电磁场部分习题答案1.1-5.1
工程电磁场课后答案1(完整)

0.29K
7401
VOH 74LS00
2.9.1 驱动: 负载: 拉电流: 灌电流: 扇出:
2.9.2 VOH > VIH VOL < VIL IOH > IIH IOL > IIL
第三章 组合逻辑电路分析与设计
3.1.2证明(C)A ABC ACD C D E
A ACD (C D )E
(b) _______ ________ _______ ________
A B C D C D A D
( A B)(C D) (C D)( A D)
(C D)( A B D)
AC AD BC BD CD D
AC BC D
3.2.1展开最小项(a) L A(B C) A BC A(B B)(C C) ( A A)BC
mi
3.2.2 (a)
______________________
___________________
AC ABC BC ABC AC BC BC ABC
灌电流多余: (8-4.8)/0.4=8
N=min(8,17)=8
2.4.5
__________________ ____ ____
L AB BC D E
AB BC D E
2.4.6 RP计算 (1)拉电流时
VCC R IP IH 74LS 00 VOH 7401
D=0 选中低位片1;D=1 选中高位片2
01234
56789
1
0
1
A B C D
0
2
0
4.2.9 7位数字译码显示电路
电磁场课后答案5

k1 sin θ B = k 2 sin θ 2
案
ε 2 k1 cosθ B = ε 1k 2 cosθ 2
cos θ 2 =
网
= 0, k z2 ε 1 − k z1 ε 2 = 0
ww w
Z 2 − Z 1 ωε 2 = k z2 Z 2 + Z1
− +
ωε 2
.k hd
k z1
对于 TM 模
ωε 1
所以
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
θ B = arccos
ε 1 ε 1 μ1 − ε 2 μ 2 2 μ1 ε 12 − ε 2
co
m
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2
当
μ1 = μ 2 ,θ B = arccos
ε1 + ε 2
2 2 μ2 k1 k 2 1 − cos θ B = 1 − 2 12 cos 2 θ B k2 μ1 k 2
两边平方,均整理后得到
cos 2 θ B =
所以
μ1 μ1ε 1 − μ 2ε 2 2 ε 1 μ12 − μ 2
θ B = arccos
k z2 ΓTM =
要使 ΓTM 即 由相位匹配条件: 由(1)
ρs
y =d
=0
案
网
ww w
(2) ∇ × E ≠ 0 ,是有旋场,不能用标量函数的负梯度表示
.k hd
aw .
co
⎞ ⎟ ⎟ ⎠
解: (1) ∇ ⋅ E =
∂E x ∂E y ∂E z + + =0 ∂x ∂y ∂z ⎛ ∂E y ∂E x ⎛ ∂E z ∂E y ⎞ ⎛ ∂E x ∂E z ⎞ ∇ × E = x0 ⎜ ⎜ ∂x − ∂y ⎜ ∂y − ∂z ⎟ ⎟ + y 0 ⎜ ∂z − ∂x ⎟ + z 0 ⎜ ⎝ ⎠ ⎝ ⎝ ⎠ π ⎛π ⎞ ⎛π ⎞ = −y 0 jkA sin⎜ y ⎟e j (ωt − kz ) − z 0 A cos⎜ y ⎟e j (ωt −kz ) d ⎝d ⎠ ⎝d ⎠
电磁场与电磁波课后习题解答(第五章)

习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为 2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+= 移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d ) 处,镜像电荷为-q ,在(错误!无效。
镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为 ]2)22(2[04R D DRq D D qR Q q F--+=επ 其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
由于导体球不接地,本身又带电Q ,必须在导体球加上两个镜像电荷来等效导体球对球外的影响。
在距离球心b=R 2/D 处,镜像电荷为q '= -Rq/D ;在球心处,镜像电荷为D Rq Q q Q q /2+='-=。
《电磁场和电磁波》课后习题解答(第一章)

第一章习题解答【习题Ll解】【习题L2解】【习题L3解】(1)要使ALR,则须散度A-B=O所以从Z∙5=T+3H8c=0可得:3b+8c=l即只要满足3b÷8c=l就可以使向量二和向量了垂直。
(2)要使4||月,则须旋度AxB=O所以从可得b=-3,c=-8【习题1・4解】A=I2以+9e y+6z,B=CIeX+be y,因为3JLA,所以应有A∙3=0g∣j(12久+9e y+e z^∙^ae x+Z?Gy)=12Q+9/?=0(I)又因为同=1;所以病存=1;(2)一4由⑴,⑵解得Q=±《,"=+W【习题1.5解】由矢量积运算规则4_B=A?C a x a2a3=(%Z-+(a3x-a x z)e y+(01y-a2x)e7xyz =8名+纥5+BZeZ取一线元:dl=e x dx+e y dy+e z dz则有dx_dy_dz则矢量线所满足的微分方程为丁二万一=Hιy xy"z或写成=常数)a2z-a3ya3x-a l za↑y-a2x求解上面三个微分方程:可以直接求解方程,也可以采用以下方法d(qx)="(/丁)二d(%z)a i a2z-a i a3ya2a3x-a l a2za l a3y-a2a i xxdx_ydy_ZdZx(a2z-a3y)y{a3x-a x z)z(a l y-a2x)由(1)(2)式可得d(a2y)=k(a2a3x-aλa2z)ydy=k(a3xy-a}yz)(4)对⑶⑷分别求和所以矢量线方程为【习题L6解】矢量场A=(αxz+x2)eχ+Sy+孙2)0+{z-z1-∖-cxz-2xyz)e z假设A是一个无源场,则应有divΛ=O即:divA=V•4=空L+空L+空■=O∂x∂y∂z因为A=axz+X2∕ξ=by+xy1A z=z-z1+cxz-2xyzx所以有divA=az+2x+b+2xy+l-2z+cχ-2xy=X(2+c)÷z(a-2)+b+l=0 得a=2,b=-1,c=-2【习题1.7解】设矢径r的方向与柱面垂直,并且矢径不到柱面的距离相等(r=a)f∙ds-[rds=a∖ds=a2πah所以,①=S JSJS【习题1.8解】φ=3X2y i A=X2yze v+3xy2e^而rot((∕A)=Vx(以)=×A÷V^×A又=巴?十3?+再等=6xye x+3jc2e y ox-oy∂z所以+9x3y2e v-lSx2y3e v+6x3y2ze z=3X2y2[(9X一X2)e x-9yeγ+4xze z]【习题1.9解】所以&CyCzrotA=VXA=———∂x∂y∂zA x A y A(-1+1)&+(4/Z-4xz)e、+(2y-2y)&=6由于场H的旋度处处等于0,所以矢量场A为无旋场。
电磁学答案第二版习题答案第五章

B=
解: (1) (2)
l u0 nI 2 (2 × − 1) 2 2 l + 122 4
l总 = 2nlπ R
5.2.10 附图中的A、C是由均匀材料支撑的铁环的两点,两根直载流导线A、C沿半径方向伸出,电流 方向如图所示,求环心O处的磁场B。 解:∵
B10 = B40 = 0 ,
6
5.3.3 电子在垂直于均匀磁场B的平面内作半径为1.2cm,速率为 10 m/s的圆周运动(磁场对它的洛伦 兹力充当向心力, )求B对此圆轨道提供的磁同通量。 解:∵
Φ m = Bπ R 2 ,而B由R=mv/qB Φm = mvπ R q
∴
5.4.1 ‐同轴电缆由一导体圆柱和同一轴导体圆筒构成,使用时电流I从一导体流去,从另一导体流回, 电流都是均匀地分布在横截面上,设圆柱的半径为R1,圆筒的半径分别为R2和R3(见附图) ,以r代表 场点到轴线的距离,求r从O到无穷远的范围内的磁场(大小)B。
∴
B = ∫ dB =
u0 N u NI cos 2 θ dθ = 0 ∫ πR 4R
5.2.16 有一电介质薄圆盘,其表面均匀带电,总电荷为Q,盘半径为a,圆盘绕垂直于盘面并通过圆 心的轴转动,每秒n转,求盘心处的磁场(大小)B。 解:与半径不同的一系列圆心载流3圆等效,
B=
∵ 圆电流圆心处
l
B=
u0 ΔI 2π R , B= u0 h πR
∵ ΔI = 2 h ∴
5.2.13 将上题的导体管沿轴向割去一半(横截面为半圆) ,令所余的半个沿轴向均匀地流过电流I,求 轴线上的磁场(大小)B。
dB =
解:∵
u0 dI 2π R , dI = I Rdα πR
电磁场理论习题及答案_百度文库

习题5.1 设x0的半空间充满磁导率为的均匀介质,x0的半空间为真空,今有线电流沿z轴方向流动,求磁感应强度和磁化电流分布。
5.2 半径为a的无限长圆柱导体上有恒定电流J均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0,导体外的磁导率为。
5.3 设无限长圆柱体内电流分布,J azrJ0(r a)求矢量磁位A和磁感应B。
5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平行,并近似为向左侧延伸至无穷远。
试求圆弧中心点处的磁感应强度。
5.5 两根无限长直导线,布置于x1,y0处,并与z轴平行,分别通过电流I 及I,求空间任意一点处的磁感应强度B。
5.6 半径的磁介质球,具有磁化强度为M az(Az2B)求磁化电流和磁荷。
5.7已知两个相互平行,相隔距离为d,共轴圆线圈,其中一个线圈的半径为a(a d),另一个线圈的半径为b,试求两线圈之间的互感系数。
5.8 两平行无限长直线电流I1和I2,相距为d,求每根导线单位长度受到的安培力Fm。
5.9 一个薄铁圆盘,半径为a,厚度为b b a,如题5.9图所示。
在平行于z轴方向均匀磁化,磁化强度为M。
试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。
5.10 均匀磁化的无限大导磁媒质的磁导率为,磁感应强度为B,若在该媒质内有两个空腔,,空腔1形状为一薄盘,空腔2像一长针,腔内都充有空气。
试求两空腔中心处磁场强度的比值。
5.11 两个无限大且平行的等磁位面D、N,相距h,mD10A,mN0。
其间充以两种不同的导磁媒质,其磁导率分别为10,220,分界面与等磁位面垂直,求媒质分界面单位面积受力的大小和方向。
题5.11图5.12 长直导线附近有一矩形回路,回路与导线不共面,如题5.12图 a所示。
证明:直导线与矩形回路间的互感为M0aln2R2b R2C22b2R2题5.12图a5.13 一环形螺线管的平均半径r015cm,其圆形截面的半径a2cm,铁芯的相对磁导率r1400,环上绕N1000匝线圈,通过电流I0.7A。
(完整版)大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B ϖ的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ϖ、2B ϖ和3Bϖ表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ϖϖ,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ及3Bϖ,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ϖϖ,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ、3Bϖ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ϖϖ. [ ]8.a R r OO ′I在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B)22202R r a a I -⋅πμ(C) 22202r R a a I-⋅πμ (D) )(222220a r Ra a I -πμ [ ]参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空心部分轴线上的磁感强度可以看成是电流密度为J 的实心圆柱体在挖空部分轴线上的磁感强度1B ϖ和占据挖空部分的电流密度-J 的实心圆柱在轴线上的磁感强度2B ϖ的矢量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=μ 所以挖空部分轴线上一点的磁感强度的大小就等于)(22201r R IaB -π=μ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减小 2分在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) 3分13. 0 1分I 0μ- 2分14. 4×10-6 T 2分 5 A 2分15. I0μ 1分 0 2分2I0μ 2分16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v ϖ方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B ϖϖϖϖϖ+++= ∵ 1B ϖ、4B ϖ均为0,故32B B B ϖϖϖ+= 2分)2(4102R I B μ= 方向⊗ 2分 242)sin (sin 401203R I a I B π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 18. 解:电流元1d l I ϖ在O 点产生1d B ϖ的方向为↓(-z 方向) 电流元2d l I ϖ在O 点产生2d B ϖ的方向为⊗(-x 方向) 电流元3d l I ϖ在O 点产生3d B ϖ的方向为⊗ (-x 方向) 3分kR I i R IB ϖϖϖπ-+ππ-=4)1(400μμ 2分 19. 解:设x 为假想平面里面的一边与对称中心轴线距离,⎰⎰⎰++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=μ (导线内) 2分r I B π=202μ (导线外) 2分)(42220x R R Il -π=μΦR R x Il +π+ln20μ 2分 令 d Φ / d x = 0, 得Φ 最大时 Rx )15(21-= 2分20. 解:洛伦兹力的大小 B q f v = 1分对质子:1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分∵ 21q q = 1分 ∴ 2121//m m R R = 1分21.解:电子在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接入射和出射点的线段将是圆周的一条弦,如图所示.所以入射和出射点间的距离为:)/(3360sin 2eB m R R l v ==︒= 3分2解:在任一根导线上(例如导线2)取一线元d l ,该线元距O 点为l .该处的磁感强度为θμsin 20l I B π=2分 方向垂直于纸面向里. 1分电流元I d l 受到的磁力为 B l I F ϖϖϖ⨯=d d 2分其大小θμsin 2d d d 20l lI l IB F π== 2分 方向垂直于导线2,如图所示.该力对O 点的力矩为 1分θμsin 2d d d 20π==lI F l M 2分 任一段单位长度导线所受磁力对O 点的力矩⎰⎰+π==120d sin 2d l l l I M M θμθμsin 220π=I 2分 导线2所受力矩方向垂直图面向上,导线1所受力矩方向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /μ 6.25×10-4 T ·m/A 2分=-=1/0μμχm 496 2分9. 一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .10.任意曲面在匀强磁场B ϖ中,取一半径为R 的圆,圆面的法线n ϖ与B ϖ成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B ϖϖd Φ_______________________.11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ϖ_____________.(2) 磁感强度B ϖ沿图中环路L 的线积分 =⎰⋅L l B ϖϖd ______________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB ϖϖd 等于:____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.17.一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ϖ2d l I ϖ3d l I ϖO如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平面内,导线2、3在Oyz 平面内.试指出电流元1d l I ϖ、2d l I ϖ、3d l I ϖ在O 点产生的Bϖd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向).19.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。
它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。
1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。
1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。
它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。
第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。
2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。
2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。
2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。
第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。
3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。
3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。
3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。
第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。
4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。
电磁场习题答案

1-8 参照例图 1.1,设有标量 f ( R) ,求证:以 p ′( x ′, y ′, z ′) 为动点时的梯度 ∇ ′f ( R) 间与
以 p ( x, y, z ) 为 动 点 的 梯 度 ∇f ( R ) 间 满 足 关 系 : ∇ ′f ( R ) = −∇f ( R ) 。 其 中
R = r − r′ 。
∇• (AR) 。
答案: ∇ ? R = ; ∇ × R = 0; ∇ × ( R R ) = 0; ∇ ? AR ) = 3 A 。
( )
1-12 证明: ∇ • ( A × B) = B • (∇ × A) − A • (∇ × B) 。 1-13 证明旋度定理(1.47) 。
2 2 1-14 在圆球坐标系中, 已知 A = (sin θ R )a R + R sin θa θ + R sin θ cos ϕa ϕ , 求∇ • A 。
2
坐标原点一侧空间中的电场强度。 答案: E = 8.34( ax − 3a y + 6az ) 2—5
V m。
一点电荷 Q = 50 nC ,位于直角坐标系的原点,求点 (2,, 4 − 5) 处的电通量密度。
答案: D = 2—6
5 (2ax + 4a y − 5az ) 。 54π
两种理想电介质的相对介电常数分别为 ε r1 = 2.5和ε r 2 = 5 ,其分界面为 z = 0 的平 面。若已知介质 1 中的电场强度 E = 3a x + 4 a y + 6 a z ,求:① 介质 2 一侧的电场强 度 E2 和电位移矢量 D2 ;② E2 和 D2 是介质 2 中任意点处的场量表达式吗?为什 么? 答案:① E2 = 3ax + 4a y + 3az ; D2 = ε 0 (15ax + 20a y + 15az ) 。
电磁场答案——精选推荐

电磁场答案1.1求下列温度场的等温线 1)T xy =,2)T x y=+122解求等温线即设定相关的⽅程为常数,因此可得⑴ C xy =,xC y =;⑵ C yx=+221.2求⽮量场A e e e =++x y z x y z 2 经过点M (.,.,.)102030的⽮量线⽅程。
解根据⽮量线的定义,可得zz yy xx 2d d d ==解微分⽅程,可得 x c y 1=,22x c z =将点M (.,.,.)102030的坐标代⼊,可得 21=c ,32=c 即 x y 2=,23x z = 为所求⽮量线⽅程。
1.3设有标量场u xy z =-22,求u 在点(.,.,2010 1.0)-处沿该点⾄(.,.,3010 -1.0)⽅向的⽅向导数。
在点(.,., 1.0)2010-沿什么⽅向的⽅向导数达到最⼤值?其值是多少?解点(.,.,2010 1.0)-⾄点(.,.,3010 -1.0)的⽅向余弦为()()()3111112323cos 222=--+++--=22=--+++-+=β,()()()3211112311cos 222-=--+++---=γ;⼜有220-==??M M yxu ,420==??M M xy u ,220-=-=??M M zzu据⽅向导数的定义,可得3103=γβαM M M M zu yu xu lu当⽅向余弦均为1时,⽅向导数达到最⼤值,即沿z y x e e e G 242-+-=⽅向导数达最⼤值,()()6224242222==-++-=G1.4求下列标量场的?u 1)u xy =2;2)u x y =+22;3)u y x=e sin ;解据 z y x zu yu xu u e e e ??++=,可得1.y x x y u e e 22+=?2.y x y x u e e 22+=?3.y xx x y e y e u e e cos sin +=? 1.5设S 为上半球⾯xy za 2222解将r e e e =++x y z x y z ⽤球坐标表⽰,则在S ⾯上有n a e r =,因此,可得3222d a aa sππ=?=??s r1.6求均匀⽮量场A 通过半径为R 的半球⾯的通量。
《电磁场与电磁波》课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场课后答案 第5章 时变电磁场和平面电磁波-1

& + H e jω t
]
故 S (t ) =
1 & & & & & & & & [ E × H + E × H + E × H e j 2ω t + E * × H e j 2ω t ] 4 1 & & & & = Re[ E × H + E × H e j 2 ω t ] 2
坡印廷矢量代表瞬时电磁功率流密度。 坡印廷矢量代表瞬时电磁功率流密度。
& & 由(a ), × × E = jω × H
& & & 将(b )代入,有 E 2 E = ω2εE
将(c )代入,得 & & 2 E + k 2 E = 0
( )
k = ω ε
& & 同理, 2 H + k 2 H = 0
复矢量边界条件
& & n × ( E1 E2 ) = 0 & & & n × ( H1 H 2 ) = J s & & & n ( D1 D2 ) = ρ s & & n (B B ) = 0
[
jω t
] = y ω
k
E 0 cos( ω t kz
0
π
2
)
η0
E0
sin( ω t kz )
ω
k
0
ω 0 = ω 0ε
=
0
0 = η ε0
0
14
复数形式Maxwell方程组 §5.2 复数形式 方程组
电磁场基础钟顺时习题答案

第1章 矢量分析1.1 / 1.1-1 矢径z z y y x xr ˆˆˆ++=与各坐标轴正向的夹角分别为α,β,γ。
请用坐标(x,y,z )来表示α,β,γ ,并证明1cos cos cos 222=++γβα[解] γβαcos ˆcos ˆcos ˆˆˆˆˆ222z y xzy x z z y y x xr r r++=++++== 222222222c o s ,c o s ,c o s zy x z zy x y zy x x ++=++=++=∴γβα1cos cos cos 222=++γβα, 得证.1.2 / 1.1-2设xy 平面上二矢径a r 、b r 与x 轴的夹角分别为α、β,请利用b a r r ⋅证明βαβαβαs i n s i n c o s c o s )c o s (+=-。
[解] 设 ααs i n ˆc o s ˆa a a r y r xr += ββsin ˆcos ˆb b b r y r xr += 则 βαβαs i n s i n c o s c o s b a b a b a r r r r r r +=⋅ 因 a r 、b r 夹角为βα-,如图所示,有 )cos(βα-=⋅b a b a r r r r比较上二式得 βαβαβαs i n s i n c o s c o s )c o s (+=-, 得证.1.3 / 1.1-3 z y xA ˆ9ˆˆ--=,3ˆ4ˆ2ˆz y xB +-=,求:(a)B A -; (b) B A ⋅; (c) B A ⨯ [解] (a) B A -=4ˆ5ˆˆ)31(ˆ)49(ˆ)21(ˆz y x z y x---=+---- (b) B A ⋅=3533623ˆˆ4ˆ9ˆ2ˆˆ=-+=⋅-⋅+⋅z z y y x x(c) 342191ˆˆˆ---=⨯z y xB A14ˆ5ˆ31ˆ)184(ˆ)32(ˆ)427(ˆz y x z y x+--=+-+--+--= 1.4 / 1.1-4 用两种方法求1.1-3题矢量A 和B 的夹角α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E0 0
d zd
2
2
zd 2
方向垂直于带电平板向外
v E0
z 0
zˆ
v E1
d 2 0
zˆ
zd 2
v E1
d 2 0
zˆ
2-4 已知某种形式分布的电荷在球坐标系中所产生
的电位为 (r) qebr ,其中 q 、b 均为常数,周围介质
为 ,求此电荷r分布
解: 利用
v
D
可求出电荷分布
先求出
v D
证明:
1 Rˆ
( ) R
R2
∵ 1
1
f (x, y, z)
R (x x)2 ( y y)2 (z z)2
( 1 ) f f xˆ f yˆ f zˆ
R
x y z
1 2(x x)xˆ 2( y y) yˆ 2(z z)zˆ 2 (x x)2 ( y y)2 (z z)2
x y z
y z
z x
x y
( Az Ay )xˆ xˆ ( Ax Az ) yˆ yˆ ( Ay Ax )zˆ zˆ
x y z
y z x
z x y
2 Az 2 Ay 2 Ax 2 Az 2 Ay 2 Ax 0 xy xz yz yx zx zy
得证
补充题:设 R (x x)xˆ ( y y) yˆ (z z)zˆ
v R
Rˆ
R3
R2
得证
v
求矢量场 A 从所给球面 S 内穿出的通量。
v A x3xˆ y3 yˆ z3zˆ
S 为:x2 y2 z2 a2
提示:利v 用高斯散度定理求解
解:矢量场 A 从所给球面 S 内穿出的通量可表示为
vv
ÑS A dS
利用高斯散度定理,则有
vv
v
ÑS A dS V AdV
1.1-1.6习题解答 补充作业题:
1、已知两矢量场分别为:
A xˆ 2 yˆ 3zˆ; B 3xˆ yˆ 2zˆ
求: A B ? A B ?
vv
解:A B (xˆ 2yˆ 3zˆ)( 3xˆ yˆ 2zˆ) 3 2 6 1
v A
v B
(xˆ
2
yˆ
3zˆ)(3xˆ
∵ 在直角坐标系中
v A
Ax
Ay
Az
3x2 3y2
3z2
3r 2
x y z
Ñ ∴
vv A dS
v AdV
3r2dV a 3r2 4 r2dr 12 a5
S
V
V
0
5
2.1-2.2 习题解答
P62 2-1 真空中一半径为 a 的圆环,环上均匀分布着线
电荷,其线电荷密度为 l ,求圆环轴线上任一点处的电
E1 v E2
dS v
dS
0
Q
0
v E1 0
E2
4
r2
Q
0
a
v E2
Q
40r 2
rˆ
再求电位:选无限远处为电位参考点
ra
(r)
v v E dl
r
a r
v E1
drv
a
v E2
drv
a
Q
4 0 r 2
rˆ
drv
Q
40a
r a
(r)
v v E dl
r
r
v E2
drv
∴ f 0
得证
1-7 证明:
v A 0
v A
xˆ yˆ zˆ
x y z
Ax
Ay
Az
xˆ(Az Ay ) yˆ( Ax Az ) zˆ( Ay Ax )
v
y z
z x
x y
A
( xˆ yˆ zˆ)g[xˆ( Az Ay ) yˆ( Ax Az ) zˆ( Ay Ax )]
:
vv
D E
E
rˆ
r
q r2
(br
1)ebr rˆ
qb 2 e br
(r
0)
r
设 r 0 处有电荷 q 存在,空间中的场 (r) qebr 是由 和
r
q 共同作用产生的。即:
SE
dS
Q
1
(V
dV
q)
于是
q (br 1)ebr 4r 2 1 r qb2ebr 4r 2dr q
x y z
xˆ yˆ zˆ rotA
x y z
Ax Ay Az
xˆ(Az Ay ) yˆ( Ax Az ) zˆ( Ay Ax )
y z
z x
x y
I
I
2r2 (11) r2
P26
1-6 证明: f 0
证明:∵ xˆ yˆ zˆ
x y z
f f xˆ f yˆ f zˆ x y z
v dS
q
0
E1S
E1S
1
0
d S
E1
d 2 0
y
v E1
方向垂直于带电平板向外
再求带电平板内的电场
z
作一关于 y 轴对称、高为2 z ( z d ) 2z
S
的立方体为高斯面,如图所示 2
d
设通过该立方体两底面的电场
v E0
为
ÑS
v E2
v dS
q
0
z
E0S
E0S
1
0
2
z
S
x
v E0
y
综合 起来
f xˆ yˆ zˆ (f xˆ f yˆ f zˆ)
x y z x y z
2 f xˆ yˆ 2 f xˆ zˆ 2 f yˆ xˆ 2 f yˆ zˆ 2 f zˆ xˆ 2 f zˆ yˆ
xy
xz
yx
yz
zx
zy
xˆ yˆ yˆ xˆ xˆ zˆ zˆ xˆ yˆ zˆ zˆ yˆ
Rˆ
v R
rv rv
zzˆ arˆ
RR
a2 z2
v
E
Rˆ
l a 4 0 R
2
d
2
l a
0 40 (a2 z2 )
zzˆ arˆ d
a2 z2
l az
20
(a2
z2
3
)2
2-2 求真空中半径为a 电量为 Q 的均匀带电球面所
产生的电位、电场强度。
Q
解: 先求电场强度:
ra
ra
v vQ
ÑS ÑS
场
解: 在带电圆环上任取一小段 dl
P(0, 0, z)
对应的元电荷为 dq ldl
v R
它在 P(0,0, z) 点处引起的电场为
v dE
dq
4 0 R 2
Rˆ
dq ldl
整个带电圆环在 P(0,0, z) 点处引起的电场为
v
E
dq
4 0 R 2
Rˆ
采用柱坐标系
R2 a2 z2
dq ldl lad
yˆ
2zˆ)
zˆ 2yˆ 6zˆ 4xˆ 9yˆ 3xˆ 7xˆ 11yˆ 5zˆ
2、设有无限长导线与Oz轴一致,通以电流 Izˆ 后,在
导线周围产生磁场,M(x,y,z)点处的磁场强度为:
H
I
2r 2
( yxˆ
xyˆ )
求
divH ?; rotA ?
解:
v divH
H x H y H z 0
r
Q
4 0 r 2
rˆ
drv
Q
40r
2-3 用高斯定律求厚度为 d 、体电荷密度为 的均匀
带电无限大平板在空间各区域所产生的电场。
解:如图建立坐标系
z
S
先求带电平板之外的电场
作一关于 y 轴对称、高为2z(z 的立方体为高斯面,如图所示
d 2
)
d
v
设通过立方体两底面的电场为 E1
x
ÑS
v E1