余弦定理的证明方法

合集下载

证明余弦定理的三种方法

证明余弦定理的三种方法

证明余弦定理的三种方法方法一:向量法证明假设在平面内有一个三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。

以A为原点,分别向B和C引出向量AB和AC。

根据向量的定义,可以得到向量AB和向量AC的长度分别为a和c,且向量AB与向量AC之间的夹角为角A。

根据向量的加法和减法,可以得到向量AC-向量AB的长度为c-a。

同样地,可以得到向量AB-向量AC的长度为a-c。

根据向量的模长和夹角的余弦关系,可以得到:(c-a)^2 = (b*cosA)^2 + (b*sinA)^2(a-c)^2 = (b*cosA)^2 + (b*sinA)^2将上述两个式子相加,可以得到:(c-a)^2 + (a-c)^2 = 2*(b*cosA)^2 + 2*(b*sinA)^2化简上述式子,可以得到:c^2 + a^2 - 2ac = 2b^2*cos^2A + 2b^2*sin^2A化简上述式子,可以得到:c^2 + a^2 - 2ac = 2b^2*(cos^2A + sin^2A)根据三角恒等式cos^2A + sin^2A = 1,可以得到:c^2 + a^2 - 2ac = 2b^2化简上述式子,可以得到:c^2 + a^2 - 2ac - 2b^2 = 0即:a^2 + b^2 - 2ab*cosC = 0即:a^2 + b^2 = 2ab*cosC这就是余弦定理的向量法证明。

方法二:几何法证明假设在平面内有一个三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。

以A为原点,向B和C引出向量AB和AC。

根据三角形的定义,可以得到:AB = b*cosA + b*sinAAC = c根据向量的减法,可以得到:AB - AC = b*cosA + b*sinA - c根据向量的模长和夹角的余弦关系,可以得到:(AB - AC)^2 = (b*cosA + b*sinA - c)^2化简上述式子,可以得到:(AB - AC)^2 = (b*cosA)^2 + (b*sinA)^2 - 2*b*cosA*c + c^2 - 2*b*sinA*c + 2*b*cosA*b*sinA化简上述式子,可以得到:(AB - AC)^2 = b^2*(cos^2A + sin^2A) - 2*b*c*cosA + c^2 - 2*b*c*sinA + 2*b^2*cosA*sinA根据三角恒等式cos^2A + sin^2A = 1,可以得到:(AB - AC)^2 = b^2 - 2*b*c*cosA + c^2 - 2*b*c*sinA + 2*b^2*cosA*sinA化简上述式子,可以得到:(AB - AC)^2 = b^2 + c^2 - 2*b*c*cosA根据向量的模长和夹角的余弦关系,可以得到:(AB - AC)^2 = a^2即:b^2 + c^2 - 2*b*c*cosA = a^2即:a^2 = b^2 + c^2 - 2*b*c*cosA这就是余弦定理的几何法证明。

怎么证明余弦定理

怎么证明余弦定理

怎么证明余弦定理证明余弦定理是高中数学中非常重要的知识点,它在解决平面几何和三角形相关问题时起着至关重要的作用。

接下来,我们将通过推理和几何图形的分析来证明余弦定理。

首先,我们从一个三角形ABC开始,设三角形的三边分别为a、b、c,对应的夹角为A、B、C。

我们需要证明的余弦定理是:c² = a² + b² - 2abcosC在证明过程中,我们将分别考虑三角形的三边之间的关系和夹角之间的关系,并通过几何图形进行辅助分析。

第一步,我们先来看一下三角形的三边之间的关系。

根据勾股定理,我们知道:对于一个直角三角形,斜边的平方等于其他两边平方之和。

因此,我们可以构造一个与三角形ABC有着共同斜边的直角三角形ADB。

我们可以将AB边作为直角三角形ADB的斜边,这样就可以得到:AB² = AD² + BD² (1)同样地,再构造一个与三角形ABC有着共同斜边的直角三角形AEC。

我们可以将AC边作为直角三角形AEC的斜边,这样可以得到:AC² = AE² + EC² (2)继续构造一个与三角形ABC有着共同斜边的直角三角形BFC。

我们可以将BC边作为直角三角形BFC的斜边,这样就可以得到:BC² = BF² + FC² (3)接下来,我们将这三个直角三角形组合在一起构成一个平行四边形ADEB。

根据平行四边形两对对边相等的性质,我们可以得到:AD = EC (4)BD = AE (5)我们将式(1)代入式(4),将式(2)代入式(5),可以得到:AB² = AD² + BD² (6)= EC² + AE²上式说明了AB的平方等于AC的平方加上BC的平方。

现在,让我们转向夹角之间的关系。

考虑三角形ABC的两边AB和AC之间的夹角BAC,以及直角三角形AEC的两个锐角。

余弦定理的八种证明方法

余弦定理的八种证明方法

余弦定理的八种证明方法1. 平面解析几何证明:设平面内三角形ABC,其中$\\overrightarrow{AB}=\\mathbf{a}$,$\\overrightarrow{BC}=\\mathbf{b}$,$\\overrightarrow{CA}=\\mathbf{c}$,则有以下关系:$$\\begin{cases}\\|\\mathbf{a}+\\mathbf{b}\\|^2=(\\mathbf{a}+\\mathbf{b})\\cd ot (\\mathbf{a}+\\mathbf{b})\\\\ \\|\\mathbf{a}-\\mathbf{b}\\|^2=(\\mathbf{a}-\\mathbf{b})\\cdot (\\mathbf{a}-\\mathbf{b})\\\\\\|\\mathbf{c}\\|^2=\\mathbf{c}\\cdot \\mathbf{c}\\end{cases}$$将这三个式子展开并简化运算,再利用向量的数量积展开,得到余弦定理的表达式。

2. 向量证明:设向量$\\mathbf{a}$和$\\mathbf{b}$的夹角为$\\theta$,则有向量$\\mathbf{a}-\\mathbf{b}$的模长为$\\|\\mathbf{a}-\\mathbf{b}\\|=\\sqrt{\\|\\mathbf{a}\\|^2+\\|\\mathbf{b}\\|^2-2\\|\\mathbf{a}\\|\\|\\mathbf{b}\\|\\cos\\theta}$,再利用向量的数量积展开,即可得到余弦定理的表达式。

3. 平面三角形面积证明:设平面内三角形ABC,其三边长度分别为$a$,$b$,$c$,其对应的高分别为$h_a$,$h_b$,$h_c$,则有以下关系:$$\\begin{cases}S=\\frac{1}{2}bh_a\\\\ S=\\frac{a\\sin C}{2}=\\frac{b\\sinA}{2}=\\frac{c\\sin B}{2}\\end{cases}$$将这两个式子联立并消去$S$,再利用正弦定理展开,得到余弦定理的表达式。

证明余弦定理的方法

证明余弦定理的方法

证明余弦定理的方法余弦定理是解决非直角三角形的一种三角函数关系定理,用于求解任意三角形其中一个角的边之间的关系。

证明余弦定理的方法可以利用向量、三角函数以及勾股定理。

我们假设有一个非直角三角形ABC,三边分别为a,b,c,其中∠A、∠B、∠C 分别对应于边a、b、c。

方法一:利用向量法证明余弦定理将三角形向量化,我们可以得到:向量AB = 向量AC + 向量CB利用向量之间的内积关系:AB * AB = (AC + CB) * (AC + CB)展开和化简上式,我们可以得到:AB * AB = AC * AC + 2 * AC * CB + CB * CB根据向量之间的内积关系以及余弦公式cosθ= (向量A * 向量B) / (∥向量A∥* ∥向量B∥),我们可以将上式变为:AB * AB = AC * AC + CB * CB + 2 * AC * CB * cos∠C根据向量的定义,我们可以得到:AB = √(AB * AB),AC = √(AC * AC),CB = √(CB * CB)将上述关系代入上式,我们可以得到:√(AB * AB) = √(AC * AC) + √(CB * CB) + 2 * √(AC * AC) √(CB * CB) * cosC化简上式,我们可以得到:AB^2 = AC^2 + CB^2 + 2 * AC * CB * cosC即余弦定理。

方法二:利用三角函数法证明余弦定理根据三角函数的定义,我们可以得到:cosA = AC / BCcosB = AB / ACcosC = AB / CB根据向量内积的定义,我们可以得到:AB * BC = ∥AB∥∥BC∥cosAAC * BC = ∥AC∥∥BC∥cosC将上式代入cosB的定义中,我们可以得到:cosB = (AB * BC) / (∥AB∥∥BC∥) = (AB * BC) / (√(AB * AB) √(BC * BC))代入向量AB * BC的定义,我们可以得到:cosB = (AB * AC + AB * CB) / (√(AB * AB) √(AC * AC + CB * CB + 2 * AC * CB * cosC))化简上式,我们可以得到:cosB = (AC + CB * cosC) / √(AC * AC + CB * CB + 2 * AC * CB * cosC)移项化简上式,我们可以得到:AC * AC + CB * CB + 2 * AC * CB * cosC = AC^2 + 2 * AC * CB * cosC + CB^2即余弦定理。

余弦定理的八种证明方法

余弦定理的八种证明方法

余弦定理的八种证明方法研究背景:2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。

目的意义:用多种方法证明余弦定理,扩展思维,了解更多的过程。

内容摘要:余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。

成果展示:一余弦定理的内容对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质a² = b² + c²- 2·b·c·cosAb² = a² + c² - 2·a·c·cosBc² = a² + b² - 2·a·b·cosC二证明方法方法一:平面几何法∵如图,有a+b=c ∴c·c=(a+b)·(a+b)∴c²=a·a+2a·b+b·b ∴c²=a²+b²+2|a||b|cos(π-θ)又∵Cos(π-θ)=-Cosθ∴c²=a²+b²-2|a||b|cosθ再拆开,得c^2=a²+b²-2*a*b*cosC方法二:勾股法在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC²=AD²+DC²b²=(sinB*c)²+(a-cosB*c)²b²=(sinB*c)²+a²-2ac*cosB+(cosB)²*c²b²=(sinB²+cosB²)*c²-2ac*cosB+a²b²=c²+a²-2ac*cosB方法三:解析法在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,设三角形三边abc则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA)∵BC=a则由距离公式得a=(c-bcosA)2-(bsinA)²化简得a=c²+b²-2bccosA∴a²=c²+b²-2bccosA方法四:面积法S△ACQ=(1/2)bc(cos∠BAC),S△PBC=(1/2)ac(cos∠CBA),bc(cos∠BAC)+ac(cos∠CBA)=2(S△ACQ+S△PBC)=c²,同理,ac(cos∠CBA)+ab(cos∠ACB)=a²,ab(cos∠ACB)+bc(cos∠BAC)=b².联立三个方程,bc(cos∠BAC)+ac(cos∠CBA)=c²(1)ac(cos∠CBA)+ab(cos∠ACB)=a²(2)ab(cos∠ACB)+bc(cos∠BAC)=b²(3)易得余弦定理方法五:正弦法∵==∴=bsin²B=csin²C=absinAsinB∴a²+b²-c²sin²A+sin²B-sin²C=absinAsinB∴a²+b²-c²=absinAsinB(sin²A+sin²B-sin²C)(1)又∵sin²A=1-cos2A2sin²B=1-cos2B2∴sin²A+sin²B=1-(cos2A+cos2B)=1-cos(A+B)cos(A-B)ΔABC中cos(A+B)=cos(180°-C)=-cosC∴sin²A+cos²B=1-cosCcos(A-B)(2)(2)带入(1)得a²+b²-c²=[1+cosCcos(A-B)-sin²C]=[cos²C+cosCcos(A-B)]=cosC[cosC+cos(A-B)]=cosC[-cos(A+B)+cos(A-B)]=2abcosC∴c²=a²+b²-2abcosC同理可证b²=a²+c²-2accosBa²=c²+b²-2bccosA方法六:摄影定理法∵a=bcosC+ccosB(1)b=acosC+ccosA(2)c=bcosA+acosB(3)∴(1)×a+(2)×b-(3)×c得c²=a²+b²-2abcosC同理可证b²=a²+c²-2accosBa²=c²+b²-2bccosA方法七:复数法如下图,在复平面内作△ABC,则=a(cosB+i sinB),= =b[cos(-A)+i sin(-A)],这里C'是平行四边形ACBC'的顶点,根据复数加法的几何意义可知,=+=+。

余弦定理的十一种证明方法

余弦定理的十一种证明方法

余弦定理的十一种证明方法余弦定理和勾股定理一样,证明方法也有很多种,下面给出比较经典的十一种证明方法,供大家参考!余弦定理:三角形任一边的平方等于另外两边的平方和减去这两边与其夹角余弦的积的二倍。

如图1所示,在△ABC中,若AB=c,BC=a,CA=b,则有:c2=a2+b2-2ab cosCa2=b2+c2-2bc cosAb2=c2+a2-2c a cosB.【证法1】如图2,在锐角△ABC中,作AD⊥BC于D,则CD=b cosC,AD=b sinC,在△ABD中,由勾股定理,得AB2=BD2+AD2,即AB2=(a-b cosC)2+(b sinC)2=a2-2ab cosC+b2cos2C+b2sinC2=a2-2ab cosC+b2,即c2=a2+b2-2ab cosC。

当C重合于D时,在Rt△ABC中,∠C=90°,因cosC=0,所以c2=a2+b2。

当C在D左侧时,△ABC为钝角三角形,如图3所示,∠ACD=180°-C,cos∠ACD=cos(180°-C)=-cosC,sin∠ACD=sin(180°-C)=sinC,所以CD=b cos(180°-C)=-b cosC,AD=b sin(180°-C)=b sinC,在Rt△ABD中,由勾股定理,得AB2=BD2+AD2,即AB2=(a-b cosC)2+(b sinC)2=a2-2ab cosC+b2cos2C+b2sinC2=a2-2ab cosC+b2,即c2=a2+b2-2ab cosC。

【证法2】将△ABC 的顶点C 置于原点,CA 落在x 轴的正半轴上,如图4所示,则A ,B ,C 三点的坐标分别为A (b ,0),B (a cosC ,a sinC),C (0,0).由此得|AB|2=(a cosC -b )2+(a sinC -0)2=a 2cos 2C -2ab cosC +b 2+a 2sin 2C=a 2+b 2-2ab cosC ,即c 2=a 2+b 2-2ab cosC 。

余弦定理的证明方法大全共十法

余弦定理的证明方法大全共十法

余弦定理的证明方法大全共十法余弦定理是解决三角形边长和角度之间关系的重要定理之一、下面将为您介绍十种余弦定理的证明方法。

2.利用勾股定理证明余弦定理。

假设有一个三角形ABC,其中∠C为直角。

利用勾股定理可以得到AB²=AC²+BC²。

将AC表示为向量a,BC表示为向量b,AB表示为向量c,并将这些向量投影到相应的轴上,即可得到余弦定理。

3.使用数学归纳法证明余弦定理。

首先,证明当n=1时余弦定理成立,即两边长相等的情况。

然后,假设当n=k时余弦定理成立,即k个边长相等的情况。

再证明当n=k+1时余弦定理也成立,即k+1个边长相等的情况。

4. 利用三角函数证明余弦定理。

假设三角形的两条边长分别为a和b,夹角为θ。

利用正弦函数和余弦函数的关系,可以得到a² + b² -2abcosθ = c²,即余弦定理。

5. 引入垂线证明余弦定理。

假设三角形中∠C为直角,CD为∠C的垂线。

通过利用勾股定理和几何性质可以得到c² = a² + b² - 2abcosC,即余弦定理。

6.利用平面几何证明余弦定理。

假设三角形中∠C为直角,连接AC和BC的垂直平分线交于点D。

通过平面几何知识可以得到∠ADC=∠BDC=θ/2、然后,利用正弦定理和余弦定理可以得到余弦定理的证明。

7.利用平行四边形的性质证明余弦定理。

假设有一个平行四边形ABCD,分别连接AC和BD的垂线交于点E。

通过平行四边形的性质可以得到BE=AD和CE=AF。

利用余弦定理可以得到余弦定理的证明。

8. 使用三角形的面积证明余弦定理。

假设在三角形ABC中,AD为边BC的高,a = BC,b = AC,c = AB。

利用三角形的面积公式可以得到c² = a² + b² - 2abcosθ,即余弦定理。

9.利用球面三角形证明余弦定理。

将平面上的三角形放置在一个球体的表面上。

证明余弦定理的方法

证明余弦定理的方法

证明余弦定理的方法一、引言余弦定理是三角形中非常重要的定理之一,它可以用来计算三角形中的各个角度和边长。

在本文中,我们将介绍如何证明余弦定理。

二、定义在三角形ABC中,设AB=c, AC=b, BC=a,且∠A对应的边为a,∠B 对应的边为b,∠C对应的边为c。

则余弦定理可以表示为:a²=b²+c²-2bc cosAb²=a²+c²-2ac cosBc²=a²+b²-2ab cosC三、证明1. 证明a²=b²+c²-2bc cosA根据余弦定理,我们有:cosA=(b²+c²-a²)/(2bc)将cosA代入原式得:a²=b²+c²-2bc(b²+c²-a²)/(2bc)化简后得:a²=b²+c²-2bc cosA因此,我们证明了第一个等式。

2. 证明b²=a²+c²-2ac cosB同样地,根据余弦定理,我们有:cosB=(a²+c²-b)/(2ac)将cosB代入原式得:b^2=a^2+c^2- 2ac(a^2+c^2-b)/( 2ac) 化简后得:b^2=a^2+c^2- 2ac cosB因此,我们证明了第二个等式。

3. 证明c²=a²+b²-2ab cosC最后,根据余弦定理,我们有:cosC=(a²+b²-c²)/(2ab)将cosC代入原式得:c^2=a^2+b^2- 2ab(a^2+b^2-c^2)/( 2ab) 化简后得:c^2=a^2+b^2- 2ab cosC因此,我们证明了第三个等式。

四、总结通过以上的证明过程,我们可以看出余弦定理的重要性和用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余弦定理的证明方法
余弦定理的证明方法在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC
a^2=b^2+c^2-2bc*cosA
b^2=a^2+c^2-2ac*cosB
下面在锐角△中证明第一个等式,在钝角△中证明以此类推。

过A作AD⊥BC于D,则BD+CD=a
由勾股定理得:
c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2
所以c^2=(AD)^2-(CD)^2+b^2
=(a-CD)^2-(CD)^2+b^2
=a^2-2a*CD +(CD)^2-(CD)^2+b^2
=a^2+b^2-2a*CD
因为cosC=CD/b
所以CD=b*cosC
所以c^2=a^2+b^2-2ab*cosC
在任意△ABC中, 作AD⊥BC.
∠C对边为c,∠B对边为b,∠A对边为a -->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC=AD+DC
b=(sinB*c)+(a-cosB*c)
b=sinB*c+a+cosB*c-2ac*cosB
b=(sinB+cosB)*c-2ac*cosB+a
b=c+a-2ac*cosB
所以,cosB=(c+a-b)/2ac
2
如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c . 以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 现将CB平移到起点为原点A,则AD = CB . 而|AD| = |CB| = a ,∠DAC = π-∠BCA = π-C ,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C)) 即D点坐标是(-acosC,asinC), ∴AD = (-acosC,asinC) 而AD = CB ∴(-acosC,asinC) = (ccosA-b,csinA) ∴asinC = csinA …………①-acosC = ccosA-b ……②由①得asinA = csinC ,同理可证asinA = bsinB ,∴asinA = bsinB = csinC . 由②得acosC = b-ccosA ,平方得:a2cos2C = b2-2bccosA + c2cos2A ,即a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得a2sin2C = c2sin2A ∴a2 = b2 + c2-2bccosA . 同理可证b2 = a2 + c2-2accosB ,c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理证明完毕。

3△ABC 的三边分别为a,b,c,边BC,CA,AB上的中线分别为ma.mb,mc,应用余弦定理证明:
mb=(1/2)[(√2(a^2+c^2)-b^2)]
mc=(1/2)[(√2(a^2+b^2)-c^2)]ma=√(c^2+(a/2)^2-ac*cosB) =(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
4
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]
=(1/2)√(2b^2+2c^2-a^2)
证毕。

来源网络搜集整理,仅作为学习参考,请按实际情况需要自行编辑。

相关文档
最新文档