几种常见的曲面和曲线
常用曲线和曲面的方程及其性质
![常用曲线和曲面的方程及其性质](https://img.taocdn.com/s3/m/ddf34988970590c69ec3d5bbfd0a79563d1ed445.png)
常用曲线和曲面的方程及其性质曲线和曲面在三维空间中是常见的数学对象。
它们的方程可以通过几何性质描述它们的性质。
本文将介绍一些常用的曲线和曲面方程及其性质。
一、曲线方程1. 直线方程直线是一种最基本的曲线,它的方程可以写成一般式和斜截式两种形式。
一般式:$Ax+By+C=0$;斜截式:$y=kx+b$,其中$k$是直线的斜率,$b$是截距。
直线的斜率表示的是直线倾斜的程度,斜率越大表示直线越陡峭。
斜率等于零表示直线水平,而无限大则表示直线垂直于$x$轴。
2. 圆的方程圆是一种具有球面对称性质的曲线,它的方程可以写成两种形式:标准式和一般式。
标准式:$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$为圆心坐标,$r$为半径长度。
一般式:$x^2+y^2+Ax+By+C=0$,其中$A,B,C$是常数。
圆的标准式方程可以通过圆心和半径来描述圆的几何性质;而一般式方程则可以通过求圆的中心和半径来转化为标准式方程。
3. 椭圆的方程椭圆是一种内离于两个焦点的平面曲线,它的方程可以写成一般式和标准式两种形式。
标准式:$\frac{(x-a)^2}{a^2}+\frac{(y-b)^2}{b^2}=1$,其中$(a,b)$为椭圆中心坐标,$a$是横轴半径,$b$是纵轴半径。
一般式:$Ax^2+By^2+Cx+Dy+E=0$,其中$A,B,C,D,E$是常数。
椭圆的标准式方程中的$a$和$b$决定了椭圆的形状和大小。
当$a=b$时,椭圆变成了圆。
4. 抛物线的方程抛物线是一种开口朝上或朝下的U形曲线,它的方程可以写成两种形式:标准式和一般式。
标准式:$y=ax^2$,其中$a$是抛物线的参数。
一般式:$Ax^2+By+C=0$,其中$A,B,C$是常数。
抛物线的标准式方程中的参数$a$可以决定抛物线的开口方向,当$a>0$时开口向上,$a<0$时则开口向下。
5. 双曲线的方程双曲线是一种形状类似于抛物线的曲线,但它却有两个分支。
计算机图形学曲线和曲面
![计算机图形学曲线和曲面](https://img.taocdn.com/s3/m/eac924d6e43a580216fc700abb68a98270feac7d.png)
曲线构造方法
判断哪些是插值、哪些是逼近
曲线构造方法
插值法
线性插值:假设给定函数f(x)在两个不同点x1和x2的值,用 线形函数 :y=ax+b,近似代替f(x),称为的线性插值函 数。
插值法
抛物线插值(二次插值):
已知在三个互异点x1,x2,x3的函数值为y1,y2,y3,要求构造 函数 ¢ (x)=ax2+bx+c,使得¢(x)在xi处与f(x)在xi处的值相 等。
曲线曲面概述
自由曲线和曲面发展过程
自由曲线曲面的最早是出现在工作车间,为了获得特殊的曲线,人们 用一根富有弹性的细木条或塑料条(叫做样条),用压铁在几个特殊 的点(控制点)压住样条,样条通过这几个点并且承受压力后就变形 为一条曲线。人们调整不断调整控制点,使样条达到符合设计要求的 形状,则沿样条绘制曲线。
5.1.2 参数样条曲线和曲面的常用术语
在工程设计中,一般多采用低次的参数样条曲线。 这是因为高次参数样条曲线计算费时,其数学模型难于 建立且性能不稳定,即任何一点的几何信息的变化都有 可能引起曲线形状复杂的变化。
因此,实际工作中常采用二次或三次参数样条曲线,如: 二次参数样条曲线: P (t) = A0 + A1t + A2t2 三次参数样条曲线: P (t) = A0 + A1t + A2t2 + A3t3
a3
1 0] a2 a1 a0
三次参数样条曲线
P(k) a3 0 a2 0 a1 0 a0 P(k 1) a3 1 a2 1 a1 1 a0 P '(k) 3a3t2 2a2t a1 a1 P '(k 1) 3a3 2a2 a1
P0 0 0 0 1 a3
大学数学_7_4 曲面与曲线
![大学数学_7_4 曲面与曲线](https://img.taocdn.com/s3/m/64683f18a32d7375a417807d.png)
O
x 图7-34
y
例 6 一动点 M 在圆柱面 x 2 y 2 a 2 上以角速度 绕 z 轴旋转时,同时又以线速度 v 沿平行于 z 轴的正方 向上升,( , v都是常数) , 则点 M 的几何轨迹叫做螺旋线 (7-35) ,试建立其参数方程. z 解 取时间 t 为参数,设t 0 时动 点在点 A( a,0,0) 处,在 t 时刻,动点在 点 M ( x, y , z ) 处.过点 M 作 xOy 面的 ' 垂线,则垂足为 M ( x, y,0) .由于 O My AOM ' t , MM ' vt , M’ x 故 x a cos AOM ' a cos t , 图7-35 y a sin AOM ' a sin t , z MM ' vt , x a cos t , 所以螺旋线的参数方程为: y a sin t , z vt.
求曲线: 2 2 z x y 2 2 z x y 在 xOy 面上的投影方程. 例7
从曲线 的方程中消去 z,得 x2 y 2 x2 y 2 , 化简后,得 ( x 2 y 2 )( x 2 y 2 1) 0, 因为 x 2 y 2 0 ,所在曲线 关于 xOy 面的投影柱面方程为 x2 y2 1 (是圆柱面) ,在 xOy 面的投影方程为 1 2 2 x y 2 z 0 (是 xOy 面上的圆). 解
Hale Waihona Puke y2 z2 例 2 将 yOz 面上的椭圆 2 2 1分别绕 z 轴和 y 轴 a b 旋转,求所形成的旋转曲面方程. 解 绕 z 轴旋转而形成的旋转曲面(图 7-28)方程 为 x2 y 2 z 2 z 1 , a2 b2 b x2 y 2 z 2 2 2 1. 即 2 a a b a 绕 y 轴旋转而形成的旋转曲面方程为 y y 2 x2 z 2 a 1, 2 2 x a b 图7-28 x2 y 2 z 2 2 2 1. 即 2 b a b
计算机图形学--第十讲 曲线的基本概念
![计算机图形学--第十讲 曲线的基本概念](https://img.taocdn.com/s3/m/8ad06e9758f5f61fb736668e.png)
12 曲线的基本概念Bézier 曲线5曲线与曲面的概述 4 3 6 B 样条曲线NURBS 曲线 常用的曲面在工程上经常遇到的曲线和曲面有两种:◆简单曲线和曲面函数方程或参数方程直接给出;◆自由曲线用二次混合曲线或三次曲线。
曲线曲面描述方法的发展: 1963曲线曲面1971线形状1972条曲线曲面1975方法1991何形状的唯一数学方法☐非参数表示:显式表示,坐标变量之间一一对应隐式表示☐非参数表示存在问题:不具有几何不变性,形状与坐标轴相关斜率无穷大非平面曲线、曲面难以用常系数的非参数化函数表示 不便于计算与编程参数表示:曲线上任一点的坐标均表示成给定参数的函数示,曲线上一点的笛卡尔坐标:曲线上一点坐标的矢量表示:p对参数变量规格化:例子:直线段的参数表示曲面的参数表示空间曲面xyzP☐参数表示法的优点◆曲线的形状与坐标系无关。
◆容易确定曲线的边界。
参数规格化区间或为◆曲线的绘制简单。
当参数序列组成的连线就是方程代表的曲线。
◆易于变换。
对参数方程表示的曲线或曲面进行几何变换或投影变换,只需要对方程的系数变换即可◆易于处理斜率无穷大的情形。
◆易于用矢量和矩阵表示几何分量,简化了计算隐式表示的曲线称为隐式曲线 表示形式空间隐式曲线表示为联立方程组 注意参数表示与隐式表示的比较参数表示易于求值给定一个参数值,代入参数方程对应的参数曲线上的点;得到隐式曲线上的点则非常困难。
参数表示难于判断内外对于隐式曲线f(x线12 曲线的基本概念Bézier 曲线5曲线与曲面的概述 4 3 6 B 样条曲线NURBS 曲线 常用的曲面☐参数曲线的表示参数的、连续的、单值的函数:x=x(t), y=y(t), z=z(t), 0<=t<=1 ☐位置矢量p(t)=[x(t), y(t), z(t)]曲率:数学上表明曲线在某一点的弯曲程度的数值.几何意义是曲线的单位切矢对弧长的转动率。
空间解析几何-第3章-常见的曲面2
![空间解析几何-第3章-常见的曲面2](https://img.taocdn.com/s3/m/88ad6b47ff00bed5b9f31dd6.png)
把方程的左边都化成两项正,一项负,则右边是1的就 表示单叶双曲面,而右边是-1的,就表示双叶双曲面.
2°绘图时要注意区分“实轴”和“虚轴”,并且保证对坐 标轴的标注要符合右手系的原则.
1、椭圆抛物面
x2 a2
, 椭圆
z h.
O
结论:单叶双曲面可看作由一
个椭圆的变动(大小位置都改
x
y
变)而产生,该椭圆在变动中,
保持所在平面与xOy 面平行,
且两对顶点分别在两定双曲线
上滑动.
用平行于坐标面的平面截割
z
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2
,
y h.
①当 h b时
截线为双曲线
o
y
用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
0,
y h.
③当 h =b 时
截线为直线
(0 , b , 0)
单叶双曲面: x2 y2 z2 1 a2 b2 c2
用y = h 截曲面
①当 h b 时
②当 h b 时
③当 h =b 时
x2 Cyh: a2
x2 Czh: a2
y2 b2
h2 c2
1,
z h.
结论:双叶双曲面可看作由 一个椭圆的变动(大小位置 都改变)而产生,该椭圆在 变动中,保持所在平面与 x
xOy 面平行,且两轴的端点
分别在两定双曲线上滑动.
z
o
y
(2)用 y t截曲面
水工建筑中常见的曲线和曲面体
![水工建筑中常见的曲线和曲面体](https://img.taocdn.com/s3/m/7f111a5f0a4e767f5acfa1c7aa00b52acfc79cf7.png)
在水力发电中的应用
曲线和曲面体在水力发电中主要用于水轮机的设计和布置,如蜗壳、座环等,以 提高水轮机的效率和水能利用率。
在水力发电中,曲线和曲面体还用于水电站的厂房设计,如主厂房、副厂房等, 以提高厂房的空间利用率和设备运行效率。
在水利工程中,曲线和曲面体还用于 布置水工建筑物的基础,如桩基、扩 基等,以提高基础的承载力和稳定性。
在水利枢纽工程中,曲线和曲面体常 用于布置船闸、溢洪道等水工建筑物, 以满足水流顺畅、减少冲刷的要求。
在水环境治理中的应用
曲线和曲面体在水环境治理中主要用 于构建生态护岸,如斜坡式护岸、直 立式护岸等,以实现生态保护和防洪 保安的双重目标。
THANKS
感谢观看
05
结论
总结
曲线和曲面体在水工建筑中具有广泛 应用,如水坝、溢洪道、闸门等。
曲线和曲面体的优化设计可以提高水 工建筑的整体性能和经济效益,降低 能耗和环境负荷。
曲线和曲面体的设计和施工需要综合 考虑结构安全性、稳定性、经济性和 环境影响等方面。
随着计算机技术的发展,数值模拟和 优化算法在水工建筑设计和施工中得 到了广泛应用,为曲线和曲面体的优 化设计提供了有力支持。
详细描述
圆弧体的形状类似于一段圆弧线,其特点是曲率连续且方向 可以变化。在水工建筑中,圆弧体常用于设计溢洪道、闸门 等设施的外形,以实现水流的有效控制和调节。
其他曲线体
总结词
除了上述几种常见的曲线体外,水工建筑中还可能使用其他类型的曲线体,如双曲线体、三次曲线体 等。
详细描述
这些曲线体在水工建筑中也有一定的应用,如双曲线体可用于描述溢洪道两侧的轮廓线,三次曲线体 可用于设计水坝的斜面等。这些曲线体的使用可以更好地满足水工建筑的需求,提高水利工程的性能 和安全性。
二次曲线的分类和二次曲面的分类-概述说明以及解释
![二次曲线的分类和二次曲面的分类-概述说明以及解释](https://img.taocdn.com/s3/m/e0ab4c5f15791711cc7931b765ce050877327552.png)
二次曲线的分类和二次曲面的分类-概述说明以及解释1.引言1.1 概述概述:二次曲线和二次曲面是解析几何学中重要的研究对象,它们具有许多美妙的几何性质。
在本文中,我们将讨论二次曲线和二次曲面的分类,包括椭圆、抛物线、双曲线、椭球面、抛物面和双曲面等。
通过对这些曲线和曲面的特点和性质进行深入的研究,我们可以更好地理解它们在几何学中的应用和意义。
本文将分析这些曲线和曲面的方程、图像和几何特征,帮助读者全面了解它们的分类和区分。
希望本文能够对二次曲线和二次曲面的研究有所启发,并为相关领域的学习和研究提供参考和帮助。
文章结构部分内容如下:1.2 文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,将概述二次曲线和二次曲面的概念,说明文章结构和目的。
在正文部分,将详细讨论二次曲线和二次曲面的分类,包括椭圆、抛物线、双曲线以及椭球面、抛物面、双曲面的形态和特点。
最后在结论部分,对文章进行总结,并探讨二次曲线和二次曲面在实际应用中的意义,展望未来可能的发展方向。
整个文章结构严谨有序,逻辑清晰,旨在帮助读者更深入地了解二次曲线和二次曲面的分类和特性。
文章1.3 目的:本文旨在对二次曲线和二次曲面进行分类和介绍,帮助读者更好地理解和区分不同类型的二次曲线和曲面。
通过本文的阐述,读者将了解椭圆、抛物线、双曲线、椭球面、抛物面和双曲面的定义、性质和特点。
同时,本文也旨在展示二次曲线和曲面在数学、物理和工程等领域的应用,以及未来对其研究的展望。
通过本文的阅读,读者将深入了解二次曲线和曲面的重要性和应用价值。
": {}}}}请编写文章1.3 目的部分的内容2.正文2.1 二次曲线的分类二次曲线是一个二次方程所描述的平面曲线。
在代数几何学中,二次曲线可以分为三种基本类型:椭圆、抛物线和双曲线。
这些曲线在平面上具有不同的几何性质和形态。
2.1.1 椭圆椭圆是一个闭合的曲线,其定义为所有到两个定点的距离之和等于一个常数的点的集合。
三维空间中的曲线与曲面
![三维空间中的曲线与曲面](https://img.taocdn.com/s3/m/923082bdaff8941ea76e58fafab069dc5022472b.png)
三维空间中的曲线与曲面在数学中,我们经常遇到分析三维空间中的曲线与曲面。
曲线与曲面是几何学中的重要概念,对于研究空间中的运动、形变和相互关系具有重要意义。
本文将介绍三维空间中的曲线与曲面的定义、性质以及它们在实际生活中的应用。
1. 曲线的定义与性质在三维空间中,曲线可以通过参数方程或者隐式方程来表示。
参数方程的形式为:x = f(t)y = g(t)z = h(t)其中,变量 t 为参数,可以是实数。
函数 f(t),g(t) 和 h(t) 分别表示曲线在 x、y 和 z 轴上的坐标随参数 t 的变化情况。
通过改变参数 t 的取值范围,可以得到曲线在空间中的不同部分。
曲线的性质主要包括长度、切线和曲率。
曲线的长度可以通过导数运算和积分运算求得。
切线是指曲线上某一点处的切线方向,它垂直于曲线的切线平面。
曲率是曲线在某一点处弯曲程度的度量,表示为曲线的曲率半径的倒数。
2. 曲面的定义与性质曲面可以由隐式方程或者参数方程来表示。
隐式方程的形式为:F(x, y, z) = 0其中,函数 F(x, y, z) 定义了曲面在三维空间中的形状。
参数方程的形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,变量 u 和 v 是曲面上的参数,函数 f(u, v),g(u, v) 和 h(u, v)分别表示曲面上的点在x、y 和z 轴上的坐标随参数u、v 的变化情况。
曲面的性质主要包括方程、切平面和法向量。
曲面的方程描述了曲面上的所有点满足的数学关系。
切平面是曲面上某一点处的切平面,它与曲面相切且垂直于曲面上的切线。
法向量是切平面的垂直向量,它垂直于曲面。
3. 曲线与曲面的应用曲线与曲面在现实生活中有广泛的应用。
在物理学中,曲线与曲面可以用来描述物体的运动轨迹或者物体表面的形状。
例如,行星在太空中的运动轨迹、水滴在玻璃表面上的形状等都可以用曲线与曲面来描述。
在计算机图形学中,曲线与曲面是构建三维模型的基础。
常见曲线曲面方程与图形
![常见曲线曲面方程与图形](https://img.taocdn.com/s3/m/0fb8ba27f46527d3240ce0a2.png)
旋转双叶双曲面:
x2 a2
y2 z2 c2
1
x
z Oy
旋转单叶双曲面:
x2 y2 a2
z2 c2
1
z
xO y
结束
抛物柱面: •
z
O
x
y
椭圆柱面:
z
•
x2 a2
y2 b2
1
O
y
x
结束
圆柱面:
x2 y2 R2
z
O
y x
结束
椭球面:
x2 a2
y2 b2
z2 c2
1
( a,b, c为正数)
在该点的切线斜率为±1
B
O
Ax
• 顶 点:
• 双纽面积:
结束
三叶玫瑰线
aLeabharlann OxaOx
结束
圆锥面:
z2 x2 y2
z
O
y
x
椭圆锥面:
x2 y2 z2 a2 b2
z
O
y
x
结束
单叶双曲面:
x2 y2 z2
a2
b2
c2
1
z
xO y
双叶双曲面: x2 y2 z2 a2 b2 c2 1
z
Oy x
即 r a(1 cos )
y
O
a
• 尖点: (0, 0)
x
• 面积:
3 2
π
a
2
• 弧长: 8a
结束
阿基米德螺线 r a
a0
a0
• 物理意义: 动点 M 以常速 v 沿一射线运动, 该射线又
以定速 绕极点转动时, 点M 的轨迹即为
阿基米德螺线
解析几何中的曲线和曲面性质
![解析几何中的曲线和曲面性质](https://img.taocdn.com/s3/m/9f4cb84ea36925c52cc58bd63186bceb18e8ed76.png)
解析几何中的曲线和曲面性质曲线和曲面是解析几何中的两个基本概念,它们对于几何图形的理解和探究都有着重要的作用。
在本文中,我们将对曲线和曲面的性质进行一些探讨和解析。
一、曲线的性质曲线是平面上的一条连续曲线,可以用一元函数方程、参数方程或者极坐标方程来表示。
下面,我们将对曲线的一些常见性质进行分析。
1. 曲线长度曲线长度是曲线上所有点的连续线段长度之和,也是曲线的重要性质之一。
对于参数方程为x=f(t), y=g(t)的曲线C,它的长度可以用定积分来计算,公式如下:L = ∫sdt =∫a↑b,[f′(t)2 + g′(t)2]1/2 dt2. 曲率曲率是反映曲线曲弯程度的量,是解析几何中的重要概念。
对于参数方程为x=f(t), y=g(t)的曲线C,在一点P处的曲率可以用以下公式表示:k = [f′(t)g′′(t) - f′′(t)g′(t)] / [(f′(t)2 + g′(t)2) 3/2]其中,t是以P为中心的弧长参数。
曲率越大,曲线就越曲。
3. 弧长测度弧长测度是曲线上任意一段弧的长度。
当曲线长度可积时,它的弧长测度可以通过定积分来计算。
4. 曲线的凹凸性曲线的凹凸性是指曲线弯曲方向的改变。
如果在曲线上任意一点,从该点往前看曲线弯曲的方向和从该点往后看曲线弯曲的方向相同,则该曲线是凸的。
相反,如果方向不同,则该曲线是凹的。
5. 曲线的对称性在解析几何中,曲线的对称性也是一个重要的性质。
如果将曲线沿着某些特定的线或点对称,得到的新曲线仍然和原曲线完全一致,那么这个曲线就是对称的。
常见的对称形式包括轴对称、中心对称和旋转对称等。
二、曲面的性质曲面是三维空间中的连续曲面,可以用一元函数方程、参数方程或者隐式方程来表示。
下面,我们将对曲面的一些常见性质进行分析。
1. 曲面的一般方程曲面可以用一元函数方程描述为z=f(x,y),也可以用参数方程描述为x=x(u,v), y=y(u,v), z=z(u,v),或者用隐式方程描述为F(x,y,z)=0。
几种常见的曲面及其方程二次曲面曲线
![几种常见的曲面及其方程二次曲面曲线](https://img.taocdn.com/s3/m/9560d60e5727a5e9856a615b.png)
x y z 2 2 1 2 a a b
y 2 x2 z 2 1 2 2 a b
222aFra biblioteka y
绕 y轴旋转而成的旋转曲面方程为 即
x
x2 y 2 z 2 2 2 1 2 b a b
例3 求
旋转所形成的旋转抛物面(图7-28)的方程。 解 方程 便得到旋转抛物线的方程为
就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
机动 目录 上页 下页 返回 结束
1. 椭球面 x2 y 2 z 2 2 2 1 ( a, b, c 为正数) 2 a b c
(1)范围: x a,
y b,
z c
(2)与坐标面的交线:椭圆
x2 y 2 2 2 1 , 黄a b z0
xoy 面上的抛物线 x ay 2 (a 0) 绕x轴
x ay 2 中的x 不变, 换成 y 2 z 2
x a( y z )
2 2
例4 求 yoz 面上的直线 z ky(k 0) 绕z轴 z 旋转一周而成的圆锥面的方程。
解 所求圆锥面的方程为
即
y
z k x2 y 2
x
l1
y
z
l2
y
母线 平行于 x 轴; 准线 yoz 面上的曲线 l2.
方程 H ( z, x) 0 表示 柱面,
z
x
l3
x
母线 平行于 y 轴;
y
准线 xoz 面上的曲线 l3.
机动 目录 上页 下页 返回 结束
3.旋转曲面
定义2. 一条平面曲线 绕其平面上一条定直线旋转
一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转
几种常见的曲面和曲线
![几种常见的曲面和曲线](https://img.taocdn.com/s3/m/9667871c7275a417866fb84ae45c3b3567ecddd3.png)
几种常见的曲面和曲线曲面和曲线在数学中广泛应用,其种类也多种多样。
本文将介绍几种常见的曲面和曲线。
1.圆锥曲线圆锥曲线是由一个固定点(焦点)和一条固定直线(直母线)构成的曲线。
圆锥曲线包括圆、椭圆、抛物线和双曲线四种形式。
圆是一种特殊的圆锥曲线,其焦点和直母线相等。
椭圆是焦点离直母线较远的圆锥曲线,其形状类似于延伸的圆。
抛物线是焦点在直母线上方的圆锥曲线,其形状类似于一个开口向上的碗。
双曲线是焦点离直母线较近的圆锥曲线,其形状类似于两个对称的开口向外的碗。
2.球面球面是三维空间中的曲面,其所有点都与一个固定点相等距离,这个点称为球心。
球面是一种闭合的曲面,具有无限个可测量的点。
球面在地理学、天文学和物理学中经常使用。
3.椭球体椭球体是一种类似于球体的曲面,但其轴向不同,具有两个互相垂直的轴。
其中一个轴长,称为主轴,另一个轴短,称为次轴。
椭球体也是一种闭合的曲面。
椭球体在地理学、天文学和力学中经常使用。
4.螺旋线螺旋线是一种常见的曲线类型,在旋转体中可以看到。
螺旋线运动是动力学中的重要问题,许多物理现象都与螺旋线有关。
螺旋线可以分为两类,即右旋螺旋线和左旋螺旋线,其旋转方向与螺旋线旋转方向相同。
5.文森特曲线文森特曲线最初由法国数学家沃伦斯·文森特(Jules-Antoine Lissajous)发现。
它的形状是由两个矩形谐振器的运动生成的曲线,矩形谐振器是一种简单的物理系统,可以通过一个质点在两个定点之间来建模。
文森特曲线具有美丽的几何形状,其形状类似于椭圆、双曲线和菱形,因此在绘图、视觉特效和音乐可视化等领域中经常使用。
空间中的曲面和曲线及二次曲面
![空间中的曲面和曲线及二次曲面](https://img.taocdn.com/s3/m/c0f61218a76e58fafab00311.png)
第六章 二次型与二次曲面
§6.3 二次曲面
例3. z = xy. 0 1/2 0 解: xy = (x, y, z) 1/2 0 0 0 0 0
x y , z
1 2 1 2 0 先求得正交矩阵Q = 1 2 1 2 0 , 1 0 0 0 1/2 0 1/2 0 0 使QT 1/2 0 0 Q = 0 1/2 0 , 0 0 0 0 0 0
x = acost y = asint z = vt z
(tR
aO x
y
O x
a y
15
a
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
2. 维维安尼曲线 x = a (1+cost) 2 x 2 + y 2 + z2 = a 2 y = a sint (xa/2)2 + y2 = a2/4 2 t z = asin 2
第六章
§6.2
二次型与二次曲面
空间中的曲面和曲线
§6.3
二次曲面
2011. 12. 22
1
第六章 二次型与二次曲面
§6.2 空间中的曲面和曲线
§6.2 空间中的曲面和曲线 曲面的一般方程: F(x, y, z) = 0 曲线的一般方程: F(x, y, z) = 0 G(x, y, z) = 0 曲线的参数方程: x = x(t) y = y(t) z = z(t)
b
y
x 2 z2 y = 0, 2 + 2 = 1 a c x2 y2 z = 0, 2 + 2 = 1 a b
当a, b, c中有两个相等时——旋转面 当a = b = c = R时——半径为R的球面
23
高等数学几种常见的曲面及其方程
![高等数学几种常见的曲面及其方程](https://img.taocdn.com/s3/m/2b4b6d8d89eb172ded63b7a9.png)
一、二次曲面
1-1球面
(X-X0)2+(Y-Y0)2+(Z-Z0)2=R2
球心为M0(X0,Y0,Z0)
1-2椭圆锥面
1-3椭球面
其中,表示xOz平面上的椭圆绕z轴旋转而成的椭球面。
1-4单叶双曲面
其中,表示xOz平面上的双曲线绕z轴旋转而成的单叶双曲面。
1-5双叶双曲面
其中,表示xOz平面上的双曲线绕x轴旋转而成的双叶双曲面。
1-6椭圆抛物面
1-7双曲抛物面(马鞍面)
二、柱面
2-1圆柱面
X2+Y2=R2
2-2椭圆柱面
2-3双曲柱面
2-4抛物柱面
y2=2px
注:形如二、柱面只含x,y而缺少z的方程F(x,y)=0在空间直角坐标系中表示母线平行于z 轴的柱面,其准线为xOy平面上的曲线C:F(x,y)=0
特别地,
1.球x2+y2+z2=R2
2.圆柱面x2+y2=R2
3.旋转抛物面X2+Y2=z(以原点为顶点,上下两个开口分别向上向下的抛物线旋转而成的图形)
4.X2+Y2=z2(以原点为顶点,上下两个开口分别向上向下的圆锥,锥顶角为90。
)。
[工学]画法几何及土木工程制图06-曲线和曲面-文档资料
![[工学]画法几何及土木工程制图06-曲线和曲面-文档资料](https://img.taocdn.com/s3/m/79a5d0122b160b4e777fcf5f.png)
于d,重合在PH上;正面投影和 侧面投影为椭圆,长轴竖直,长
度等于d,短轴水平,长度根据水 平投影作出。利用圆的辅助投影
可作出椭圆上的一些中间点。
第六章 曲线和曲面
9
§6-1 曲线
2.一般斜平面上的圆 圆所在的平面倾斜 于三个投影面时,圆的 任一投影都是椭圆,椭 圆长轴的长度总是等于 圆的直径d。
直纹面
第六章 曲线和曲面
29
§6-3 直纹面
四、双曲抛物面
直母线l 沿着两条交叉直导线AB、CD运动,且始终平行于某
一导平面Q,这样形成的曲面称为双曲抛物面,工程上也称扭面。 双曲抛物面的投影图中,只需画出两条直导线和若干素线的投
影,而不必画出导平面。
第六章 曲线和曲面
30
§6-3 直纹面
双曲抛物面在工程上有广泛的用途。 道路边坡过渡段
第六章 曲线和曲面
16
§6-2 曲面概述
由直母线运动生成的曲面称为直纹面,例如圆柱面、圆锥面; 只能由曲母线运动生成的曲面称为曲线面,例如球面。
第六章 曲线和曲面
17
§6-2 曲面概述
根据母线运动时有无旋转轴,曲面可以分为旋转面和非旋 转面。在旋转面中,由直母线旋转生成的叫旋转直纹面,由曲 母线旋转生成的叫旋转曲线面。
22
§6-3 直纹面
直纹面分为旋转直纹面和非旋转直纹面。圆柱面、圆锥面、旋
转单叶双曲面等属于旋转直纹面,切线面、双曲抛物面、锥状面、 柱状面等属于非旋转直纹面。
一、柱面
直母线l 沿着一条 导曲线运动,且始终平 行于某一固定方向T, 这样形成的曲面称为柱 面。柱面的所有素线均 互相平行,画柱面的投 影时需画出外形线的投 影(轮廓素线)。
第6-4节(曲面、空间曲线及其方程)
![第6-4节(曲面、空间曲线及其方程)](https://img.taocdn.com/s3/m/e7b97b174431b90d6c85c7af.png)
江西理工大学理学院第 4 节曲面、空间曲线及其方程江西理工大学理学院一、曲面方程的概念曲面的实例: 水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义:如果曲面 S 与三元方程 F ( x , y , z ) = 0 有下述关系:(1)曲面 S 上任一点的坐标都满足方程; (2)不在曲面 S 上的点的坐标都不满足方程;那么,方程 F ( x , y , z ) = 0 就叫做曲面 S 的方程, 而曲面 S 就叫做方程的图形.江西理工大学理学院以下给出几例常见的曲面.例 1 建立球心在点 M 0 ( x 0 , y0 , z 0 ) 、半径为 R 的球面方程.解设 M ( x , y , z ) 是球面上任一点,根据题意有| MM 0 |= R2 22 2 2( x − x0 )2+ ( y − y0 ) + ( z − z 0 ) = R2所求方程为 ( x − x0 ) + ( y − y0 ) + ( z − z0 ) = R 特殊地:球心在原点时方程为 x + y + z = R2 2 22江西理工大学理学院例 2 求与原点O 及 M 0 ( 2,3,4)的距离之比为1 : 2 的 点的全体所组成的曲面方程.解设 M ( x , y , z ) 是曲面上任一点,| MO | 1 = , 根据题意有 | MM 0 | 2 x2 + y2 + z2( x − 2) + ( y − 3) + (z − 4)2 221 = , 222⎞ 4 ⎞ 116 2 ⎛ ⎛ . 所求方程为 ⎜ x + ⎟ + ( y + 1) + ⎜ z + ⎟ = 3⎠ 3⎠ 9 ⎝ ⎝2江西理工大学理学院例 3 已知 A(1,2,3) , B( 2,−1,4),求线段 AB 的 垂直平分面的方程.解设 M ( x , y , z ) 是所求平面上任一点,根据题意有 | MA |=| MB |,( x − 1) + ( y − 2 ) + ( z − 3 )2 22( x − 2)2 + ( y + 1)2 + ( z − 4)2 , =化简得所求方程 2 x − 6 y + 2 z − 7 = 0.江西理工大学理学院2 2 例4 方程 z = ( x − 1) + ( y − 2) − 1的图形是怎样的?解根据题意有 z ≥ −1用平面 z = c 去截图形得圆:z( x − 1)2 + ( y − 2) 2 = 1 + c (c ≥ −1)当平面 z = c 上下移动时, 得到一系列圆coxy圆心在(1,2, c ),半径为 1 + c半径随c 的增大而增大. 图形上不封顶,下封底.江西理工大学理学院以上几例表明研究空间曲面有两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程. (讨论旋转曲面) (2)已知坐标间的关系式,研究曲面形状. (讨论柱面、二次曲面)江西理工大学理学院二、旋转曲面定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.播放 播放江西理工大学理学院旋转过程中的特征: 如图设 M ( x , y , z ),z⋅ M ( 0, y , z ) ⋅ Md1 1 1(1) z = z1(2)点 M 到 z 轴的距离o x2 2f ( y, z ) = 0yd=x + y =| y1 |2 2将 z = z1 , y1 = ± x + y 代入f ( y1 , z1 ) = 0江西理工大学理学院z = z1 , y1 = ± x 2 + y 2 代入 f ( y1 , z1 ) = 0 将得方程f (± x + y , z = 0,2 2)yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 z 轴旋转一周的旋转曲面方程.同理: yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕 y 轴旋转一周的旋转曲面方程为f y, ±(x 2 + z 2 = 0.)江西理工大学理学院例 5 直线 L绕另一条与 L相交的直线旋转一周, 所得旋转曲面叫圆锥面.两直线的交点叫圆锥面 ⎛ 0 < α < π ⎞ 叫圆锥面的 的顶点,两直线的夹角 α ⎜ ⎟ 2⎠ ⎝ 半顶角.试建立顶点在坐标原点,旋转轴为 z 轴, 半顶角为α 的圆锥面方程. z解yoz 面上直线方程为 z = y cot α2 2⋅ αoM 1 (0, y1 , z1 )y圆锥面方程z = ± x + y cot αxM ( x , y, z )江西理工大学理学院例6 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程.⎧ x2 z2 ⎪ 2 − 2 =1 (1)双曲线 ⎨ a 分别绕 x 轴和 z 轴; c ⎪ y=0 ⎩x2 y2 + z2 绕 x 轴旋转 − =1 2 2 a c x +y z − 2 =1 绕 z 轴旋转 2 a c2 2 2旋 转 双 曲 面⎧ y2 z2 ⎪ 2 + 2 =1 (2)椭圆 ⎨ a 绕 y 轴和 z 轴; c ⎪x = 0 ⎩ y2 x2 + z2 旋 绕 y 轴旋转 + =1 2 2a c x +y z + 2 =1 绕 z 轴旋转 2 a c2 2 2江西理工大学理学院转 椭 球 面⎧ y 2 = 2 pz (3)抛物线 ⎨ 绕 z 轴; ⎩x = 0x 2 + y 2 = 2 pz旋转抛物面江西理工大学理学院三、柱面定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线 ,动直线 L 叫 柱面的母线. 观察柱面的形 成过程:播放 播放江西理工大学理学院柱面举例zzy = 2x2平面o xo xyyy= x抛物柱面江西理工大学理学院从柱面方程看柱面的特征:只含 x, y 而缺 z 的方程 F ( x , y ) = 0 ,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy 面上曲线C . (其他类推)实 例y z + 2 = 1 椭圆柱面 // x 轴 2 b c x2 y2 − 2 = 1 双曲柱面 // z 轴 2 a b 2 抛物柱面 // y 轴 x = 2 pz22江西理工大学理学院四、空间曲线的一般方程空间曲线C可看作空间两曲面的交线.⎧F ( x, y, z ) = 0 ⎨ ⎩G ( x , y , z ) = 0空间曲线的一般方程 特点:曲线上的点都满足 方程,满足方程的点都在 曲线上,不在曲线上的点 不能同时满足两个方程.zS1 S2oxCy江西理工大学理学院⎧ x2 + y2 = 1 例7 方程组 ⎨ 表示怎样的曲线? ⎩2 x + 3 y + 3z = 6解x 2 + y 2 = 1 表示圆柱面,2 x + 3 y + 3 z = 6 表示平面,⎧ x2 + y2 = 1 ⎨ ⎩2 x + 3 y + 3z = 6交线为椭圆.江西理工大学理学院⎧z = a2 − x2 − y2 ⎪ 2 表示怎样的曲线? 例8 方程组 ⎨ a 2 a 2 ⎪( x − ) + y = ⎩ 2 4解z = a2 − x2 − y2上半球面,a 2 a2 2 圆柱面, (x − ) + y = 2 4交线如图.江西理工大学理学院五、空间曲线的参数方程⎧ x = x(t ) ⎪ ⎨ y = y( t ) 空间曲线的参数方程 ⎪ z = z( t ) ⎩当给定 t = t1 时,就 得到曲线上的一个点( x1 , y1 , z1 ),随着参数的变化可得到曲线上的全部点.,0αb +空间曲线投影柱面。
几种常见的曲面及其方程(精)
![几种常见的曲面及其方程(精)](https://img.taocdn.com/s3/m/38d7005da8956bec0975e348.png)
母线 平行于 z 轴; 准线 xoy 面上的曲线 l1.
方程 G( y, z) 0 表示柱面,
母线 平行于 x 轴;
准线 yoz 面上的曲线 l2.
方程 H (z, x) 0 表示柱面,
母线 平行于 y 轴; 准线 xoz 面上的曲线 l3. 0表示母线平行 z 轴的柱面.
又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
2. 二次曲面
三元二次方程
• 椭球面
• 抛物面:
( p, q 同号)
椭圆抛物面
x2 y2 z 2 p 2q
双曲抛物面
• 双曲面: 单叶双曲面
双叶双曲面
x2 a2
y2 b2
1
• 椭圆锥面:
(二次项系数不全为 0 ) 的图形通常为二次曲面. 其基本类型有:
椭球面、抛物面、双曲面、锥面 适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍 . 研究二次曲面特性的基本方法: 截痕法
1. 椭球面
x2 a2
y2 b2
z2 c2
1
( a,b, c为正数)
(1)范围:
ay
ay
x
x2 z2 a2 (x 0, z 0) y0
作业
P32 3, 4,5,6, 7, 8, 9,10,11,12
y z l2
x z l3
x
y y
3、旋转曲面
一条平面曲线 绕其平面上一条定直线旋转 一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转 轴.
例如 :
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:
给定 yoz 面上曲线 C: f ( y, z) 0
8.5曲面与曲线
![8.5曲面与曲线](https://img.taocdn.com/s3/m/305b86d26f1aff00bed51e57.png)
2 2 2 2
( x 2) ( y 1) ( z 4) 化简得 2 x 6 y 2 z 7 0
说明: 动点轨迹为线段 AB 的垂直平分面.
显然在此平面上的点的坐标都满足此方程,
不在此平面上的点的坐标不满足此方程.
定义1. 如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系:
母线 平行于 x 轴; 准线 yoz 面上的曲线 l2.
x
z
l3
方程 H ( z, x) 0 表示柱面,
母线 平行于 y 轴;
准线 xoz 面上的曲线 l3.
x
y
三、旋转曲面
定义2. 一条平面曲线 绕其平面上一条定直线旋转
一周 所形成的曲面叫做旋转曲面. 该定直线称为旋转
轴 . 例如 :
建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程: 给定 yoz 面上曲线 C: f ( y, z ) 0 若点 M1 (0, y1 , z1 ) C , 则有
z
C
M ( x, y, z )
M 1 (0, y1 , z1 )
f ( y1 , z1 ) 0
当绕 z 轴旋转时, 该点转到 M ( x, y, z ) , 则有
z z1 ,
x y y1
2 2
o
y
故旋转曲面方程为
x
f ( x 2 y 2 , z) 0
思考:当曲线 C 绕 y 轴旋转时,方程如何?
(1) 曲面 S 上的任意点的坐标都满足此方程; (2) 不在曲面 S 上的点的坐标不满足此方程,
则 F( x, y, z ) = 0 叫做曲面 S 的方程,
曲面 S 叫做方程 F( x, y, z ) = 0 的图形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以过M1的纬圆的方程为:
(3) X ( x x0 ) Y ( y y0 ) Z ( z z0 ) 0 2 2 2 2 2 2 ( x x0 ) ( y y0 ) ( z z0 ) ( x1 x0 ) ( y1 y0 ) ( z1 z0 ) 当点M1跑遍整个母线C时,就得到所有的纬圆, 这些纬圆就生成旋转曲面。 又由于M1在母线上,所以又有: F1 ( x1 , y1 , z1 ) 0 C: (4) F2 ( x1 , y1 , z1 ) 0 从(3)(4)的四个等式中消去参数x1,y1,z1,得到一 个三元方程: F(x,y,z)=0
z
z z1 2 2 x y | y1 |
将z1 = z, y x 2 y 2 代入 1 x 方程F( y1, z1) = 0,
这就是以C为母线,L为旋转轴的旋转曲面的方程。
例1、求直线 x y z 1
2 1 0
绕直线x=y=z旋转所得旋转曲面的方程。 解:设M1(x1,y1,z1)是母线上的任意点,因为旋转轴 通过原点,所以过M1的纬圆方程是:
( x x1 ) ( y y1 ) ( z z1 ) 0 2 2 2 2 2 2 x y z x y z 1 1 1
且有
F1(x1,y1,z1)=0,F2(x1,y1,z1)=0
从(2)(3)中消去x1,y1,z1得 F(x,y,z)=0
(3)
这就是以(1)为准线,母线的方向数为X,Y,Z的 柱面的方程。
柱面举例
z
z
y 2x
2
平面
o
y
o
y
x
抛物柱面
x
y x
从柱面方程看柱面的特征:
只含 x , y 而缺 z 的方程 F ( x , y ) 0 ,在 空间直角坐标系中表示母线平行于
又由于M1在母线上,所以又有:
x1 y1 z1 1 2 1 0
即 x1=2y1,z1=1,消去x1,y1,z1得所求旋转曲面的方程: 2(x2+y2+z2)-5(xy+yz+zx)+5(x+y+z)-7=0。
三、母线在坐标面而旋转轴为坐标轴的旋转曲面: 已知yoz面上一条曲线C, 方程为f (y, z) = 0, 曲线 C绕 z 轴旋转一周就得一个旋转曲面. 设M1(0, y1`, z1)是C上任意一点, 则有f( y1, z1) = 0 当C绕 z 轴旋转而M1随 之转到M (x, y, z)时, 有
且有
F1(x1,y1,z1)=0 F(x,y,z)=0
F2(x1,y1,z1)=0
( 3)
从(2)(3)中消去参数x1,y1,z1得三元方程 这就是以(1)为准线,以A为顶点的锥面方程。
例1、求顶点在原点,准线为
x2 y2 2 2 1 b a z c
的锥面的方程。 答:
x y z 2 2 0 2 a b c
2
2
2
(二次锥面)
齐次方程:
设λ 为实数,对于函数f(x,y,z),如果有 f(tx,ty,tz)=tλf(x,y,z) 则称f(x,y,z)为λ 的齐次函数,f(x,y,z)=0称为齐次 方程。 定理 一个关于x,y,z的齐次方程总表示顶点在坐标 原点的锥面。 例如,方程 x2+y2-z2=0 又如,方程 x2+y2+z2=0 圆锥面 原点(虚锥面)
第三节
旋转曲面
一、. 旋转曲面 1、 定义: 以一条平面曲线C绕其平面上的一 条直线旋转一周所成的曲面叫做旋 转曲面 , 这条定直线叫旋转曲面的 轴.
曲线C称为放置曲面的母线
C
o
纬线
经线
二、旋转曲面的方程 在空间坐标系中,设旋转曲面的母线为:
F1 ( x, y, z ) 0 C : (1) F2 ( x, y, z ) 0 旋转直线为: x x0 y y0 z z0 L: (2) X Y Z 其中P0(x0,y0,z0)为轴L上一定点,X,Y,Z为旋转轴 L的方向数。 设M1(x1,y1,z1)为母线C上的任意点,则M1的纬圆总 可以看成是过M1且垂直于旋转轴L的平面与以P0为中 心,|P0M1|为半径的球面的交线。
z 轴的柱
面,其准线为xoy 面上曲线C . (其他类推)
实 例
y z 2 1 2 b c x2 y2 2 1 2 a b 2 x 2 pz
2
2
椭圆柱面 母线// x 轴 双曲柱面母线// z 轴 抛物柱面母线// y 轴
例1、柱面的准线方程为
2 2 2 x y z 1 2 2 2 2 x 2 y z 2
而母线的方向数为-1,0,1,求这柱面的方程。 例2、已知圆柱面的轴为
x y 1 z 1 1 2 2
点(1,-2,1)在此圆柱面上,求这个柱面的方程。
第二节 锥面
一、锥面
1、定义 在空间,通过一定点且与定曲线相交的一族 直线所产生的曲面称为锥面,这些直线都称为锥面的 母线,定点称为锥面的顶点,定曲线称为锥面的准线。 2、锥面的方程 F1 ( x, y, z ) 0 (1) 设锥面的准线为 F2 ( x, y, z ) 0 顶点为A(x0,y0,z0),如果M1(x1,y1,z1)为准线上任一点, 则锥面过点M1的母线为: x x0 y y0 z z0 (2) x1 x0 y1 y0 z1 z0
第四章 柱面、锥面、旋转曲面与二次曲面
主要内容 1、柱面 2、锥面 3、旋转曲面 4、椭球面 5、双曲面 6、抛物面
第一节
柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线,动直线 L 叫 柱面的母线. F1 ( x, y, z ) 0 设柱面的准线为 F ( x, y, z ) 0 (1) 2 母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线 上一点,则过点M1的母线方程为 x x1 y y1 z z1 (2) X Y Z