步进电机
步进电机
转角:由脉冲数控制 转速:由脉冲频率控制
转向:由方向信号确定
步进电机的分类
可变磁阻式(VR型):转子以软铁加工成齿状,
当定子线圈不加激磁电压时,保持转矩为零,故 其转子惯性小、响应性佳,但其容许负荷惯性并 不大。其步进角通常为15°。 永久磁铁式(PM型):转子由永久磁铁构成, 其磁化方向为辐向磁化,无激磁时有保持转矩。 依转子材质区分,其步进角有45°、90°及 7.5°、11.25°、15°、18°等几种。 混合式(HB型):转子由轴向磁化的磁铁制成, 磁极做成复极的形式,兼采可变磁阻式步进电机 及永久磁铁式步进电机的优点,精确度高、转矩 大、步进角度小。混合式步进电机随着相数(通 电绕组数)的增加,步进角减小,精度提高,这 种步进电机的应用最为广泛。
步进电机减速器
减速器是一种动力传达 机构,利用齿轮的速度 转换器,将电机的回转 数减速到所要的回转数, 并得到较大转矩的机构。 减速机具有减速及增加 转矩功能,用于低转速 大扭矩的传动设备。 原理:轴上的齿数少的 齿轮啮合输出轴上的大 齿轮来达到减速的目的。
手动脉冲发生器 (码盘)
不需要驱动器,直接接步进电机,多用于手动控制数控 机床的面板。
4.动作灵敏:步进电机因为加速性能优越,所以可做 到瞬时起动、停止、正反转之快速、频繁的定位动作。 5.开回路控制、不必依赖传感器定位:步进电机的控 制系统构成简单,不需要速度感应器及位置传感器就 能以输入的脉波做速度及位置的控制。也因其属开回 路控制,故最适合于短距离、高频度、高精度之定位 控制的场合下使用。 6.中低速时具备高转矩:步进电机在中低速时具有较 大的转矩,故能够较同级伺服电机提供更大的扭力输 出。 7.高信赖性:使用步进电机装置与使用离合器、减速 机及极限开关等其它装置相较,步进电机的故障及误 动作少,所以在检查及保养时也较简单容易。 8.小型、高功率:步进电机体积小、扭力大,尽管于 狭窄的空间内,仍可顺利做安装,并提供高转矩输出。
步进电机基本参数
步进电机基本参数步进电机(Stepper Motor)是一种将电脑数字信号转变为机械运动的设备,它以离散的方式旋转,每一次脉冲驱动会引起电机一定的运动。
步进电机具有以下几个基本参数。
1. 步数(Step):步进电机的运动是以步为单位的,一步表示电机转动一定的角度或线性距离。
步数也可以用来描述电机的分辨率,即每转多少步,电机转一圈。
通常情况下,步进电机的步数会在说明书或型号参数中给出。
2. 相数(Phase):步进电机的绕组分为几个相,每相两个线圈。
常见的步进电机相数有两相、三相和五相等,不同相数的步进电机在控制方式上有所不同,包括驱动方式和控制电路。
3.驱动方式:步进电机的驱动方式包括全步驱动和半步驱动。
全步驱动是每个脉冲都使电机转动一个步进角度,半步驱动是在全步的基础上细分每一步,在一个脉冲内实现小角度的运动。
半步驱动可以提高电机的分辨率和运动平滑度。
4. 转矩(Torque):步进电机的转矩是指电机产生的旋转力矩。
转矩大小与电机的结构、驱动方式和电流有关,通常在电机的规格表中有相关的数据。
5. 电流(Current):步进电机电流是指电机所需工作电流。
电机的电流大小与驱动方式、负载情况有关。
一般情况下,为了保证电机正常运行,需要匹配合适的电流驱动器。
6. 驱动电压(Voltage):步进电机的驱动电压是指驱动电机所需的电压。
电机的驱动电压应该与驱动器供电电压相匹配。
7. 最大速度(Maximum Speed):步进电机的最大速度是指电机能够达到的最高旋转速度。
最大速度与电机的结构、驱动方式、驱动电压和电流有关。
除了上述基本参数,还有一些其他的参数也需要考虑,比如电机的精度、响应时间、机械惯性等。
这些参数在具体应用中会根据实际需求进行选择和调整。
总的来说,步进电机的基本参数包括步数、相数、驱动方式、转矩、电流、驱动电压和最大速度等。
这些参数决定了电机的性能和适用范围,需要根据具体应用需求进行选择和配置。
步进电机基础知识
什么是步进电机?步进电机:也称脉冲电机,是一种将电脉冲转化为角位移的执行机构。
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
基本原理通常电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。
该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。
当定子的矢量磁场旋转一个角度。
转子也随着该磁场转一个角度。
每输入一个电脉冲,电动机转动一个角度前进一步。
它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。
改变绕组通电的顺序,电机就会反转。
所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动。
电机开环控制一种控制电机、不使用反馈回路、就能进行速度控制及定位控制,即所谓的电机开环控制。
步进电机开环控制原理定子一相绕组流过直流电流,最近该相的转子齿被定子相吸引,电磁转矩大于负载转矩从而使转子运动。
电机基本分类按电压种类分:AC(交流)驱动、DC(直流)驱动。
按旋转速度与电源频率关系分:同步电机、异步电机。
步进电机概要1.步进电机的地位步进电机属于:DC驱动的同步电机,但无法直接用DC或AC电源来驱动,需要配备驱动器。
2.步进电机驱动电路的功能驱动电路任务:按顺序指令切换DC电源的电流流入步进电机的各相线圈。
驱动电路将电机定子与DC电源连接在一起工作。
驱动器(驱动电路)由决定换向顺序的控制电路(或称为逻辑电路)与控制电机输出功率的换相电路(或称为功率电路(Power stage))组成。
步进电机
原理:步进电机是利用电磁铁原理,将脉冲信号
转换成线位移或角位移的电机。每来一个 电脉冲,电机转动一个角度,带动机械移 动一小段距离。 特点:(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
优点
(1)直接实现数字控制;
(2)控制性能好; (3)无接触式; (4)抗干扰能力强; (5)误差不长期积累;
1.3.3 单步运行特性
1.单步运行时的矩角特性和稳定区 以三相单三步运行方式为例,设电机空载时,A相通电 时的矩角特性如图4中的曲线A所示,转子处于稳定平衡点 OA。如加一脉冲,A相断电,B相通电,则矩角特性变为曲 线B。 M
A
A
B
B
OB OA
A
B
θ
b
θ定区
步进电动机的步距角θ b由转子齿数、定子相数和通电 方式所决定,即
360 b mCZ k
式中m为相数。C为状态系数,采用单、双拍通电方式时 C=2,采用单拍或双拍通电方式时C=1。ZK为转子齿数。
若步进电动机所加的通电脉冲频率为f,则其转速为
60 f n mCZ k
1.3 静态运行特性
步进电动机不改变通电状态下的运行特性称
M B M max sin(e 120)
MB 与MA 相距120°电度角。这是一条与A相特性完全相同, 但相位上相差120°(电度角)的特性。当A、B同时通电时,合 成矩角特性应为二者之叠加,即
M AB M A M B M max sin(e 60)
可见MAB是一条幅值与单相通电时相同,相移60°电度角(θt/6) 的正弦曲线,如图3中曲线MAB所示。
1.3.4 连续运行特性
步进电机的原理
步进电机的原理
步进电机是一种通过电信号控制转子按一定步长运动的电机。
其工作原理是将电信号转化为磁场,进而驱动转子。
步进电机通常由定子和转子组成。
定子含有若干绕组,每个绕组在电流作用下产生磁场。
转子上有多对永磁体,其磁极数目与定子绕组数目相一致。
当给定子绕组通电时,会在定子上产生磁场,这个磁场会吸引转子上的永磁体,使转子翻转一定的角度。
通过改变定子绕组通电的顺序和时间,可以控制转子按一定步长顺时针或逆时针旋转。
步进电机一般由驱动器和控制器配合使用。
驱动器将控制器发送的电信号转换为合适的电流和电压,以驱动步进电机。
控制器根据需要设定转子运动的步长和方向,并发出相应的电信号给驱动器。
步进电机具有精准定位、运动平稳等特点,适用于需要精确控制位置和转速的设备。
它被广泛应用于打印机、数控设备、机器人、电子仪器等领域。
步进电机的计算方法
步进电机的计算方法1.根据驱动方式选择步进电机型号:步进电机主要分为两种驱动方式,即双相驱动和四相驱动。
双相驱动的步进电机具有较高的输出转矩,适用于需要较大负载的应用,而四相驱动的步进电机输出转矩较低,适用于速度要求较高的应用。
2.计算步进电机运转速度:步进电机的运转速度主要受到步进角度和脉冲频率的影响。
步进角度一般是固定的,常见的有1.8度和0.9度。
计算步进电机运转速度的公式为:速度=步进角度×脉冲频率。
3.计算步进电机的步进角度:步进电机的步进角度是指每接收到一个脉冲信号,电机旋转的角度。
常见的步进角度有1.8度和0.9度。
计算步进电机的步进角度的公式为:步进角度=360度÷步进电机的相数。
4.计算步进电机的电压和电流:步进电机在运行时需要供应一定的电压和电流来驱动。
计算步进电机的电压和电流的方法是根据电机的工作电压和绕组电阻。
电机的绕组电阻一般可以从电机的技术参数中获取。
计算步进电机的电压的公式为:电压=电流×电阻。
5.计算步进电机的输出功率:步进电机的输出功率是指电机在工作时提供的机械功率。
计算步进电机的输出功率的方法是根据电机的输出转矩和转速。
输出功率的公式为:输出功率=转矩×转速。
6.计算步进电机的加速度和减速度:步进电机的加速度和减速度是指电机从静止状态到达最大速度和从最大速度减速到停止状态所需要的时间。
计算步进电机的加速度和减速度的公式为:加速度(或减速度)=(最大速度-初始速度)÷时间。
7.计算步进电机的负载惯性:步进电机在运行时会受到负载惯性的影响,计算步进电机的负载惯性的方法为负载惯性=负载质量×负载半径的平方。
以上是步进电机的计算方法的一些基本介绍,根据实际需求,其他还有一些特殊的计算方法,比如控制系统的设计和驱动方式的选择等,需要根据具体情况进行进一步的研究和计算。
步进电机结构
步进电机的控制方式
01
控制方式是指如何控制步进电机的转 动角度和速度。
02
常见的控制方式包括:脉冲控制、方 向控制和速度控制。脉冲控制是指通 过输入不同数量和频率的脉冲信号来 控制电机的转动角度和速度;方向控 制是指通过改变输入脉冲的顺序来控 制电机的转动方向;速度控制则是指 通过改变输入脉冲的频率来控制电机 的转速。
步进电机的步进模式
步进模式是指步进电机在接收到一个脉冲信号时转动的角度或转过的步 数。
步进电机通常有三种步进模式:单拍制、双拍制和混合拍制。单拍制是 指每次只激发一个磁极,双拍制是指每次同时激发两个磁极,而混合拍
制则介于两者之间。
不同的步进模式适用于不同的应用场景,如单拍制适用于高精度定位, 双拍制适用于快速转动,混合拍制则适用于对速度和精度都有要求的场 合。
电机在动态条件下的效率表现,反映了电机 的能量转换效率。
共振频率
电机自身的固有频率,决定了电机对高频激 励的响应特性。
矩频特性
矩频曲线
描述电机输出转矩与转速之间 关系的曲线,反映了电机的输
出特性。
最高转速
电机在一定转矩下的最大转速 ,决定了电机的最高工作速度 。
转速范围
电机能够稳定工作的转速范围 ,反映了电机的适用范围。
步进电机的控制需要配合驱动器使用,相 对于其他电机来说控制复杂度较高。
06
步进电机的发展趋势和未 来展望
技术发展趋势
01
高精度控制
随着工业自动化和智能制造的快速发展,对步进电机的控制精度要求越
来越高。未来,步进电机将采用更先进的控制算法和驱动技术,实现更
精确的位置和速度控制。
02
高效能化
提高步进电机的效率和性能是未来的重要发展方向。通过改进电机材料、
步进电机(步进电机的工作原理)课件
THANK YOU
步进电机(步进电机的工作 原理)课件
目 录
• 步进电机简介 • 步进电机的工作原理 • 步进电机的驱动电路 • 步进电机的性能参数 • 步进电机的发展趋势与未来展望 • 案例分析
01
步进电机简介
步进电机的定义
步进电机是一种将电脉冲信号转换成 角位移或线位移的开环控制电机。
步进电机通过不断接收电脉冲信号来 连续转动,从而实现精确的定位和速 度控制。
脉冲信号
驱动器接收脉冲信号后,根据脉 冲信号的频率和相位控制步进电
机的转动速度和方向。
电流控制
驱动器通过控制电流的大小和方 向,实现步进电机的转动。
驱动电路的优化设计
减小体积
优化电路板布局和元件 选择,减小驱动电路的 体积,方便安装和使用
。
提高效率
优化电源设计和元件选 择,提高驱动电路的效
率,减少能源浪费。
速度测试
通过转速计测量步进电机在动态条件 下的转速表现。
响应时间测试
通过计时器测量步进电机从静止到设 定转速以及从设定转速到静止所需的 时间。
效率测试
通过测量步进电机在额定负载下的输 入功率和输出功率,计算其效率表现 。
05
步进电机的发展趋势 与未来展望
步进电机的发展趋势
小型化与集成化
随着技术的进步,步进电机正朝着更小尺寸和更高集成度 的方向发展。这使得步进电机在许多应用中成为更优选择 ,特别是在空间受限的场景中。
用于工件的精确加工和定位。
机器人
用于机器人的关节驱动和定位 。
自动化生产线
用于自动化设备的驱动和控制 。
医疗器械
用于医疗设备的驱动和控制, 如CT机、核磁共振仪等。
步进电机
主要缺点:效率较低,需配适当的驱动电源, 主要缺点:效率较低,需配适当的驱动电源,
带惯性负载的能力不强。 带惯性负载的能力不强。
种类: 种类: 磁阻式(反应式) 励 磁 方 式 永磁式 混合式
转子有多相磁极,而转子用软磁材料制成,三相 转子用永磁材料制成,这样可提高电机 的输出转矩,减少定子绕组的电流。两 相 两相、三相和五相
1 结构
步进电机主要由两部分构成:定子和转子。 步进电机主要由两部分构成:定子和转子。它们均 由磁性材料构成,其上分别有六个、 由磁性材料构成,其上分别有六个、四个磁极 。 定子绕组
反应式步进电机的定子上有 磁极, 磁极,每个磁极上有激磁绕 转子无绕组, 定子组,转子无绕组,有周向均 布的齿, 布的齿,依靠磁极对齿的吸 合工作。 合工作。如图所示为三相步 进电机,定子上有三对磁极, 进电机,定子上有三对磁极, 分成A、 、 三相 三相。 分成 、B、C三相。为简 化分析,假设转子只有4个 化分析,假设转子只有 个 齿。
以上三种工作方式, 以上三种工作方式,三相双三拍和三相单双六 拍较三相单三拍稳定,因此较常采用。 拍较三相单三拍稳定,因此较常采用。
2 步进电机的主要特性 2.1 步距角及其精度 指每给一个脉冲信号,电动机转子应转过角度的 理论值。它取决于电机结构和控制方式。步距角 可按下式计算:
根据结构分类 步进电机可制成轴向单段式和多段式。多段式又 称为轴向分相式,定子每相是一个独立的段,各 段只有一个绕组,结构完全相同,
1- 线圈
2- 定子
3-转子
三段式(三定子)轴向分相步进电机 三段式(三定子)
旋转励磁型5相步进电机 减速-制动复合型5相步进电机
步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源( )。控制器 脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量, 控制器( 器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准 确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度, 确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调 速的目的。 速的目的。
什么是步进电机?
什么是步进电机?一、步进电机的基本原理步进电机是一种能够精确控制位置和运动的电机,它的工作原理和普通的直流电机有所不同。
普通的直流电机通过通电使得电流在绕组中流动,形成电磁力以产生转矩,从而驱动电机旋转。
而步进电机则是通过不断改变绕组中的电流方向,从而产生磁场的位置变化,实现精确的步进运动和位置控制。
步进电机中最关键的两部分是定子和转子。
定子是一个由绕组组成的磁铁,通常为两极或四极的磁石,而转子则是由磁铁组成的一个或多个磁极,通常为一圆柱形的部件。
二、步进电机的工作模式步进电机有两种常见的工作模式,即全步进和半步进。
1. 全步进模式:在全步进模式下,步进电机会按照固定的角度(通常为1.8°或0.9°)一步一步地转动。
这种模式下,电机的每个脉冲信号都会让电机转动一小步,从而实现位置的精确调整和控制。
2. 半步进模式:在半步进模式下,步进电机可以实现更精确的位置调整,每个脉冲信号可以让电机转动半个步距(通常为0.9°或0.45°)。
通过在全步进模式下的每个步距之间插入一个半步距,电机可以实现更加平滑和精确的运动。
三、步进电机的特点和应用场景步进电机具有以下几个特点,使得它在很多场景下得到广泛应用:1. 高精度:步进电机可以控制位置和转向,精度通常在几个角度或更小。
这使得它在需要精确定位和控制的场景下得到广泛应用,如机器人、三维打印机等。
2. 高效能:步进电机在工作过程中没有摩擦和机械损耗,因此效率较高。
它可以在低速和高负载条件下工作,而且能提供一定的持续转矩。
3. 简单控制:步进电机的控制电路相对较为简单,只需一个控制器和几个驱动器即可实现精确的位置和速度调整。
4. 广泛应用:步进电机广泛应用于各个领域,如电子设备、汽车制造、医疗设备等。
特别是在需要实现精确运动控制的场景下,步进电机更是不可或缺的一种电机。
综上所述,步进电机是一种能够精确控制位置和运动的电机,它通过改变绕组中的电流方向来实现位置的精确调整和控制。
步进电机参数计算
步进电机参数计算步进电机是一种常用的电动机类型,它通过给定的电脉冲信号来控制转子的位置,从而实现精确控制。
步进电机通常由定子和转子组成,其中定子是电磁线圈,转子是磁铁。
步进电机的参数通常包括步距角、相数、相电流、保持转矩和最大转速等。
下面将介绍如何计算这些参数。
1.步距角:步距角是指电机每接收一个脉冲信号,转子转动的角度。
步距角一般由制造商提供,可根据实际需求选择合适的步距角。
2.相数:指步进电机中线圈的数量。
常见的步进电机有2相、4相和5相等。
相数越多,电机精度越高,但成本也会更高。
3.相电流:相电流是指电机工作时线圈的电流大小。
常见的步进电机相电流为0.5-2.0A,具体数值要根据具体应用场景来选择。
4.保持转矩:保持转矩是指电机在静止或低速运行时能够提供的最大转矩。
保持转矩与线圈的电流和电机的机械结构有关。
一般来说,保持转矩越大,电机的负载能力越强。
5.最大转速:最大转速是指电机在正常工作范围内能够达到的最高转速。
最大转速与电机的绕组电阻和电感、驱动方式等相关,一般由制造商提供。
步进电机的参数计算与应用密切相关,下面将介绍两个计算步进电机参数的方法。
1.利用静态特性:通过对电机绕组的电阻、电感、磁导率等参数的测量,可以计算出电机的阻抗、电感、磁导率等。
结合电机的工作电压和工作频率,可以计算出相电流大小。
2.利用动态特性:通过测量电机的阻抗、电感等参数,结合电机的加速时间、转动惯量等动态特性,可以计算出保持转矩和最大转速。
此外,还可以通过实验方法来计算步进电机的参数。
例如,可以通过测量电机转动角度和脉冲信号的频率来计算步距角;通过测量电机的输入功率和转速来计算电机的效率等。
总之,步进电机的参数计算是一个综合考虑电机的电气特性、机械特性和应用要求的过程。
通过准确计算和选择适当的参数,可以提高步进电机的性能和控制精度。
步进电机介绍
普通高等教育“十一五”国家级规划教 第十二页,共52页。
4.步进电机
每秒钟输入f 脉冲(màichōng),则转过 f/ZrN 转,故电机转速为:
n 60 f rpm ZrN
4. 小步(xiǎo bù)距角磁阻式步 进电机 转子上有t 均3匀460分0布9的40个齿.
s3 ZrN 6 043 03 61 03
4.步进电机
2. 三相双三拍运行方式 按AB-BC-CA-AB或相反的顺序通电,每次同
时(tóngshí)给两相绕组通电,且三次换接为一个循 环。步距角与三相单三拍运行方式的步距角相同。
AB相导通
BC相导通
普通高等教育“十一五”国家级规划教 第十页,共52页。
4.步进电机
3. 三相单、双六拍运行方式 按A-AB-B-BC-C-CA或相反(xiāngfǎn)顺序通电,即需 要六拍才完成一个循环,s因此6t 步9距60角为15:
低频共振现象
普通高等教育“十一五”国家级规划教 第二十八页,共52页。
4.步进电机
➢脉冲频率很高时的连续运行 ➢ 当控制脉冲的频率很高时,脉 冲间隔的时间很短,电机转子尚未到 达第一次振荡的幅值,甚至还没有到 达新的稳定平衡位置,下一个脉冲就 到来。此时电机的运行已由步进变成 了连续平滑的转动(zhuàn dòng), 转速也比较稳定。 ➢ 当频率太高时,也会产生失步, 甚至还会产生高频振荡。
➢ 一、反应式步进电动机的结构(jiégòu) ➢ 单段式
➢ 多段式
➢ a)径向磁路 ➢ b)轴向磁路
普通高等教育“十一五”国家级规划教 第四页,共52页。
4.步进电机
径向磁路(cílù) 1—线圈;2—定子;3—转子
轴向磁路(cílù) 1—线圈;2—定子;3—磁轭
步进电机知识详解
步进电机知识详解,再不怕看不懂步进电机了!步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。
随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。
作为电力人对步进电机的也不能仅限于认识而已,应该深入了解它的结构、基本原理以及应用,接下来小七将从三个方面带大家全面认识步进电机。
01什么是步进电机步进电机是一种直接将电脉冲转化为机械运动的机电装置,通过控制施加在电机线圈上的电脉冲顺序、频率和数量,可以实现对步进电机的转向、速度和旋转角度的控制。
在不借助带位置感应的闭环反馈控制系统的情况下、使用步进电机与其配套的驱动器共同组成的控制简便、低成本的开环控制系统,就可以实现精确的位置和速度控制。
02基本结构和工作原理基本结构:工作原理:步进电机驱动器根据外来的控制脉冲和方向信号,通过其内部的逻辑电路,控制步进电机的绕组以一定的时序正向或反向通电,使得电机正向/反向旋转,或者锁定。
以1.8度两相步进电机为例:当两相绕组都通电励磁时,电机输出轴将静止并锁定位置。
在额定电流下使电机保持锁定的最大力矩为保持力矩。
如果其中一相绕组的电流发生了变向,则电机将顺着一个既定方向旋转一步(1.8度)。
同理,如果是另外一项绕组的电流发生了变向,则电机将顺着与前者相反的方向旋转一步(1.8度)。
当通过线圈绕组的电流按顺序依次变向励磁时,则电机会顺着既定的方向实现连续旋转步进,运行精度非常高。
对于1.8度两相步进电机旋转一周需200步。
两相步进电机有两种绕组形式:双极性和单极性。
双极性电机每相上只有一个绕组线圈,电机连续旋转时电流要在同一线圈内依次变向励磁,驱动电路设计上需要八个电子开关进行顺序切换。
单极性电机每相上有两个极性相反的绕组线圈,电机连续旋转时只要交替对同一相上的两个绕组线圈进行通电励磁。
驱动电路设计上只需要四个电子开关。
在双极性驱动模式下,因为每相的绕组线圈为100%励磁,所以双极性驱动模式下电机的输出力矩比单极性驱动模式下提高了约40%。
第五章 步进电机
过30°(步距角),每个通电循环周期(3拍)磁场在
空间旋转了360°而转子转过90°(一个齿距角)。
单三拍工作方式特点
三相绕组中每次只有一相通电、一个循环 周期共包括三个脉冲,所以称三相单三拍。 (1)一个电脉冲,转子转过 30
到左图所示位置:1、3齿与A、
A′极对齐。
A
B'
C'
C
B
A'
A
B'
C'
C
B
A'
同理,B相通电时,转子会转过30角,2、4
齿和B、B´ 磁极轴线对齐;当C相通电时,转子 再转过30角,1、3齿和C´、C磁极轴线对齐。
这种工作方式下,三个绕组依次通电一次为 一个循环周期,一个循环周期包括三个工作脉冲, 所以称为三相单三拍工作方式。
• 步距角却因拍数增加1倍而减小到齿距
角的1/6, 即S= 15°。
各种工作方式特点归纳
(1)拍数为N,相数为m 时
若单拍运行,则拍数N=m; 若单双拍运行,则N=2m。 (2)经过一个通电循环,转子转过1个齿。
电机转速():
n 60 f Zr N
从以上对步进电机三种驱动方式的分析可 得步距角计算公式:
θ = ±π 这个位置是不稳定的,两个不稳定点之间的区域构 成静态稳定区。
电磁转矩的最大值称为最大静态转矩Tmax,它表示了步进电动 机承受负载的能力,是步进电动机最主要的性能指标之一。
1) 矩角特性 • 静止时若有外部转矩作用于转轴上,迫使转
子离开初始平衡位置而偏转,转子偏离初始 平衡位置的电角度称为失调角θ • 转子会产生反应转矩,也称静态转矩
步进电动机
Tf
L R'
频率越高,绕组中的平均电 流越小,电机所产生的平均 转矩大大下降,负载能力也 就大大下降了。
附加旋转电势的影响
电机铁心中的涡流损耗
二、静稳定区和动稳定区
通电时,转子每旋转一步最后停留的位置必须在动稳定区 内,即:静、动稳定区必须有所重叠,且从稳定性的角度来看,
重叠区间越大越好,这样,下一步就可继续沿着原来的旋转方
定子
转子
转子 θe
e
2
T正最大
静态转矩
定子
e
2
T负最大
定子
T
T
转子 θe θe
转子
矩角特性
步进电机产生的静态转矩T随失调角θe的变化规律
近似
T f e T j max sin e
Tjmax 稳定平衡点 /2
/2 静稳定区
θ
e
步进电动机的工作过程就是实现失调角为零的过程。
11.5 步进电动机的连续脉冲运行和动特性
连续转动状态 随着脉冲频率 f 的增高,电机转子还未稳定下来时,下一个 脉冲已经到来。 工业应用对步进电机的要求 不丢步/不越步 转子运动平稳 快速性
一、运行矩频特性 步进电机连续转动时的最大输出转矩T与驱动电源脉冲频率f间的关系
定子绕组电感的影响
L Tr R
11.4 步进电动机的单步运行状态
单步运行状态
仅改变一次通电状态或输入脉冲频率非常低
空载
加载
a
Tq
极限负载 or 极限启动转矩 电机以一定通电方式运行时,相邻矩角特性的交点所对应的转矩
3 Tq T j max 2
A
AB
B
步进电机组成及工作原理
步进电机组成及工作原理一、步进电机的组成步进电机是一种组合式电机,它由转子、定子、感应器和控制器等几个部分组成。
1. 转子步进电机的转子通常由一些磁性材料制成,如镍、铁、钴、钢等。
转子的形状通常为圆盘形,中央有一个或多个隆起的齿形结构。
2. 定子步进电机的定子通常也由磁性材料制成,有时会添加一些绝缘材料。
定子的形状通常为环形,有一个或多个钳制定子的爪子。
定子的内部有一些线圈,并联或串联,它们与控制器相连。
3. 感应器步进电机的感应器通常是一些磁性部件,如霍尔元件、磁敏电阻等。
它们的作用是检测转子位置,向控制器反馈转子位置信息。
4. 控制器步进电机的控制器通常是一个设备,它能产生特定的电流/电压波形,驱动步进电机转动。
控制器通常由处理器、驱动电路、信号输入输出接口等几个部分组成。
二、步进电机的工作原理步进电机的工作原理是利用交替磁场和磁学相互作用产生转矩,推动转子转动。
步进电机的驱动方式有两种:全步进驱动和半步进驱动。
1.全步进驱动全步进驱动又称全步进模式,是最常用的步进电机驱动方式。
在全步进模式下,控制器将电流以一定周期分为多个步骤,每一步骤控制电流的大小和方向,产生一定的磁场,推动转子转动。
具体而言,当控制器中的电流向步进电机内部线圈流动时,就会产生一个磁场。
如果电流反向,就会产生另一个磁场。
这两种磁场会相互作用,生成一个转矩,推动转子转动。
在全步进模式下,每一步转动角度是固定的(通常为1.8度或0.9度),因此转子转动也是连续的,不会出现跳动现象。
2.半步进驱动半步进驱动是在全步进模式基础上改进得到的,也称为半步进模式。
在半步进模式下,控制器将电流分为两个步骤,第一步只控制一个电流线圈,第二步则控制两个电流线圈。
这样一来,转子转动角度就可以设置为1.8度的一半(即0.9度)。
半步进驱动可以提高步进电机的分辨率,使得步进电机更加精确。
但同时也会使得驱动电路更加复杂,成本更高。
步进电机是一种精密的电动机,具有结构简单、定位精度高等优点。
伺服电机 步进电机 通俗讲解
伺服电机和步进电机是现代工业中常见的两种电机类型,它们都有着广泛的应用领域,但是在工作原理、性能特点和适用场景上有着明显的区别。
在本文中,我们将对这两种电机进行通俗易懂的解释,帮助读者更好地理解它们的工作原理和特点。
一、伺服电机1.1 工作原理伺服电机通过控制系统对电机的转矩、速度和位置进行精确的调节,以实现精准的运动控制。
通常情况下,伺服电机由电机、编码器、控制器和反馈系统等组成。
控制器接收指令并通过反馈系统获取实际运动状态,然后调节电机的输出来实现所需的运动控制。
1.2 特点(1)精准控制:伺服电机能够实现高精度的位置控制和速度控制,广泛应用于需要高精度运动控制的场合。
(2)响应速度快:由于采用了闭环控制系统,伺服电机的响应速度非常快,能够迅速响应外部指令并实现快速准确的运动。
(3)负载能力强:伺服电机能够承受较大的负载,在高速、高精度运动控制的情况下仍能保持稳定的输出。
1.3 应用领域伺服电机广泛应用于数控机床、工业机器人、印刷设备、纺织设备等需要高精度运动控制的领域,以及飞行器、导弹、船舶等需要快速响应和精准控制的领域。
二、步进电机2.1 工作原理步进电机是一种数字式电机,通过依次通电给定的电磁线圈,使电机按一定的步距顺序转动。
步进电机的步距角和步距数与其结构有关,不同的步进电机有不同的步距角和步距数。
2.2 特点(1)结构简单:步进电机结构相对简单,通常由定子、转子、电磁线圈和控制电路组成,维护和安装相对方便。
(2)定位精度高:步进电机能够实现高精度的位置控制,适用于一些需要精准定位的场合。
(3)低速高扭矩:步进电机在低速情况下能够提供较大的输出扭矩,适合一些需要较大输出扭矩和低速运动的场合。
2.3 应用领域步进电机广泛应用于打印机、数码相机、纺织设备、医疗设备、自动售货机等需要精准定位和低速高扭矩输出的领域。
三、伺服电机和步进电机的比较3.1 工作原理对比伺服电机通过控制系统对电机的转矩、速度和位置进行精确的调节,实现精准的运动控制;步进电机是一种数字式电机,通过依次通电给定的电磁线圈,使电机按一定的步距顺序转动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二步进电机
一、实验目的
1.掌握步进电机的工作原理;
2.掌握利用proteus和keil设计步进电机的方法。
二、实验内容
1.步进电机的介绍
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
2.程序
#include <reg51.h>
#define uchar unsigned char
sbit P1_0=P1^0;
sbit P1_1=P1^1;
sbit P1_2=P1^2;
sbit P1_3=P1^3;
sbit P1_4=P1^4;
sbit P1_5=P1^5;
sbit P1_6=P1^6;
sbit P1_7=P1^7;
sbit shut=P3^7;
uchar RRR,flg,KKK; //RRR用于调速控制;flg=0正转;flg=1反转; flg=2不转;KKK为P1的状态寄存
uchar loop[2][4]={{0x0c,0x06,0x03,0x09},{0x09,0x03,0x06,0x0c}};//低四位1100,0110,0011,1001 四相双四拍
void loop1(void);
void loop2(void);
void step(void);
main( )
{ uchar i,j;
TMOD=0x10; //T1方式1(16位定时器)
TL1=0xf0; TH1=0xd8; //延时10ms,置初值
EA=0; //开总中断
ET1=0; //开定时器T1
while(1)
{ while(shut) ; //启动开关
if(KKK!=P1) //当P1的值发生变化,触发采集信号
loop1( ); //控制正反转
if(flg!=2)
{ for(i=0;i<=3;i++)
{ P0=loop[flg][i];
for(j=0;j<RRR;j++)
{ step( ); //产生10MS单位步距时间
} } } } }
void step(void) //产生10MS的单位步时间
{
TF1=0;
TR1=1;
while(TF1==0);
TR1=0;
TL1=0xf0;
TH1=0xd8;
}
void loop1(void) //采集顺时针或逆时针信号,P1.6=1,顺时针,P1.7=1,逆时针{
KKK=P1; //暂存P1的状态
if(P1_6==1)
{ flg=0; //正转
loop2( ); //设置不同转速
}
else if(P1_7==1)
{ flg=1; //反转
loop2( );
}
else
{ flg=2; //不转}
}
void loop2(void)
{
if(P1_0==0)
{ RRR=5; //5转每秒}
else if(P1_1==0)
{ RRR=10; //2.5转每秒}
else if(P1_2==0)
{ RRR=20; //1.25转每秒}
else if(P1_3==0)
{ RRR=25; //1转每秒}
else if(P1_4==0)
{ RRR=50; //0.5转每秒}
else if(P1_5==0)
{ RRR=100; //0.25转每秒}
}
3.原理图
三、总结
步进电机又叫脉冲电动机,它是一种将电脉冲信号转换为角位移的机电式数模(D/A)转换器。
在开环数字程序控制系统中,输出控制部分常采用步进电机作为驱动元件。
步进电机控制线路接受计算机发来的指令脉冲,控制步进电机作相应地转动,步进电机驱动数控系统(如数控机床)的工作台或刀具。
指令脉冲的总数就决定了数控系统的工作台或刀具的总移动量,指令脉冲的频率就决定了移动的速度。
因此,指令脉冲能否被可靠地执行,基本上取决于步进电机的性能。
常规的步进电机控制电路主要由脉冲分配器和驱动电路组成。
采用微机控制,主要取代脉冲分配器,而给步进电机提供驱动电源的驱动电路是必不可省的,同时用微机实现对步进电机的走步数、转向及速度控制等。
按正序或反序取输出字可控制步进电机正转或反转,输出字更换得越快,步进电机的转速越高。
步进电机的工作过程是“走一步停一步”的循环过程,也就是说步进电机的步进时间是离散的,步进电机的速度控制就是控制步进电机产生步进动作时间,使步进电机按照给定的速度规律进行工作。
通过本次实验,掌握了步进电机四相双四拍的工作方式和工作原理及利用P roteus和Keil设计步进电机的方法。