人教版中考数学总复习资料完整版

合集下载

(完整版)人教版初中数学总复习资料.doc

(完整版)人教版初中数学总复习资料.doc

中考数学总复习资料数与代数1・数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素”⑶相反数⑷绝对值:I a I = a (a ≥0)∣ a ∣ =-a (^<O)⑸倒数⑹指数①零指数:a0=1 ( a≠ 0)②负整指数: (a≠ 0,n是正整数)⑺完全平方公式:(a b) 2 a2 2ab b 2(8)平方差公式:(a+b) (a⅛ ) =a2b2(9)幕的运算性质:φ a m∙ a n = a m n② a m÷ a n = a m n (3)(a 111 ) n = a m n @ feb)n =a n b n⑤G)"人(10)科学记数法:a IO n( l≤a<10,n是整数)b b(11)算术平方根、平方根、立方根、a m a(12)_ & — (b d ------------------ n 0) 等比性质:e ffl- 七b d n b d Hb2・方程与不等式⑴一元二次方程①定义及一般形式:ax 2 bx c Ofe 0)②解法:1 •直接开平方法.2.配方法3•公式法:Xi,2 —b⅛2丄------- (b 2 4ac 0)2a4.因式分解法・③根的判别式:b2 4ac > 0,有两个解。

b2 4ac V O,无解。

b2 4ac = 0,有1 个解。

④维达定理: Xl X2 ,Xl X2 aa⑤常用等式: Xl2X22(XI X2 ) 22xi X2(xi X2 )2(XI X2 ) 2 4 Xl X2⑥应用题1.行程问题■■相遇问题、追及问题、水中航行:V顺船速水速;V逆船速水速2.增长率问题:起始数(1+X)二终止数3•工程问题:工作量二工作效率X工作时间(常把工作量看着单位“ 1”)。

4.几何问题⑵分式方程(注意检验)由增根求参数的值:①将原方程化为整式方程②将增根带入化间后的整式方程,求出参数的值。

中考数学知识点归纳人教版

中考数学知识点归纳人教版

中考数学知识点归纳人教版
中考数学是中学阶段数学知识的重要总结,涵盖了代数、几何、统计与概率等多个领域。

以下是人教版中考数学知识点的归纳:
一、数与代数
1. 实数:包括有理数和无理数,理解实数的性质和运算规则。

2. 代数式:包括整式和分式,掌握代数式的运算法则和化简技巧。

3. 方程与不等式:一元一次方程、一元二次方程、分式方程的解法,以及不等式的解集。

4. 函数:一次函数、反比例函数、二次函数的性质和图像,理解函数的基本概念和应用。

二、几何
1. 平面图形:包括线段、角、三角形、四边形、圆等,掌握其性质和计算方法。

2. 立体图形:包括立体图形的表面积和体积计算。

3. 图形的变换:包括平移、旋转、反射等,理解图形变换的基本概念和性质。

4. 相似与全等:理解相似图形和全等图形的性质,掌握证明方法。

三、统计与概率
1. 数据的收集与处理:包括数据的收集、整理和描述,掌握统计图表的绘制。

2. 概率:理解概率的基本概念,掌握概率的计算方法。

四、综合应用
1. 数学建模:将数学知识应用于解决实际问题,培养解决实际问题的能力。

2. 数学思维:包括逻辑推理、抽象思维等,提高学生的数学思维能力。

结束语
通过以上对中考数学知识点的归纳,我们可以看出,中考数学不仅要
求学生掌握基础的数学知识,更注重培养学生的数学思维和解决实际
问题的能力。

希望同学们能够系统地复习这些知识点,为中考做好充
分的准备。

人教版中考数学第一轮复习资料超全

人教版中考数学第一轮复习资料超全

中考数学第一轮复习资料(全套37页) 第一章 实数课时1.实数的有关概念【课前热身】1。

(08重庆)2的倒数是 .2。

(08白银)若向南走2m 记作2m -,则向北走3m 记作 m . 3。

(08的相反数是 . 4。

(08南京)3-的绝对值是( )A .3-B .3C .13- D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A 。

7×10-6B 。

0。

7×10-6C 。

7×10-7D 。

70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 。

数轴上的点与 构成一一对应.⑵ 实数a 的相反数为________。

若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______。

若a ,b 互为倒数,则ab = 。

⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数。

⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________。

其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______。

⑵ 任何一个实数a 都有立方根,记为 。

⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数。

4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3。

14×105是3个有效数字;精确到千位。

3。

14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a |、错误!(a ≥0)之和为零作为条件,解决有关问题.【典例精析】例1 在“()05,3。

人教版中考数学第一轮总复习教案(135课时)

人教版中考数学第一轮总复习教案(135课时)

其中 a、 b、 c 表示任意实数.运用运算律有时可使运算简便
3.实数的运算顺序 : 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.同
一级运算按照从左到 右的顺序依次进行 .
4. 实数大小的比较
⑴ 数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大
.
⑵ 正数> 0,负数< 0,正数>负数;两个负数比较大小,绝对值大的
(6) 开方 如果 x 2= a 且 x ≥ 0,那么
a = x; 如果 x3=a,那么 3 a x
2.实数的运算律
(1) 加法交换律 a+b = b+a ; (2) 加法结合律 (a+b)+c=a+(b+c) ; (3) 乘法交换律 ab = ba.
(4) 乘法结合律 (ab)c=a(bc) ; (5) 分配律 a(b+c)=ab+ac
⑶十字相乘法 ,⑷ 分组分解法 .
3. 提公因式法 : ma mb mc m(a+b+c).
4. 公式法 : ⑴ a 2 b 2 ( a+ b)(a - b) ;⑵ a 2 2ab b 2 (a + b) 2; ⑶ a 2 5. 十字相乘法 : x2 a b x ab ( x a)( x b) .
6. 因式分解的一般步骤 : (1) 一 “提”(取公因式) ,二“用”(公式); (2)
3. 实数的分类 有理数和无理数统称实数 . 有理数 : 有限小数或无限循环小数 . 无理数 : 无限不循环小数 . 注 : 凡是分数都是有理数 .
4.易错知识辨析
实数
有理数 无理数
正整数
整数 0
负整数
有限小数或无限循环小数

(人教版)中考数学复习(全部)专题练习汇总

(人教版)中考数学复习(全部)专题练习汇总
(人教版)中考数学复习(全部)专题练习汇总
第1讲:实数概念与运算
一、夯实基础
1、绝对值是6的数是________
2、 的倒数是________________。
3、2的平方根是_________.
4、下列四个实数中,比-1小的数是( )
A.-2B.0C.1D.2
5、在下列实数中,无理数是( )
A.2 B.0 C. D.
A.①×3-②×2,消去x
B.①×2-②×3,消去y
C.①×(-3)+②×2,消去x
D.①×2-②×(-3),消去y
4.与方程3x+4y=1 6联立组成方程组的解是 的方程是( ).
A. +3y=7B.3x-5y=7
C. -7y=8D.2(x-y)= 3y
5.给方程 去分母,得().
A.1-2(2x-4)=-(x-7)
10.① ;②56;
11.8;
四、中考链接
12.(1)-3x2+18x-5,19;
(2)m9,-512;
13.(1)45;(2)57
14.(1)9;(2)1
15.
第3讲:分式检测
一、夯实基础
1.下列式子是分式的是( )
A. B. C. +yD.
2.如果把分式 中的x和y都扩大3倍,那么分式的值( )
三、课外拓展
8.若 +(y-2 012)2=0,则xy =__________.
9.当-1<x<3时,化简: + =__________.
10. 如果代数式 有意义,则x的取值范围是________.
11、比较大小:⑴3 2 ⑵ - -
12、若最简根式 与 是同类二次根式,则m=.
13、若 的整数部分是a,小数部分是b,则a- =。

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)

二、解答重难题型突破+题型5 圆的综合++++课件+2025年中考数学总复习人教版(山东)
2
P在半圆弧AB上运动(不与A,B两点重合),过点C作直线PB的垂线CD交PB于点D.
(1)如图1,求证:△PCD∽△ABC.
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由.
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
28
【解析】(1)∵AB是☉O的直径,
∴∠BCD=30°.
31
本课结束
∴BF=BE=5.
∵∠ABE=∠AMF=90°,∠BAE=∠MAF,
∴△AMF∽△ABE,


∴ = ,即 = = =2.


设MF=x,则AM=2x,
∴BM=10-2x.
5
∵BM2+MF2=BF2,
∴(10-2x)2+x2=52,解得x=3,x=5(不符合题意,舍去),即MF=3.
∴∠PCD=60°.
∵四边形ABDC内接于☉O,
∴∠B=∠PCD=60°.
9

(2)∵点C为的中点,
∴∠CAD=∠CDA,∴AC=CD.
∵∠ADB=90°,
∴∠CDA+∠CDP=90°.
在Rt△ADP中,∠CAD+∠P=90°,
∴∠CDP=∠P,
∴CD=PC=2 ,
∴AC=CD=PC=2 ,
෽ ,对角线AC为☉O

【例2】(2024·济南三模)如图,四边形ABCD内接于☉O,=
的直径,延长BC交过点D的切线于点E.
(1)求证:DE⊥BE;
3
(2)若☉O的半径为5,tan∠DAC= ,求DE的长.
4
12
【自主解答】(1)连接DO并延长交AB于F,

人教版中考数学总复习完整版

人教版中考数学总复习完整版

数学中考总复习资料完整版一有理数1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。

在正数前加上符号“-”(负)的数叫做负数。

0既不是正数,也不是负数。

(2)有理数正整数、0、负整数统称整数。

正分数、负分数统称分数。

整数和分数统称为有理数。

2、数轴规定了原点、正方向和单位长度的直线叫做数轴。

3、相反数代数定义:只有符号不同的两个数叫做互为相反数。

几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。

一般地,a和-a互为相反数。

0的相反数是0。

a=-a所表示的意义是:一个数和它的相反数相等。

很显然,a=0。

4、绝对值定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即:如果a >0,那么|a |=a ;如果a =0,那么|a |=0;如果a <0,那么|a |=-a 。

a =|a |所表示的意义是:一个数和它的绝对值相等。

很显然,a ≥0。

5、倒数定义:乘积是1的两个数互为倒数。

1a a=所表示的意义是:一个数和它的倒数相等。

很显然,a =±1。

6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

7、乘方定义:求n 个相同因数的积的运算,叫做乘方。

乘方的结果叫做幂。

如:an n a a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。

性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。

8、科学记数法定义:把一个大于10的数表示成a ×10n的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。

小于-10的数也可以类似表示。

用科学记数法表示一个绝对值大于10的数时,n是原数的整数数位减1得到的正整数。

人教版初中数学中考复习专题复习 数与式(37张PPT)

人教版初中数学中考复习专题复习 数与式(37张PPT)

知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.

人教版中考数学复习知识点汇总130页PPT

人教版中考数学复习知识点汇总130页PPT

END
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如3?5a3b2c是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

(完整版)人教版初中数学总复习资料doc

(完整版)人教版初中数学总复习资料doc

(完整版)人教版初中数学总复习资料doc①已知三边作三角形②已知两边及其夹角作三角形③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆⑶中心对称图形:矩形、圆、⑷图形的平移和旋转⑸图形的相似:(三)概率与统计⒈统计⑴重要概念①总体:考察对象的全体。

②个体:总体中每一个考察对象。

③样本:从总体中抽出的一部分个体。

④样本容量:样本中个体的数目。

⑤众数:一组数据中,出现次数最多的数据。

⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。

⑵扇形统计图、条形统计图、折线统计图⑶计算方法①平均数:某1(某1某2某n)n某②加权平均数:kfk某某1f1某2f2f1f2fnkn)③样本方差:⑴s1[(某1某)2(某2某)2(某n某)2]n④样本标准差:ss2⑤极差:最大的数减去最小的数⒉概率①列表法、画树状图法93同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合1042定理1关于条直线对称的两个图形是全等形43定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)某180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a某b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形1177角相等的梯形是等腰梯形78平行等分段定理如果一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79推1梯形一腰的中点与底平行的直,必平分另一腰80推2三角形一的中点与另一平行的直,必平分第三81三角形中位定理三角形的中位平行于第三,并且等于它的一半82梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h83 (1) 比例的基本性如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2) 合比性如果 a/ b=c/ d,那么(a ±b)/b=(c ±d)/d85(3)等比性如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b86平行分段成比例定理三条平行截两条直,所得的段成比例87推平行于三角形一的直截其他两(或两的延),所得的段成比例88定理如果一条直截三角形的两(或两的延)所得的段成比例,那么条直平行于三角形的第三89平行于三角形的一,并且和其他两相交的直,所截得的三角形的三与原三角形三成比例90定理平行于三角形一的直和其他两(或两的延)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角相等,两三角形相似(ASA)92直角三角形被斜上的高分成的两个直角三角形和原三角形相似93判定定理2两成比例且角相等,两三角形相似(SAS)94判定定理3三成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜和一条直角与另一个直角三角形的斜和一条直角成比例,那么两个直角三角形相似96性定理1相似三角形高的比,中的比与角平分的比都等于相似比97性定理2相似三角形周的比等于相似比98性定理3相似三角形面的比等于相似比的平方99任意角的正弦等于它的余角的余弦,任意角的余弦等于它的余角的正弦100任意角的正切等于它的余角的余切,任意角的余切等于它的余角的正切101是定点的距离等于定的点的集合102的内部可以看作是心的距离小于半径的点的集合12103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

人教版九年级数学中考总复习《直角三角形与勾股定理》课件20张 (共20张PPT)

人教版九年级数学中考总复习《直角三角形与勾股定理》课件20张 (共20张PPT)
考点精讲
【例】(2016广东)如图1-4-5-1,
Rt△ABC中,∠B=30°,∠ACB=90°, CD⊥AB交AB于点D,以CD为较短的直角 边向△CDB的同侧作Rt△DEC,满足∠E= 30°,∠DCE=90°,再用同样的方法作 Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC, ∠HCI=90°. 若AC=a,求CI的长.
课堂巩固训练
1. 将一副直角三角板按如图1-4-5-11放置,若∠AOD=20°,
则∠BOC的大小为
(B)
A. 140°
B. 160°
C. 170° D. 150°
2. 如图1-4-5-12,在Rt△ABC中,∠B=90°,∠A=30°,DE垂
思路点拨:在Rt△ACD中,利用30°角的性质和勾股定理求出 CD的长;同理在Rt△ECD中求出FC的长,在Rt△FCG中求出CH 的长;最后在Rt△HCI中,利用30°角的性质和勾股定理求出 CI的长. 解:在Rt△ACB中,∠B=30°,∠ACB=90°, ∴∠A=90°-30°=60°. ∵CD⊥AB, ∴∠ADC=90°. ∴ቤተ መጻሕፍቲ ባይዱACD=30°.
•1、多少白发翁,蹉跎悔歧路。寄语少年人,莫将少年误。 •2、三人行,必有我师焉;择其善者而从之,其不善者而改之。2021/10/312021/10/312021/10/3110/31/2021 8:14:06 PM •3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 •5、教育是一个逐步发现自己无知的过程。 •6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/312021/10/312021/10/3110/31/2021

中考数学知识点复习总复习资料大全(精华版)

中考数学知识点复习总复习资料大全(精华版)

中考数学总复习资料大全第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:整数正整数0有理数实数(有限或无限循环性数)分数正无理数负整数正分数负分数无理数(无限不循环小数)说明:“分类”的原则:1)相称(不重、不漏)2)有标准负无理数正数实数0负数整数有理数分数无理数整数有理数分数无理数2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:a 2│a│(a 为一切实数)a (a≥0)性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质: A.a ≠1/a (a≠±1);B.1/a 中,a≠0;C.0 <a<1 时1/a >1;a >1 时,1/a <1;D. 积为1。

4.相反数:①定义及表示法②性质: A.a ≠0 时,a≠-a;B.a 与-a 在数轴上的位置;C. 和为0, 商为-1 。

5.数轴:①定义(“三要素”)②作用: A. 直观地比较实数的大小;B. 明确体现绝对值意义;C. 建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:│a│= a(a ≥0) -a(a<0)几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。

②│a│≥0, 符号“││”是“非负数”的标志; ③数 a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[ 乘法] 交换律、结合律;[ 乘法对加法的] 分配律)3.运算顺序: A. 高级运算到低级运算;B. (同级运算)从“左”到“右”(如5÷1 ×55);C.( 有括号时) 由“小”到“中”到“大”。

中考数学总复习资料素材人教新课标版

中考数学总复习资料素材人教新课标版

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:正整数整数零有理数负整数有限小数或无限循环小数实数正分数分数负分数正无理数无理数无限不循环小数负无理数1、有理数:任何一个有理数总可以写成p的形式,其中p、q是互质的整数,这是有理数q 的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001 ,,;特定意义的数,如π、sin 45°等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a的相反数是-a;(2)a和b互为相反数a+b=02、倒数:(1)实数a(a≠0)的倒数是1;(2)a和b互为倒数ab 1;(3)注意0没有倒数a3、绝对值:(1)一个数a的绝对值有以下三种情况:a, a 0a 0, a 0a, a 0(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。

用心爱心专心 1(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

中考总复习+与角数量关系相关的模型++讲义+2023—2024学年人教版九年级下册数学

中考总复习+与角数量关系相关的模型++讲义+2023—2024学年人教版九年级下册数学

与角数量关系相关的模型类型1绝配角绝配角(若两个角满足α+2β = 180°,则称α,β为一组绝配角)条件中出现绝配角或者导角后得到绝配角,(1)由绝配角构造镜面角(入射光线CO、反射光线OB和平面镜OA的夹角)经典模型图常用结论2α+β=180°(1) 反向延长OB :∠AOD=∠AOC=α(2) 反向延长OA:∠BOD=∠AOC=α(2)由绝配角构造等腰三角形经典模型图常用结论∠A=2α,∠B=90°-α过点B作BD⊥AC于点D,在CA上取一点E,使CD=DE∠C=90°-αAB=AC,∠CBD=αBC=BE例1、如图,在四边形ABCD中ADBC,∠BAC=90∘−12∠CAD,AC,BD相交于点E,且∠BEC= 60°,若AD=5,BD=15,求AC的长.例2、如图,在△ABC中,AD⊥BC于点D,点E在AB上,连接DE,2∠C+∠BDE=180°,AC= BD,∠AED=∠C,BE=3,求CD 的长.例3、如图,△ABC内接于⊙O,∠CAB=60°,过点C作CD⊥AB于点D ,点E在弧AC上,∠ACE,若CD=a,CE=b,求AB 的长.(用含a,b 的连接AE,BE,CE,满足∠ACB=90∘−12式子表示)练习题∠BDC;1、如图,在△ABC中,AB=AC,D在△ABC外,且∠ADB=90∘−12(1)求证:∠DBC=∠DAC;(2)若∠ACD=60°,BD=5,CD=3,求AD的长。

2、阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D在BC上,点E在AC 上,∠ADC=2∠EBC ,若CD=mCE ,求CEAD 的值。

(用含m 的代数式表示)小明通过探究发现,将△ACD 绕点C 顺时针旋转90°得到ΔBCM (图2),再证出EM=BM ,问题就得到解决,(1) 请你根据小明的思路解决这个问题; 参考小明解决问题的方法,解决下面的问题;(2)如图3,在等边△ABC 中,D 为边AB 上一点,E 为CD 上一点,∠EBC=2∠ACD ,F 为BE 上一点且∠FDE=60°,若EF=kBF ,求 DEDF 的值.(用含有k 的代数式表示)类型2 倍半角经典模型图常用结论 角平分线法:作二倍角的角平分线,从而得到相等的角; 条件:∠AOB=2∠CO′D ; 辅助线:作 OE 平分∠AOB∠AOE=∠BOE =∠CO' D加倍法:加倍半角,从而得到相等的角; 条件:∠AOB=2∠CO′D ; 辅助线:作∠CO' E=∠CO' D∠DO′E=∠AOB等腰法:由二倍角关系,作以二倍角为顶角的外角的等腰三角形条件:∠ABC=2∠C;辅助线1:作BD平分∠ABC;辅助线2:∠CAD=∠C;辅助线3:延长CB至点D,使DB=ABDB=DC,AB=AD=DC,AD=AC例1、如图,在Rt△ABC中,∠ABC=90°,点D,E分别在边AC,BC上,∠C=2∠BAE,EA 平分∠BED,BE=5,CD=12,求CE的长.例2、如图,在正方形ABCD中,E为CD的中点,点F在CE上,且∠BAF=2∠DAE,求证:EF=CF.例3、如图,在△ABC中,∠ACB=2∠B,点F在边AB上,点G 在边AC上,CD=CG,FD⊥BC于D,且FD平分∠BFG,FD=kDG,探究AB与AC之间的数量关系,并证明.(用含k 的式表示)练习题1、如图,在四边形ABCD中,∠BCD=90°,对角线AC、BD相交于点O,若AB=AC=5,BC=6,∠ADB=2∠CBD,求AD的长.2、如图,在四边形ABCD中,∠BCD=90°,连接AC,BD,AB=AC,并且∠ADB=2∠CBD,若AD=5,BC=8,求AB的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档