5(3)-定积分的换元法和分部积分法

合集下载

高等数学5-3定积分的换元法和分部积分法

高等数学5-3定积分的换元法和分部积分法

设t=-u有
0
F ( x ) xf( u )( d u ) xf( u )d u
0
0
即 F ( x) xf(u)duF(x) 0
证毕,同理可证(2)
29
二、定积分的分部积分法
设函数u( x)、v( x)在区间a,b上具有连续导数,
则有abudv
uvb a
abvdu.
定积分的分部积分公式
推导 uvuvuv, a b(u v)d xa buvd xa bu vd x,
x2, x2.
1 4 f ( x - 2 ) d x 1 2 1 + c o s 1 ( x - 2 ) d x 2 4 ( x - 2 ) e - ( x - 2 ) 2 d x
tg
1 2
1e-4 2
1. 2
16
解2 令x-2=t,有
4 f(x-2)dx 2 f(t)dt
1
1
011+c1ostdt02te-t2dt
0
0
只和s有关
28
例13若 f (是t ) 连续奇函数,证明
x f是( t 偶) d t函数; 0
若 f ( t ) 是连续偶函数,证明 x f ( t是) d奇t 函数。 0
证明:(1)令 F(x) x f (t)dt, 则F (x) x f(t)dt
0
0

F(x)
x
f(t)dt,
12 20
(1 x2)12
1 2
12
0
3 1 12 2
31
例15 计算
4
xdx .
0 1cos2x
解 1 c2 o x 2 s c2 o x , s
4

定积分的分部积分法

定积分的分部积分法

0
I n
(n 1)
2 sinn2 x cos2 x d1 sin2 x) dx 0
(n 1) In2
由此得递推公式
In
n1 n
I
n2
于是
I2m
2m1 2m
2I22mmm232
I2m434
1 2
I0
I 2m1
2m 2m1
22Im2mm121
I 2m354
dx
b
a
u(
x)v(
x)
dx
u(x)v(x)
b a
abu(x) v(x) dx
例7. 计算
1 1
解: 原式 = x arcsin x 2 2 00
x dx 1 x2
1
1
2(1
x
2
)
1 2
d
(1
x
2
)
12 2 0
1
(1 x2 )2
1 2
12
0
3 1
12 2
例8. 证明
n1 n
n3 n2
b
f (x)d x
(令 x (t) )
a
或配元
(t) (t)
(t) d(t)
配元不换限
例1. 计算
解: 令 x asin t , 则 dx a cos t d t , 且
当 x 0 时, t 0;
x
a
时,
t
2
.
y

原式 =
a2
2 cos 2 t d t
0
y a2 x2
a2
2 (1 cos 2t) d t
f (x) f (x)时
例4. 计算 例5. 计算

53第三节定积分的换元法和分部积分法

53第三节定积分的换元法和分部积分法

0
0
a
武 汉
f(x )d x f( t)d tf(t)d t
a
a
0



a
0
a
a
院 数
f( x ) d x f( x ) d x f( x ) d x 2f( x ) d x
a
a
0
0


高 等
(3) 令x=t+l,则dx=dt,且当x=l时,t=0,当x=a+l时,t=a
武 汉 科 技 学 院 数 理 系
高 等 利用换元法计算定积分时,要注意:
数 学
(1).在换元时,积分的上下限必须同时变化.
电 (2).在换元时,要注意换元后的函数在积分区域内是否有
子 教
意义.

如果用x=1/t,则注意积分区域是否有x=0的情况,
如果用x=t2,则被积函数开方时要注意在积分区域里
+2,也可为-2.
案 面对有正负号时,应该
考虑被积函数的情况
x 3

当t=-1时,要注意 t2 t
0
t

科 技
代入被积函数
-2 -1 1 2



理 系
如t从-1到+2,此时已经超过积分区域了
高 此外当积分区域应该考虑
等 数
如t从-1到+2,此时已经超过积分区域了
学 电
根据定积分的性质3可加性(p221)其结果是一样的.
2
教 案
0 c o s 3 x c o s 5 x d x 0 c o s 3 2 x 1 c o s 2 x d x 0 c o s 3 2 x s i n x d x

5.3 定积分的换元法和分部积分法

5.3 定积分的换元法和分部积分法
( 2 ) න (sin )d
= − න (π − )(sin(π − ))d
则 d = −d
0
0
π
= න (π − )(sin )d
0
π
π
= π න (sin )d − න (sin )d
0
π
0
π
= π න (sin )d − න (sin )d ,
0​

+ න () d
0​
= න [(−) + ()] d
0​

2 න () d , (−) = (),
=
0​
0,
− = − .
奇、偶函数在对称区间上的定积分性质 偶倍奇零
第三节 定积分的换元法和分部积分法
定积分
第五章
1
2 2 + cos
例6 计算 න
0

1
d.
( > 0)
π
令 = sin , d = cos d, = ⇒ = , = 0 ⇒ = 0.
2
π
2
cos
d
原式 = න
2
2
0 sin + (1 − sin )
=න
π
2
0
cos
1
d = න
sin + cos
1
=
6
6
1

第三节 定积分的换元法和分部积分法
0
cos 5 sin d
= − න cos 5 d(cos )
= 0 ⇒ = 1.
原式 = − න
π
2
1
= .

定积分换元法与分部积分法

定积分换元法与分部积分法

定积分换元法与分部积分法在微积分中,求解定积分是一个常见的问题。

为了解决这一问题,数学家们发展出了一系列的积分技巧和方法。

其中,定积分换元法和分部积分法是两种常用的方法。

1. 定积分换元法定积分换元法,也经常被称为反链式法或者u-置换法,是一种通过变量替换的方法来求解定积分的方法。

其基本思想是:将被积函数中的一个变量替换为一个新的变量,使得原来的被积函数在新的变量下形式简化。

换元法的一般步骤如下:1.选择一个合适的变量替换,通常使用一个新的变量来替换被积函数中的一个变量。

2.计算新的变量对应的微元变量,并求得其微分。

3.将原来的被积函数表示为新的变量的函数,并对其进行简化。

4.计算新的定积分,并将结果转换回原来的变量。

通过这种换元法,我们可以简化复杂的被积函数,从而更容易求解定积分。

下面通过一个实例来进一步说明定积分换元法的具体步骤。

示例:求解定积分 $I = \\int_{1}^{2} \\frac{1}{x^2} dx$步骤1:选择合适的变量替换。

我们选取新变量u=x2,则du=2xdx步骤2:计算新变量对应的微元变量。

由du=2xdx,可以得到 $dx =\\frac{du}{2x}$步骤3:将原被积函数表示为新的变量的函数,并进行简化。

将x表示为u的函数,则 $x = \\sqrt{u}$。

将被积函数 $\\frac{1}{x^2}$ 替换为 $\\frac{1}{u}\\cdot \\frac{1}{2\\sqrt{u}} = \\frac{1}{2u\\sqrt{u}}$步骤4:计算新的定积分,并转换回原变量。

将积分的上下限也用新的变量表示,则新的定积分为 $I = \\int_{1}^{4} \\frac{1}{2u\\sqrt{u}} \\cdot\\frac{du}{2x}$。

对新的定积分进行计算,得到 $I = \\frac{1}{4}\\left( \\frac{1}{\\sqrt{4}} - \\frac{1}{\\sqrt{1}} \\right) = \\frac{1}{8} -\\frac{1}{4} = -\\frac{1}{8}$通过定积分换元法,我们成功求解了该定积分的值。

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法教学目的:掌握定积分换元积分法与分部积分法 难 点:定积分换元条件的掌握 重 点:换元积分法与分部积分法由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的.1.定积分换元法 定理 假设(1) 函数)(x f 在区间],[b a 上连续;(2) 函数)(t x ϕ=在区间],[βα上有连续且不变号的导数;(3) 当t 在],[βα变化时,)(t x ϕ=的值在],[b a 上变化,且b a ==)(,)(βϕαϕ, 则有[]dt t t f dx x f ba⎰⎰'=βαϕϕ)()()(. (1)本定理证明从略.在应用时必须注意变换)(t x ϕ=应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分.例1 计算⎰-211dx xx . 解 令t x =-1,则tdt dx t x 2,12=+=.当1=x 时,0=t ;当2=x 时,1=t .于是⎰⎰⎰⎪⎭⎫ ⎝⎛+-=⋅+=-102102211112211dt t tdt t t dx x x ⎪⎭⎫⎝⎛-=-=412)arctan (210πt t .例2 计算⎰-adx x a 022)0(>a .解 令t a x sin =,则tdt a dx cos =.当0=x 时,0=t ;当a x =时,2π=t .故⎰-adx x a 022dt t a t a ⎰⋅=20cos cos πdt t a )2cos 1(2202+=⎰π2022sin 212π⎥⎦⎤⎢⎣⎡+=t t a42aπ=.显然,这个定积分的值就是圆222a y x =+在第一象限那部分的面积(图5-8).例3 计算⎰205sin cos πxdx x .解法一 令x t cos =,则xdx dt sin -=. 当0=x 时,1=t ;当2π=x 时,0=t ,于是6161sin cos 01650125=-=-=⎰⎰t dt t xdx x π. 解法二 也可以不明显地写出新变量t ,这样定积分的上、下限也不要改变.即x d x xdx x cos cos sin cos 205205⎰⎰-=ππ61610cos 61206=⎪⎭⎫ ⎝⎛--=-=πx .此例看出:定积分换元公式主要适用于第二类换元法,利用凑微分法换元不需要变换上、下限.例4 计算dx x ⎰-π0sin 1.解dx x ⎰-πsin 1⎰-=π2cos 2sindx xx 注去绝对值时注意符号.=⎰⎰-+-πππ220)2cos 2(sin )2sin 2(cos dx xx dx x x=222(sin cos )2(cos sin )2222x x x xπππ+--=)12(4-.例5 计算⎰+π2sin 3sin dx xx .解 设x t cos =,则当0=x 时,1=t ;当π=x 时,1-=t .⎰+π2sin 3sin dx xx =⎰⎰---=--1111224141dt tdt t11arcsin23t π-==.例6 设)(x f 在],[a a -上连续,证明: (1) 若)(x f 为奇函数,则0)(=⎰-aa dx x f ;(2) 若)(x f 为偶函数,则dx x f dx x f aa a)(2)(0⎰⎰=-.证 由于dx x f dx x f dx x f aaaa)()()(0⎰⎰⎰+=--,对上式右端第一个积分作变换t x -=,有dt t f dt t f dx x f aaa)()()(00-=--=⎰⎰⎰-dx x f a)(0-=⎰.故dx x f x f dx x f aaa)]()([)(0+-=⎰⎰-.(1) 当)(x f 为奇函数时,)()(x f x f -=-,故00)(0==⎰⎰-dx dx x f aaa.(2) 当)(x f 为偶函数时,)()(x f x f =-,故dx x f dx x f dx x f aaaa)(2)(2)(0⎰⎰⎰==-.利用例6的结论能很方便地求出一些定积分的值. 例如0sin 6=⎰-xdx x ππ.⎰⎰---+=-+1122112)424()4(dx x x dx x x 80411=+=⎰-dx .2.定积分的分部积分法设函数)(x u 与)(x v 均在区间],[b a 上有连续的导数,由微分法则vdu udv uv d +=)(,可得vdu uv d udv -=)(.等式两边同时在区间],[b a 上积分,有vdu uv udv baba ba⎰⎰-=)(. (2)公式(2)称为定积分的分部积分公式,其中a 与b 是自变量x 的下限与上限. 例7 计算xdx eln 1⎰.解 令dx dv x u ==,ln ,则x v xdxdu ==,.故 xdx x x x xdx e ee⋅-=⎰⎰111]ln [ln 1)1()0(=---=e e .例8 计算xdx x 3cos 0⎰π.解x xd xdx x 3sin 313cos 00⎰⎰=ππ⎥⎦⎤⎢⎣⎡-=⎰xdx x x 3sin 3sin 3100ππ⎥⎦⎤⎢⎣⎡+=π03cos 31031x 92-=. 例9 计算⎰+42cos 1πdx xx.解⎰+42cos 1πdx x x =⎰⎰=4042tan 21cos 2ππx xd dx x x=)tan tan (214040⎰-ππxdx x x =)cos ln 4(2140ππx +=2ln 418-π. 例10 计算⎰403sec πxdx .解⎰⎰⎰=⋅=40402403tan sec sec sec sec πππx xd xdx x xdxxdx x x x x tan sec tan tan sec 4040⋅-=⎰⎰ππxdx x sec )1(sec 2240--=⎰π⎰⎰+-=40403sec sec 2ππxdx xdx40403)tan ln(sec sec 2ππx x xdx ++-=⎰)12ln(sec 2403++-=⎰πxdx .即 )12ln(2sec 2403++=⎰πxdx 注移项得.故 )12ln(2122sec 43++=⎰πxdx . 例11 计算dx e x ⎰10.解 先用换元法,令t x =,则tdt dx t x 2,2==. 当0=x 时,0=t ;当1=x 时,1=t . 于是dt te dx e t x⎰⎰=112.再用分部积分法,得dx e x ⎰111122()t t t tde t e e dt ==-⎰⎰2)]1([2=--=e e .小结:1.定积分换元积分定理:假设 (1) 函数)(x f 在区间],[b a 上连续;(2) 函数)(t x ϕ=在区间],[βα上有连续且不变号的导数;(3) 当t 在],[βα变化时,)(t x ϕ=的值在],[b a 上变化,且b a ==)(,)(βϕαϕ. 则有[]dt t t f dx x f ba⎰⎰'=βαϕϕ)()()(.2.定积分分部积分法:设函数)(x u 与)(x v 均在区间],[b a 上有连续的导数,则有vdu uv udv baba ba⎰⎰-=)(.。

定积分的换元法与分部法

定积分的换元法与分部法

由此公得式:
In

n 1 n
In2

注意:
I0

2 dx

,
0
2
I1

2 sin xdx 1,
0


In
2 sin n xdx
0
2 cosn xdx
0

n n
1 n 1 n

n n n n

3 2 3 2

a
0
注: (1) 当f(x)为奇函数时,
a
f (x)dx 0.
a
(2) 当f(x)为偶函数时,
a
a
f (x)dx 2 f (x)dx.
a
0
练习
7
首页
上页
返回
下页
结束

例5 若f(x)在[0, 1]上连续, 证明


(1) 02 f (sin x)dx02 f (cosx)dx ;
上页
返回
下页
结束

例8
计算
1 0
ln(1 x) (2 x)2
dx

原式=
1
0
ln(1

x)
d
2
1
x

ln(1 x) 1 1


1

1 dx
2 x 0 0 2 x 1 x

ln
2

1 3
1 1 01 x

2
1
x
dx

ln
2

1 3
ln(1

§5-3定积分的换元积分法和分部积分法

§5-3定积分的换元积分法和分部积分法
(2)定积分的换元积分法不必把结果中的(t) 换成原来的变量 x ,而只要
把新变量的上、下限代入 F[(t)] 进行运算即可.
例 4 计算下列定积分
ln 2
(1)
e x 1dx ;
0
(2)
a 0
a 2 x 2 dx

(1)令
ex
1
t

x
ln(t 2
1)
, dx
t
2t 2
1
dt
当 x=0 时,t=0;当 x=ln2 时,t=1.故
0
0
0
0
=(e 2-1)+ 2 sin xd (e x ) =(e 2-1)+ e x sin x 2 2 e xd (sin x)
0
0
0
=(e
2-1)-
2 0
ex
cos
xdx
移项得
2 2 e x 0
cos xdx
= e 2-1,
所以
2 e x 0
cos xdx
= 1 (e 2-1). 2
例 9
x
2
3
x
dx
=
4
4
1 cos 2
dx x
+
4
4
x3 cos 2
dx x
=2
4
0
1 cos 2
dx x
+0=2 tan x
4
0
=2.
二、 定积分的分部积分法
定理 2(定积分的分部积分公式) 设 u(x),v(x)在区间[a,b]上连续,则
或简写为
b a
u
(
x
)v
(x

定积分的换元法和分部积分法

定积分的换元法和分部积分法

1
4
R2
R
x x
例2 计算
0
cos3 x cos5 xdx
2

0
cos3 x cos5 xdx
2
0
cos3 x cos5 xdx
0
3
cos 2 x
1 cos2 xdx
0
3
cos 2 x sin x dx
2
2
2
0
3
cos2 x sin xdx
2
0
2
3
cos 2
解:
I1 tax
a 0
f (a t) dt f (a t) f (t)
2I1
a 0f f(a (ax) x)f f
(x) (x)
dt
a,
I1
a 2
I2 tx
0
( 1
t) sin cos2 t
t
dt
sin t 0 1 cos2 t dt
t sin t
0
1
cos2
dt t
第三节 定积分的换元法和分部积分法
一 定积分的换元法
定理1 设函数f(x)在[a,b]上连续,且x=φ(t)满足条件:(1) φ(t)在[α,β]上连续 可微;(2)当t在[α,β]上变化时, x= φ (t)的值在[a,b]上单调变化,且 φ(α)=a,φ(β)=b则
b
a f (x)dx f [ (t)](t)dt(1)
xd
cos
x
2 5
5
cos 2
x |0 2
2 5
利用换元法计算定积分时,要注意: (1).在换元时,积分的上下限必须同时变化. (2).在换元时,要注意换元后的函数在积分区域内是否有 意义.

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法
03
2. 选择适当的原函数:根据被积函数的形式,选择 一个易于计算的原函数。
分部积分法的步骤与注意事项
3. 应用分部积分公式
将被积函数和选择的原函数代入分部积分公式,进行计算。
化简结果
对计算结果进行化简,得到最终答案。
分部积分法的步骤与注意事项
01
注意事项
02
1. 正确选择原函数:选择合适的原函数是分部积分法的关键,通常需 要根据被积函数的形式和特点进行判断。
详细描述
设$u=x^n$,$v=e^x$,则 $frac{du}{dx}=nu^{n-1}$, $frac{dv}{dx}=e^x$。根据分部积分公式 ,$int x^ne^xdx=[x^ne^x-nint x^{n1}e^xdx]$。通过递推关系,可以逐步求得 定积分的值。
幂函数与三角函数之间的分部积分
指数函数换元法
要点一
总结词
通过指数函数进行换元,将复杂的定积分转化为简单的定 积分。
要点二
详细描述
对于一些包含指数函数的定积分,我们可以利用指数函数 的性质进行换元,将原定积分转化为更容易计算的形式。 例如,对于 $int e^x dx$,我们可以令 $u = e^x$,则 $du = e^x dx$,从而将原定积分转化为 $int u du$。
倒代换法
总结词
通过倒数关系进行换元,将复杂的定积 分转化为简单的定积分。
VS
详细描述
对于一些包含复杂函数的定积分,我们可 以利用倒数关系进行换元,将原定积分转 化为更容易计算的形式。例如,对于 $int frac{1}{x} dx$,我们可以令 $u = x^{-1}$,则 $du = -x^{-2} dx$,从而 将原定积分转化为 $int u du$。

5.3 定积分的换元法和分部积分法

5.3 定积分的换元法和分部积分法

−a
0
0
a
= ∫ 0 [ f (x ) + f (− x) ]d x
a
a

∫ ∫ f ( x)d x = [ f ( x) + f (− x) ] d x
−a
0
a
a
∫ ∫ 即
f (x)d x = [ f (x) + f (−x) ] d x
−a
0
(1)若 f (x) 为偶函数,即 f ( x ) = f (− x )
π
原式 =
t 2
+
ln
|
sin
t
+
cos
t
|
2 0

4
例6:证明
(1)若 f (x) 在 [ - a , a ] 上连续且为偶函数,
a
a
则 ∫ − a f (x)d x = 2∫ 0 f (x)d x
(2)若 f (x) 在 [ - a , a ] 上连续且为奇函数,
a
则 ∫ −a f (x)d x = 0
1 −1
f (u) d u
∫ ∫ ∫ =
1
f (x)d x =
0 (1 + x2 ) d x +
1 e−x d x
−1
−1
0
=
[
x
+
1 3
x
3
]0−1
+
[−e − x ]10
= 7− 1 3e
二、 定积分的分部积分法
设 u = u (x) , v = v(x) 在区间 [ a , b ] 上有连续导
π 2

t
dt
π

§5-3定积分的换元法和分部积分法

§5-3定积分的换元法和分部积分法


2 0

f (sin x ) dx .
上页 下页 返回 结束
14
例 9
若 f ( x ) 在 [ 0 ,1 ] 上 连 续 , 证 明 ( 2)
0

xf (sin x ) dx

2 0

f (sin x ) dx .
由此计算
0

x sin x 1 cos
2
dx . x

证 (2)
高等数学Ⅰ
换元法与分部积分法
一、换元公式
定理 假 设
( 1 ) f ( x ) 在 [a , b ]上 连 续 ;
( 2 ) 函 数 x ( t ) 在 [ , ] 上 是 单 值 的 且 有连续导数;
( 3 ) 当 t 在 区 间 [ , ] 上 变 化 时 , x ( t ) 的 值 在 [ a , b ] 上 变 化 , 且 ( ) a 、 ( ) b ,
ln 2 3
ln 2 3


1
1
0
2 x 1 x
dx
1 1 x
1

5 3
1 2 x
ln 2 ln 3 .
上页 下页 返回 结束
ln( 1 x ) ln( 2 x ) 0
19
例4 解
设 f (x)
因为
1
x
2
sin t t
dt , 求 xf ( x ) dx . 0
2 2
∴ 原式 =
o
a x
机动
目录
上页
下页
返回
结束
例4. 计算 解: 令 则 且

原式 =

定积分的换元法和分部积分法

定积分的换元法和分部积分法
2、不引入新的变量记号,积分限不变;引入新的变 量记号,积分限跟着变。
3、定积分分部积分公式的用法与不定积分分部积分 公式的用法类似。
0
分部积分
t sint
6
0
6 sintdt
0
1 62
[
cos
t
]6 0
3 1.
12 2
例16
计算
e-1
ln(1
x)dx
0

e-1
ln(1
x)dx
e-1
ln(1
x)d( x)
0
0
x
ln(1
x)
e1 0
e1
0
xd
ln(1
x)
e
1
e-1 0
x
1
1
x
dx
e
1
e-1 0
(1
1
1
x
)dx
f ( x)为偶函数;
0
0,
f ( x)为奇函数。
证毕。
例10
计算
3 3
x5 sin2 x dx.
1 x2 x4

3 3
x5 sin2 x dx 1 x2 x4
0
奇函数
例11
计算
π
2
π 2
sin2
x cos xdx

π
2
π 2
sin2 x cos xdx
π
2
2
0
sin2
x cos xdx
π
2
2
e
1
x
ln
|
1
x
|
e1 0
1
例17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档