骑车速度是3xkm/ℎ,根据题意可得:3+3+0.53x −0.5x =2060, 即6.53x −0.5x =13,故答案为:6.53x −0.5x =13. 设李阳步行速度为xkm/ℎ,则骑车速度是3xkm/ℎ,利用行驶的时间差为20分钟,列出分式方程即可. 此题主要考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解答该题的关键.16.【答案】-5;【解析】解:根据题意得:x x+1−2⋅3x 2−1=1,∴x(x −1)−6=x 2−1,解得:x =−5.检验:当x =−5时,x 2−1≠0,∴x =−5是原方程的根.故答案为:−5.按照新定义列出分式方程,解方程即可得出答案.此题主要考查了解分式方程,新定义,把分式方程转化为整式方程是解答该题的关键.17.【答案】解:(1)1;(2)3a−3.;【解析】略18.【答案】解:(1)原式=2-√3-2+1+2√2×√22=2-√3-2+1+2=3-√3;(2)原式=(5x−2-x 2−4x−2)÷(x−3)2x−2+x x−3 =−(x+3)(x−3)x−2•x−2(x−3)2+x x−3 =-x+3x−3+x x−3 =-3x−3,∵x ≠3且x ≠2,∴取x=1,则原式=-31−3=32.; 【解析】(1)先去绝对值符号、计算负整数指数幂和零指数幂、代入三角函数值,再计算乘法,最后计算加减即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.【答案】解:(1)解法一有错误,错在第②步,错误原因是:等号右边的1没有乘(x-4);解法二有错误,错在第③步,错误原因是:方程两边同时约去x-3时,必须保证x-3≠0,但这里x-3恰好能够等于0,所以这种变形是错误的;(2)正确的解法:3-x-1=x-4,-2x=-6,x=3,检验:当x=3时,x-4≠0,所以:x=3是原分式方程的根;(3)在去分母时,常数项不要漏乘最简公分母.;【解析】(1)按照解分式方程的步骤进行计算判断即可;(2)按照解分式方程的步骤进行计算即可解答;(3)从解法一和解法二错误的原因解答即可.此题主要考查了分式方程的增根,熟练掌握解分式方程的步骤是解答该题的关键.20.【答案】5hm2.;【解析】略21.【答案】解:(1)设购进的第一批医用口罩有x包,依题意,得4000x =7500(1+50%)x−0.5,解得x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y−4000−7500⩽3500.解得y⩽3.答:药店销售该口罩每包的最高售价是3元.;【解析】略22.【答案】解:(1)原式=a 2a−1−a2−2a+1a−1=2a−1a−1;(2)原式=(x+2y)(x−2y)⋅xyx+2y ⋅1−x(x−2y)=−y.;【解析】这道题主要考查分式的混合运算,解答该题的关键是熟练掌握分式的混合运算顺序和运算法则.(1)先通分,再计算减法即可得;(2)先因式分解、将除法转化为乘法,再约分即可得解.。
八年级数学分式单元测试(二)(人教版)(含答案)
分式单元测试(二)(人教版)一、单选题(共10道,每道10分)1.化简的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分式的加减运算2.化简的结果为( )A.1B.C. D.-1答案:B解题思路:试题难度:三颗星知识点:分式混合运算3.化简的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分式的混合运算4.化简分式的结果为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分式的混合运算5.当时,的值为( )A. B.C.-2D.2答案:C解题思路:试题难度:三颗星知识点:分式化简求值6.计算的结果是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:整式混合运算7.计算的结果是( )A.2B.C. D.答案:C解题思路:试题难度:三颗星知识点:整式混合运算8.若a,b满足,则分式的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分式的化简求值9.化简分式,并在中选取一个你认为合适的整数x代入,结果可能是( )A.0B.-1C.-3D.1答案:D解题思路:试题难度:三颗星知识点:分式化简求值10.先化简,然后从的范围内选择一个合适的整数作为x的值代入,求得的结果为( )A.-2B.2C.-4D.4答案:A解题思路:试题难度:三颗星知识点:分式化简求值。
《分式》单元测试题及参考答案(基础)
《分式》单元测试题及参考答案(基础)一、选择题1.若分式|x|−22−x的值为0,则x 应满足的条件是( ) A.x ≠2 B.x ≠-2 C.x=2 D.x=-22.分式−11−x 可变形为( )A. −1x−1B. −11+xC. 11+xD. 1x−13.计算(a-1)÷(1a-1)·a 的结果是( ) A.-a 2 B.1 C.a 2 D.-14.化简x 2y−x −y 2y−x 的结果是( ) A.-x-y B.y-x C.x-y D.x+y5.下列计算正确的是( )A. (12)−3÷(12)2=32B.(-8)0×8-2=64C. a m+2÷a m−1=aD.a 0=16.a,b,c 是有理数且abc<0,则|a|a +|b|b +|c|c的值是( ) A.-3 B.3或-1 C.-3或1 D.-3或-17.已知a 2-3a+1=0,则a+1a-2的值为( ) A.√5+1 B.1 C.-1 D.-58.化简(1−3x−1x+1)÷x 2−2x+12x+2的结果是( ) A.1-x B.−4x (x−1)2 C. 2x−1 D. 41−x 9.已知a +1a =√10,则a 2−1a 的值为( )A. ±2√2B.8C. √6D. ±√610.全球芯片制造已经进入5nm 器件的量产时代, 5nm 就是0.000000005m.数据0.000000005用科学记数法表示为( )A.0.5×10-8B.5×10-8C.5×10-9D.5×10-1011.分式方程32x =1x−1的解为( ) A.x=1 B.x=2 C.x=3 D.x=412.若x=4是分式方程a−2x =1x−3的解,则a 的值为( ) A.3 B.4 C.5 D.613.若关于x 的方程2x =m 2x+1无解,则m 的值为( ) A.0 B.4或6 C.6 D.0或414.若关于x 的方程2x−2+x+m 2−x=2的解为正数,则m 的取值范围是( ) A.m<6 B.m>6 C.m<6且m ≠0 D.m>6且m ≠815.某工厂计划在x 天内生产120个零件,由于采用新技术,每天比原计划多生产3个,因此提前2天完成任务,则由题意可列方程为( )A. 120x+2=120x −3B. 120x =120x−2−3C. 120x−2−120x =2D.120x =120x+2−3 二、填空题16.分式1m 2−3m 与1m 2−9的最简公分母是____.17.计算a a−1+a 21−a =____. 18.计算(x−2x )2÷x 2−4x 2+2x 的结果是____.19.化简(3x+1−x +1)÷x 2−4x+4x+1=____.20.分式方程2x+3+32=72x+6的解是____. 21.若分式方程1x−3+1=a−x x−3的解为正数,则a 的取值范围是___.三、计算题22.解方程(1) 2x x−2=1−12−x (2) x x−1−1=3x 2+x−2四、解答题23.先化简,再求值:(x −3x x+1)÷x−2x 2+2x+1,其中x 满足x 2+x-3=0.24.先化简,再求值: (2x−1x+1−x +1)÷x−2x 2+2x+1,其中x=-2.25.某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成,求原来每天加工零件的数量.26.甲、乙两个施工队共同完成某区域绿化改造工程,乙队先单独做3天后,再由两队合作7天完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的2倍,求甲、乙两个施工队单独完成此项工程各需多少天?参考答案一、选择题1-5 DDAAA 6-10 CBDDC 11-15 CDDCB二、填空题16.m(m+3)(m-3)17.-a18.x−2x19.2+x2−x20.x=-221.a>-2且a≠4三、计算题22(1)x=1(2)无解四、解答题23.x2+x,原式=-3.24.-x2-x,原式=-2.25.解:设原来每天加工零件的数量是x个,40x +200−402.5x=13,经检验x=8是原方程的解.26. 解:设甲队单独完成此项工程需x天,则乙队单独完成此项工程需要2x天,32x +7(1x+12x)=1, 经检验,x=12是原方程的解,2x=24. 甲队单独完成此项工程需12天,乙队单独完成此项工程需24天.。
分式与分式方程单元测试题(带答案)
分式与分式方程单元测试题 (满分 150分 时间 120分钟)一、选择题(每小题3分,满分30分) 1.若分式x-32有意义,则x 的取值范围是………………………………………( )A .x ≠3B .x =3C .x <3D .x >32.当a 为任何实数时,下列分式中一定有意义的一个是………………………( )A .21aa +B .11+aC .112++a aD .112++a a 3.下列各分式中,最简分式是……………………………………………………( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.若把分式2x y x y+-中的x 和y 都扩大3倍,那么分式的值……………………( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍 5.分式方程313-=+-x mx x 有增根,则m 为……………………………………( )A .0B .1C .3D .66.若xy y x =+,则yx11+的值为…………………………………………………( )A .0B .1C .-1D .27.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是………( ) A .448020480=--xx B .204480480=+-x xC .420480480=+-x xD .204804480=--xx8.下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有……………()A .1个B .2个C .3个D .4个9.下列各式的约分运算中,正确的是…………………………………………( )A .326x xx = B .b ac b c a =++ C .0=++b a b a D .1=++b a b a10.把分式2222-+-+-x x x x 化简的正确结果为……………………………………( )A .482--x xB .482+-x xC .482-x xD .48222-+x x二、填空题(每小题3分,满分24分) 1.当x = 3± 时,分式35-x 没有意义. 2.已知432z y x ==,则=+--+z y x z y x 232 43. 3.xyzx y xy 61,4,13-的最简公分母是 yz x 312 .4.分式392--x x 当x 3-= 时分式的值为零.5.若关于x 的分式方程3232-=--x m x x 有增根,则m 为 3± .6.已知2+x a 与2-x b 的和等于442-x x,则a = 2 ,b = 2 .7.要使15-x 与24-x 的值相等,则x = 6 .8.化简=-+-a b bb a a 1 . 三、解答题:(每题8分,共48分)1.22221106532xy x y y x ÷⋅ 2.mn nn m m m n n m -+-+--23.(22+--x x x x )24-÷x x 4.2232342⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-a b a b a b5.231341651222+-++--+-x x x x x x6.xx x x x x +-÷-+-2221112四、解方程:(每题8分,共32分)1.141-22-=x x2.13132=-+--xx x3.5221332-=-x xx4.71618151+++=+++x x x x五、应用题(每题8分,共16分)1.八年级(11)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.5倍,求慢车的速度.2.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价.分式与分式方程单元测试题参考答案一、选择题(每小题3分,满分30分) 1-5 ADCBC 6-10 BCBDA二、填空题(每小题3分,满分24分)1.3±; 2.43; 3.yz x 312; 4.3-=; 5.3±. 6.2,2 . 7.6 8.1三、解答题:(每题8分,共48分)1..67102165323222yx y x x y y x =⋅⋅=解:原式2..22m n m m n n m n m m n n m n m m n n m -=-+--=-+----=解:原式 3..2142)2)(2(442)2)(2()2()2(+=-⋅-+=-⋅-+--+=x x x x x x x x x x x x x x 解:原式 4..4164642233ab b a a b a b =⋅⋅-=解:原式.)3)(1(1)3)(2)(1(2)3)(2)(1()3()2()1()2)(1(1)3)(1(1)3)(2(1--=----=----+---=--+-----=x x x x x x x x x x x x x x x x x x 解:原式5.6..1)1()1)(1()1(2x x x x x x x =-+⋅-+-=解:原式 四、解方程:(每题8分,共32分)1.解:方程两边同时乘以最简公分母12-x 得4)1(2=+x①解①得1=x经检验:1=x 为原分式方程的增根. 2.解:方程两边同乘以3-x 得312-=--x x①解①得2=x经检验:2=x 为原分式方程的解.3.解:原方程可化为整式方程)13(2)52(32-=-x x x解之得215=x 经检验:215=x 为原分式方程的解. 4.解:原方程可化为51617181+-+=+-+x x x x 整理后得)5)(6()6(5)7)(8()8(7+++-+=+++-+x x x x x x x x 即)5)(6(1)7)(8(1++-=++-x x x x 即)5)(6()7)(8(++=++x x x x即 3011561522++=++x x x x解之得213-=x经检验:213-=x 为原分式方程的解.五、应用题(每题8分,共16分)1.解:设慢车的速度为x km/h ,则快车的速度为x 5.1km/h.依题意可得分式方程 x x 5.11201120=-解之得40=x 经检验:40=x 为所列分式方程的解. 答:慢车的速度为40km/h 。
(完整)分式全章测试题含答案,推荐文档.doc
第十六章 分 式测试1分 式课堂学习检测一、选择题1.在代数式2 x, 1 , 2xy 2 , 3 , 2x 25 , x 2 2 中,分式共有 ( ) .3x 3x 42x 3(A)2 个(B)3 个(C)4 个(D)5 个2.下列变形从左到右一定正确的是().a a 2(B)a ac(C)ax aa a 2 (A)b 2bbcbxb(D)b 2bb3.把分式2x 中的 x 、 y 都扩大 3 倍,则分式的值 ().x y(A)扩大 3倍(B)扩大 6倍 (C) 缩小为原来的1(D) 不变34.下列各式中,正确的是 () .x y x y(B)x y x y(A)yx yxy x yxx y x y(D)x y x y(C)yx yxyx yx5.若分式x 2x 2的值为零,则 x 的值为 ().x 2(A) -1 (B)1(C)2(D)2 或- 1二、填空题x 1 6.当 x______时,分式 2x 1 2 7.当 x______时,分式2x 1有意义.的值为正.8.若分式x 2 x的值为 0,则 x 的值为 ______.| x | 19.分式m 22m 1 约分的结果是 ______. 1 m 210.若 x 2- 12y 2= xy ,且 xy > 0,则分式x 3y的值为 ______.2x y11.填上适当的代数式,使等式成立:(1) a2ab 2b 2 ( ) ; (2)( )2x ;a 2b 2a b2x 2 x 1 2x1 a( )22xy(3)b;a b a (4).1xy ( )b综合、运用、诊断三、解答题12.把下列各组分式通分:a 1 5b a(1) 2b , 3a 2,6abc;(2)a 2 ab ,a 2b 2 .13.把分子、分母的各项系数化为整数:0.2 x 0.5 2a3 b(2)2 .(1);0.3x 0.042 ba314.不改变分式的值,使分式的分子与分式本身不含负号:(1) x 2 y ;(2) (a b) .2x y2a b15.有这样一道题,计算( x 2 x)( x 22x 1),其中 x =2080.某同学把 x = 2080 错抄成( x 2 1)( x 2x)x = 2008,但他的计算结果是正确的.你能解释其中的原因吗 ?拓展、探究、思考16.已知 11 3 ,求分式2x3xy 2 y的值.x yx 2xy y417.当 x 为何整数时,分式( x1) 2 的值为正整数.x 2 y 2 z 218.已知 3x - 4y - z = 0,2x + y - 8z = 0,求 xy yz的值.测试 2分式的运算课堂学习检测 一、选择题1.下列各式计算结果是分式的是().(A) na(B) n . 3m(C) 35m bm 2nx x2.下列计算中正确的是().(B)( - 1) -1(A)( - 1) =- 1 = 1 (C) 2a31 (D) ( a)3( a)72a 33.下列各式计算正确的是() .(A) m ÷ n · m = m(B) mn1m1n(C)m m1(D) n ÷ m · m =nm4.计算 (ab )4 ( a )5 的结果是 ().a b a1(A) -1(B)1(C)a5.下列分式中,最简分式是 ().(A) 21xy(B) x 2 y 2 15 y 2x yx 37 x 2 (D)3y 24 y 31 4aa (D)a bx2 2xy y2 x2 y2(C) .x y (D) x y 6.下列运算中,计算正确的是( ).(A)1 1 1 (B) b b 2b2b 2(a b) a c ac 2ac c 1 1(D) 1 1(C)a ab b 0a a7.a b a 2的结果是 ( ).b a(A) 2(B)4(C)b2(D)b a a a b a8.化简(11 )x2xy 的结果是 ( ) .x y y2(A) 1 (B) 1 (C) x- y (D) y- xy x yx二、填空题x2 3( x 29.(y) y 2 ) = ______.10.[( y2)3]2= ______.x11. a、 b 为实数,且ab= 1,设 Pa b 1 1,则 P______ Q(填“>”、a, Qa 1 b1 b 1 1“<”或“=”).2a 1=______ .12.4 2 aa213.若 x< 0,则 1 1 =______ .3 | x | | x 3|1 114.若 ab= 2, a+ b= 3,则a b=______.综合、运用、诊断三、解答题15.计算:16.计算:(a) 2(a)3( a4b).b bx 2 y4 y 2 4 x2 yx 2y 4 y 2 x 217.计算: (1x 211 2 2x 1)x x 118.已知 M2xy、 Nx 2 y 2M 、N ,有三种不同的形式:x 2 y 2 x 2y 2 ,用“+”或“-”连结M + N 、 M - N 、N - M ,请你任选其中一种进行计算,并化简求值,其中x ∶ y = 5∶ 2.x 1x19.先化简,再求值:x 2 1 x 1 ,其中x =2.2(x 1) 2x 220.已知 x - 2= 0,求代数式x 2 1的值.x 18x 9 A B21.等式x 2 x 6 x 3 x 2拓展、探究、思考对于任何使分母不为 0 的 x 均成立,求 A 、 B 的值.22. A 玉米试验田是边长为am 的正方形减去边长为1m 的蓄水池后余下部分, B 玉米试验田是边长为 (a - 1)m 的正方形,两块试验田的玉米都收获了 500kg .(1)哪种玉米田的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?测试 3分式方程课堂学习检测一、选择题 1.方程23的解为 ( ).x x 1(A)2(B)1 (C) -2 (D) - 12.解分式方程12 ,可得结果 ( ).x1 x 21(A) x = 1(B) x =- 1 (C) x = 3 (D) 无解3.要使x 4的值和 42 x的值互为倒数,则 x 的值为 ().x 54 x1(A)0(B) -1 (D)1(C)24.已知x1y3,若用含 x 的代数式表示 y ,则以下结果正确的是 ().x 2y 4(A) yx10(B) y =x + 2 10 x3(C) y(D) y =- 7x - 23k35.若关于 x 的方程有增根,则 k 的值为 ().x 111 x(A)3(B)1x m 6.若关于 x 的方程2x 3x 3(C)0(D)-1有正数解,则 ().(A) m > 0 且 m ≠ 3 (B) m < 6 且 m ≠3 (C) m <0(D) m > 67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是 ().(A)4 b) 小时4 11(a(B)() 小时55 ab(C)4ab 小时(D) ab 小时5(a b)a b8.a 个人 b 天可做 c 个零件 ( 设每人速度一样 ),则 b 个人用同样速度做a 个零件所需天数是().(A) a 2 (B)cc 2aca 2(C) a(D)2c二、填空题9. x = ______时,两分式4 与 3的值相等.x 4x 1 a 4xb 3的解为 ______.10.关于 x 的方程211.当 a = ______时,关于 x 的方程2ax 3 5的根是 1.x 1 4a x41有增根,则增根是 ______.12.若方程1 x 21xa1 的解是负数,则 a 的取值范围为 ____________ .13.关于 x 的方程x 1追求卓越 ,挑战极限 , 从绝望中寻找希望,人生终将辉煌 !v 千米 /时,则它以最大航速顺流航行s 千米所需的时间是 ______ .综合、运用、诊断三、解方程15.x1 1 3. 16. x2 4x 1 2 x x 2 2 x x 2 1 x 16 3 x 517.x1 x x2x四、列方程解应用题118.甲工人工作效率是乙工人工作效率的2倍,他们同时加工1500 个零件,甲比乙提前218 个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km , A 骑自行车, B 乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的 2.5 倍, B 中途休息了 0.5 小时还比 A 早到 2 小时,求自行车和汽车的速度.拓展、探究、思考20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009 年2 月 1 日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总..额的13%给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、.....电视机两种家电,已知购买冰箱的数量是电视机的 2 倍,且按原价购买冰箱总额为40000 元、电视机总额为 15000 元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多 65 元,求冰箱、电视机各购买多少台 ?(1)设购买电视机x 台,依题意填充下列表格:项目购买数量原价购买总额政府补贴返补贴返还总每台补贴返还家电种类/台/元还比例/%金额/元金额/元冰箱4000013电视机x1500013(2)列出方程 (组 )并解答.参考答案第十六章 分式测试1 分 式1.B .2.C .3.D . 4.A .5. A .1 1m 1 10.1.6..7.2 .8.0.9.1 2m11. (1)a + 2b ; (2)2x 2;(3) b + a ;(4)x 2y 2.12. (1) 3a 3c2bc5ab(a b) ,a 2,,2bc; (2)b)( a a( a b)(a b)6a 2bc 6a 2bc 6a a( ab) 13. (1) 10x25 ; (2) 12a 9b15x 24a 6b 14. (1) x 2 y ;(2) aby 2x2a b15.化简原式后为1,结果与 x 的取值无关.3316.17. x = 0 或 2 或 3 或- 1.18.5测试 2 2分式的运算 1.A . 2.D .3.D . 4.D .5.D .6.D .7. C . 8.B .9. x 4y .10.a 15.616.b17. 2x . 18.选择一: M选择二: M选择三: Ny 1211.=.12.1 2x 3 x 613.x 2914.a 22x 2x 2y 提示:分步通分.Nx y7 x ,当 x ∶y = 5∶ 2 时,原式3y Ny x3 x ,当 x ∶ y = 5∶2 时,原式7yMxy,当 x ∶ y = 5∶ 2 时,原式3 .x y7注:只写一种即可.19.化简得( x1),把 x = 2 代入得 1 .x 1 320.原式x 2x 1x1∵ x 2- 2= 0,∴ x 2= 2,∴原式2 x 1,∴原式= 1x 121. A = 3, B = 5.22. (1)A 面积 (a 2 -1)米 2,单位产量500 千克 /米; B 玉米田面积 (a - 1)2 米 2 ,单位产量是a 2 1500 500500(a 1)2千克 /米2,a 21 (a1) 2 , B 玉米的单位面积产量高;(2)a 1倍.a 1测试 3 分式方程1. A .2. D .3. B .4.C .5. A.6. B .7.C .8. A .9. x =- 8.10. xa 2b 617411. a3s 12. x = 1.13. a < 1 且 a ≠0. 14.小时.201v15.无解.16. x17.无解.25x 个 /时.18.设乙的工作效率为 x 个 /时,甲的工作效率为1500 1500 182. x 50 .经检验, x = 50 是原方程的根.x5 x2答:甲每小时加工 125 个,乙每小时加工 50 个.19.设自行车速度为 x 千米 /时,汽车速度为 2.5x 千米 /时.50 1502. x = 12.经检验 x = 12 是原方程的根.2.5x 2x答:自行车的速度为 12km/ 时,汽车的速度为30km/ 时.20. (1)2x , 40000× 13%,40000 13%, 15000× 13%,15000 13%;2xx(2)冰箱、电视机分别购买20 台、 10 台.第十六章 分式全章测试一、填空题1.在代数式3 21 x y a a 1 x2 1x 22 2b中,分式有 _________.4 ab, ,, , ,x 2,,2xx 3 2 b1 23 3a12.当 x______时,分式没有意义;当 x______时,分式 有意义;当 x______时,xx 221 分式3x 1的值是零.x 11 b0.4a 3.不改变分式的值,把分式的分子和分母各项系数都化成整数:2 1 a 0.3b 5= ______.m 24.计算: m 3m - 3= ______.5.若 x =- 4 是方程a 1 的解,则 a = ______.1 x 3x6.若2x 3 与 5 的值互为相反数,则满足条件的x 的值是 ______.x 3 x 37.当 x______时,等式2x 2 x 2x 1x( x 2 5)x 2成立.58.加工一批产品 m 件,原计划 a 天完成,今需要提前 b 天完成,则每天应生产 ______件产品.9 .已知空气的单位体积质量为0.001239g/cm3,那么 100 单位体积的空气质量为______g/cm 3. (用科学记数法表示 )10.设 a >b > 0, a 2+ b 2-6ab = 0,则a b的值等于 ______.b a二、选择题11.下列分式为最简分式的是( ).33ba 2b 2x 2(A) 15a (B) b a(C) 3x 12.下列分式的约分运算中,正确的是() .(A)x 9x 3(B) a ca (C) a bx3b cba b1 , x 21 1 的最简公分母是 ( ). 13.分式 x2 1 2x 1 , x 1(A)( x 2+ 1)(x - 1) (B)( x 2- 1)(x 2+ 1) (C)(x - 1)2 (x 2+ 1) (D)( x -1) 214.下列各式中,正确的个数有 ( ).① 2-2=- 4;② (32)3 =35;③ ( 2x) 21 ;4x 2(A)0 个 (B)1 个(C)2 个 15.使分式6 的值为负数的条件是 ().2 3x2 (B) x >0(C) x2(A) x3316.使分式x 有意义的条件是 ( ).| x | 1(A) x ≠ 1(B) x ≠- 1 (C)x ≠ 1 且 x ≠- 1(D) x ≠ 017.学完分式运算后,老师出了一道题“化简x 3 2x”.x 2 x 2 4x 2 y 2 (D)x ya b (D)1a b④ (- 1)-1= 1.(D)3 个(D) x < 0小明的做法是:原式=( x 3)( x 2) x 2 ;x 2 4x 2 4小亮的做法是:原式= (x + 3)(x - 2)+ (2- x)= x 2+ x -6+ 2- x =x 2-4;小芳的做法是:原式=x3x 2x 31 x 3 1 1.x 2 ( x 2)( x 2) x 2 x 2x 2其中正确的是 ( ) .(A) 小明 (B) 小亮(C)小芳(D) 没有正确的18.如果分式a(a b)的值是零,那么 a , b 满足的条件是 () .3( a b)(A) a =- b (B) a ≠- b(C)a = 0(D) a = 0 且 a ≠- b19.若关于 x 的分式方程x m 1 无解,则 m 的值为 ( ).x 1 x(A)1(B)0(C) -1(D)-220.有一项工程需在规定日期内完成,如果甲队去做,恰能如期完成;如果乙队去做,要超过规定日期 3 天.现由甲、乙两队合作 2 天后,余下的工程由乙队单独去做,恰好在规定日期内完成.如果设规定日期为x 天,下列关于 x 的方程中错误的是 ().(A)(B)2x 1xx32 3 x x 31 1) 21 (C) (x 3(x 2) 1x x3(D)1 1x1x 3三、化简下列各题x 3 x 2 1 x 2 x x4x 21.2 x22. (x 2 x 2)x x 1x 2x 2x 2 2x1 123. (2 3x 2x 2x 6) ()2 x 2 4 x 6四、解方程24.2x 1 1 25.5m4 2m5 1 .3 x 2 x 3 2m 4 3m6 2五、列方程解应用题26. A, B 两地相距80 千米,一辆大汽车从 A 地开出 2 小时后,又从 A 地开出另一辆小汽车,已知小汽车的速度是大汽车速度的 3 倍,结果小汽车比大汽车早40 分钟到达 B 地,求两辆汽车每小时各走多少千米.参考答案第十六章 分式全章测试1 a 1 x2 2b1 . 3. 4a 5b1. x , b,x21 ,3a 22.=- 2,取任意实数,32a 3b95. 5.6.- 4.7.≠ 0. 8.m4.3bma 9. 1.239×10 -1.10.2. 11.D . 12.D .13. C .14. A .15. A .16. C .17. C .18.D .19. C .20. D . 21. 2x - 1.1 x 1122.23.24. x3x 2x25. m = 2 是增根,无解.26.小汽车每小时 60 千米,大汽车每小时 20 千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
2xy
ቤተ መጻሕፍቲ ባይዱ
A、扩大 3 倍
B
、不变
C 、缩小 3 倍 D 、缩小 6 倍
1欢迎。下载
精品文档
9、如果方程 x
3 有增根,那么增根的值为(
x3 x3
A. 0 10、若分式方程
B.- 1
C. 3
4mx 3 =3 的解为 x=1,则 m的值为( m 2x
A、 1
B
、2
C
、3
D
) D. 1
) 、4
二、填空题(每空 3 分,共 24 分)
11、当 x
时 , 分式 x 2 无意义 3x 8
12、分式
1 ax
,
1 bx 2
的最简公分母为
13、 在括号内填入适当的单项式 , 使等式成立 : 1 xy
() 2 xy 2
14、、化简:
6a 2b
=
8a 3
a2
9
15、计算:
a3a3
16、若分式 x 2 1 的值为负数,则 x 的取值范围是 __________ 。 3x 2
(24) (1
)
x1 x1
其中 x 2
{ 3x 4 2
x2
( 25)先化简,再求值:( x2 1
) x1
x2
,其中 x 是不等式组
2x 1
x 40
的
2x 5 1
整数解
3欢迎。下载
精品文档
五、解下列分式方程(每小题 7 分,共 14 分)
( 25) 2
3
x x1
( 26) x 5
1
5
x4 4x
六、应用题( 10 分)
精品文档
分式单元测试卷
一、选择题(每小题 3 分,共 30 分)
1、 在 4 , y , 6 , x y 中分式的个数有(
)
y 4 xy 2
A.1 个
B.2
个
C.3
2、使式子 1 有意义的 x 的取值范围为(
x1
A、 x≠ 0
B
、 x≠1
C
3、 若分式 x 2 9 的值为零,则 x 的值为( x3
个
某文化用品商店用 2000 元购进一批学生书包,面市后发现供不应求,商店又购进第二批 同样的书包, 所购数量是第一批购进数量的 3 倍, 但单价贵了 4 元,结果第二批用了 6300 元。 ( 1)求第一批购进书包的单价是多少元? ( 2)若商店销售这两批书包时, 每个售价都是 120 元,全部售出后, 商店共盈利多少元?
4欢迎。下载
D.4
)
、x≠- 1
D
)
个 、 x≠± 1
A.0
B.
-3
C.3
D.3
或- 3
4、下列各式是最简分式的是(
4
A.
8a
2
ab
B.
a
)
C、 1 xy
ba
D.
2
2
ba
5、下列判断中,正确的是(
)
A、分式的分子中一定含有字母
B
C、当 A=0 时,分式 A 的值为 0(A、 B 为整式) B
6、 化简 a 2 b 2 的结果为(
)
a 2 ab
、当 B=0 时,分式 A 无意义 B
D 、分数一定是分式
A. a b
B.
2a
7、下列变形不正确的是(
A、 x-1 2x
1x 2x
ab a
)
B
C.
ab
D.
a
、 -b-a a b
c
c
ab ab
C、 -a+b a b
c
c
D
、 x 2-1
1 x2
2 3x 2 3x
8、若把分式 x y 中的 x 和 y 都扩大 3 倍,且 x y 0 ,那么分式的值(
12
2
( 20)
m2 9 m 3
2欢迎。下载
2x 2 5 y 10 y
(21)
3y 2 6x 21x 2
精品文档
a 2 ab a b
(22)
a2
(
)
ba
四、先化简,再求值计算(第 23、 24 小题各 7 分,第 25 小题 8 分,共 22 分)
( 23)
x2
2
4x
,其中 x 5
x 8x 16
8 x3
17、 某工厂原计划 a 天完成 b 件产品,由于情况发生变化 , 要求提前 x 天完成任务,则现
在每天要比原计划每天多生产
件产品 .
18、若关于 x 的分式方程 x 2 m 无解,则 m的值为 __________
x3
x3
三、计算题 ( 每小题 6 分,共 20 分 )
( 19) 4 x2
9
2x 3 3 2x