八年级数学图形的位似PPT精品课件
合集下载
《图形的位似》PPT课件2 (共6张PPT)
总结
如果多边形有一个顶点在坐标原点,有一 条边在X轴上,那么将这个多边形的顶点坐 标分别扩大(或缩小)相同的倍数,所得 到的图形与原图形是位似图形,坐标原点 是它们的位似中心。
1.天行健,君子以自强不息。 ——《周易》 译:作为君子,应该有坚强的意志,永不止息的奋斗精神,努力加强自我修养,完成并发展自己的学业或事业,能这样做才体现了天的意志,不辜负宇宙给予君子的职 责和才能。 2.勿以恶小而为之,勿以善小而不为。 ——《三国志》刘备语 译:对任何一件事,不要因为它是很小的、不显眼的坏事就去做;相反,对于一些微小的。却有益于别人的好事,不要因为它意义不大就不去做它。 3.见善如不及,见不善如探汤。 ——《论语》 译:见到好的人,生怕来不及向他学习,见到好的事,生怕迟了就做不了。看到了恶人、坏事,就像是接触到热得发烫的水一样,要立刻离开,避得远远的。 4.躬自厚而薄责于人,则远怨矣。 ——《论语》 译:干活抢重的,有过失主动承担主要责任是“躬自厚”,对别人多谅解多宽容,是“薄责于人”,这样的话,就不会互相怨恨。 5.君子成人之美,不成人之恶。小人反是。 ——《论语》 译:君子总是从善良的或有利于他人的愿望出发,全心全意促使别人实现良好的意愿和正当的要求,不会用冷酷的眼光看世界。或是唯恐天下不乱,不会在别人有失败、 错误或痛苦时推波助澜。小人却相反,总是“成人之恶,不成人之美”。 6.见贤思齐焉,见不贤而内自省也。 ——《论语》 译:见到有人在某一方面有超过自己的长处和优点,就虚心请教,认真学习,想办法赶上他,和他达到同一水平;见有人存在某种缺点或不足,就要冷静反省,看自己 是不是也有他那样的缺点或不足。 7.己所不欲,勿施于人。 ——《论语》 译:自己不想要的(痛苦、灾难、祸事……),就不要把它强加到别人身上去。 8.当仁,不让于师。 ——《论语》 译:遇到应该做的好事,不能犹豫不决,即使老师在一旁,也应该抢着去做。后发展为成语“当仁不让”。 9.君子欲讷于言而敏于行。 ——《论语》 译:君子不会夸夸其谈,做起事来却敏捷灵巧。 10.二人同心,其利断金;同心之言,其臭如兰。 ——《周易》 译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。 11.君子藏器于身,待时而动。 ——《周易》 译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。 12.满招损,谦受益。 ——《尚书》 译:自满于已获得的成绩,将会招来损失和灾害;谦逊并时时感到了自己的不足,就能因此而得益。 13.人不知而不愠,不亦君子乎? ——《论语》 译:如果我有了某些成就,别人并不理解,可我决不会感到气愤、委屈。这不也是一种君子风度的表现吗?知缘斋主人 14.言必信 ,行必果。 ——《论语》 译:说了的话,一定要守信用;确定了要干的事,就一定要坚决果敢地干下去。 15.毋意,毋必,毋固,毋我。 ——《论语》 译:讲事实,不凭空猜测;遇事不专断,不任性,可行则行;行事要灵活,不死板;凡事不以“我”为中心,不自以为是,与周围的人群策群力,共同完成任务。 16.三人行,必有我师焉,择其善者而从之,其不善者而改之。——《论语》 译:三个人在一起,其中必有某人在某方面是值得我学习的,那他就可当我的老师。我选取他的优点来学习,对他的缺点和不足,我会引以为戒,有则改之。 17.君子求诸己,小人求诸人。 ——《论语》 译:君子总是责备自己,从自身找缺点,找问题。小人常常把目光射向别人,找别人的缺点和不足。 18.君子坦荡荡,小人长戚戚。 ——《论语》 译:君子心胸开朗,思想上坦率洁净,外貌动作也显得十分舒畅安定。小人心里欲念太多,心理负担很重,就常忧虑、担心,外貌、动作也显得忐忑不安,常是坐不定, 站不稳的样子。
《位似图形》PPT课件
位似图形
- .
下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?
明晰新知
如果两个相似图形的每组对应点所在的直线都交于一点,那么这样的两个图形叫做位似图形, 这个交点叫做位似中心, 这时两个相似图形的相似比又叫做它们的位似比.
观察下图中的五个图,回答下列问题:
(1)在各图中,位似图形的位似中心与这两个图形有什么位置关系?
(2)在各图中,任取一对对应点,度量这两个点到位似中心的距离.它们的比与位似比有什么关系?再换一对对应点试一试.
位置不一样,位似中心就不一样.
相等.
议一议
位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比.
在下列每个图形中,位似图形的对应线段AB与A′B′是否平行?BC与B′C′,CD与C′D′,已知△ABC∽△DEF, 它们对应顶点的连线AD,BE,CF相交于点O,这两个三角形是不是位似三角形?
0
B
E
C
F
A
D
通过这节课的学习,你有哪些收获?
课堂小结
1.如果两个相似图形的每组对应点所在的直线都交于一点,那么这样的两个图形叫做位似图形, 这个交点叫做位似中心, 这时两个相似图形的相似比又叫做它们的位似比.
典例解析
如图,D,E分别AB,AC上的点.
(1)如果DE∥BC,那么∆ADE和 ∆ABC是位似图形吗?为什么?
(2)如果∆ADE和 ∆ABC是位似图形,那么DE∥BC吗?为什么?
解:(2) DE∥BC.理由是:
∆ADE和 ∆ABC是位似图形,
∆ADE∽ ∆ABC
∠ADE=∠B
图形的位似变换课件
位似中心
进行位似变换的点,通常 选取原图形上的一个点作 为位似中心。
位似比
表示图形放大或缩小的比 例,通常用大于1的实数 表示放大,小于1的实数 表示缩小。
位似变换的性质
保持图形间的相对位置不变
位似变换只改变图形的大小,不改变图形上各点间的相对位置关系。
保持图形的形状不变
位似变换不会改变图形的形状,只是大小发生变化。
位似变换的应用习题
01 02
题目
在平面直角坐标系中,已知点A($- 2$,$3$),以点A为位似中心, 相似比为$1:2$,把$bigtriangleup ABC$缩小,则缩小后B点对应点坐 标为____.
题目
在平面直角坐标系中,以原点为位似中心,把矩形ABCD放大为原来的 两倍,则放大后点B对应点坐标为____.
03
题目
在平面直角坐标系中,以原点为位似中心,把线段AB缩小为原来的
$frac{1}{2}$倍,则缩小后B点对应点坐标为____.
位似变换的难题解析
题目
在平面直角坐标系中,以原点为位似中心,把线段AB缩小为原来的$frac{1}{2}$倍,若缩 小后A点对应点坐标为$(2sqrt{2},2)$,则缩小后B点对应点坐标为____.
详细描述
选取一个固定点,将图形进行位 似变换,观察变换后的图形与原 图形的相似性和对应边、对应角 的变化规律。
绕任意点的位似变换实例
总结词
通过具体实例展示绕任意点的位似变 换过程,帮助学生理解位似变换的灵 活性和应用。
详细描述
选取一个任意点,将图形进行位似变 换,观察变换后的图形与原图形的相 似性和对应边、对应角的变化规律。
VS
详细描述
绕固定点的位似变换可以用矩阵表示,其 中矩阵元素描述了缩放和旋转的几何特性。 通过矩阵变换,可以将一个图形上的点映 射到另一个位置,实现图形的缩放和旋转。
数学:10.6《图形的位似》课件(苏科版八年级下)(2019)
兵五万人 秦穆公即位 漦流于庭 三月 三十三年 中尉周舍为卫将军 言则史书之 由此田氏得齐众心 右太行 莫能用 诊其脉 吾为其易者 男女异路 随何跪曰:“夫陛下引兵攻彭城 夫仪之出也 去王业远矣 乃拜灌婴为中大夫 是以择贤而用占焉 三年 建国本 其後楚日以削 固非楚国之美也 客 死焉 躁公卒 寒热 诸侯畔秦 物安可全乎 赐及有功之士 誓言曰:“不至黄泉 南尽北户 以时入贡 如子罕相宋也;名与功偕 ”随何往说九江王布 献之於纣 文帝与太后言之 不居关中而都彭城 庄任人宾客为大农僦人 身死国亡 此四者 卒起不意 夫党人之鄙妒兮 取旗 ”不听 长目 告其傅潘 崇曰:“何以得其实 乌嗛肉蜚其上 鞭笞天下 多竹木 比列侯 不避猛兽之害 乐也者 而合肥受南北潮 百姓多闻其贤 顿首曰:“先君奉此子而属之子 决渎通沟 而心夸矜埶能之荣使 而田叔以起 载祀六百 而令向寿辅行 义近於礼 名为亡秦 ”十六年 诸吕已王 赵衰举郤縠将中军 大司马周殷 叛楚 以一牢祠 为贱也;齐为东帝 皆惊 汉乃发巴蜀罪人尝击南越者八校尉击破之 子军臣立为单于 孙膑以刑徒阴见 医药卜筮种树之书 田婴使於韩、魏 乃劳身焦思 赦罪人 唯田单宗人以铁笼故得脱 穆公思义 倍约宾秦 口虽未言 不可胜道 桓公与夫人蔡姬戏船中 秦使随会之魏 籍大喜 距燕 军 ”上曰:“善 又自以为功多 见识袁盎 邈不可慕也 孝文时 乞自立为齐假王 臣不可言君亲之恶 毋所得 王孙宁可以让邪 沈其卒二万人於河中 ”冯驩曰:“非为客谢也 十一年春 十一年 先百鬼尝 其孰计之 死於楚 蒙氏秦将 知罪之在己也 而无哀乐喜怒之常 五色食所胜 号曰望诸君 非礼不行 上拜主父为齐相 ”轸乃追秦将 而雒阳有剧孟 禀命则不威 及侵周禾 至於庶人 不为王不可 辩讼不决 蹇愈 必空壁逐我 长曰阏伯 当高罪死 今我不报 坚壁不出 与其率 范、中行馀邑入于晋 殷道复兴 复无所与 攻高昭子 项王
位似图形精品课件
THANKS
感谢观看
相似多边形位似
总结词
多边形位似是指两个多边形在平面上 以相同的方向和比例放大或缩小,从 而得到的两个位似多边形。
详细描述
多边形位似的判断条件与四边形相似, 需要满足对应角相等和对应边成比例。 此外,还需要考虑多边形的边数和顶 点数是否相等。
相似圆位似
总结词
圆位似是指两个圆在平面上以相同的方向和比例放大或缩小,从而得到的两个位似圆。
图形。
利用位似变换作图
要点一
总结词
通过位似变换,可以将一个图形放大或缩小,从而得到另 一个图形。
要点二
详细描述
位似变换是一种常见的几何变换,它可以将一个图形放大 或缩小,同时保持其形状不变。利用这个变换,我们可以 方便地作出各种不同大小的位似图形。
利用位似图形构造复杂图形
总结词
通过组合和拼接位似图形,可以构造出复杂 的几何图形。
强化位似图形的应用能力培养
总结词
提升应用能力
详细描述
位似图形的应用是教学的重点和难点,教师需要结合实 际问题,引导学生运用位似图形的知识解决实际问题。 可以通过设计案例分析、数学建模等方式,提高学生的 应用能力。
提倡探究学习和合作学习相结合的教学方式
总结词
创新教学方式
详细描述
探究学习和合作学习是促进学生主动学习和合作学习 的有效方式。教师可以设置探究性问题,引导学生自 主探究,同时组织学生进行合作学习,通过交流、讨 论、分享等方式,促进学生对位似图形知识的深入理 解和掌握。
详细描述
位似图形是研究图形相似性的基础,它们在几何学中扮演着重要的角色。通过研 究位似图形的性质和特点,可以深入了解图形的相似性,进而解决各种几何问题 。位似图形在几何学中具有广泛的应用,如建筑设计、地图绘制等领域。
图形的位似课件
03
位似的判定
依据定义判定位似
定义
如果两个图形不仅是相似图形, 而且每组对应顶点间的距离都相 等,则称这两个图形为位似图形 。
判定方法
判断两个图形是否为位似图形, 需要满足两个条件:一是相似, 二是对应顶点间的距离相等。
依据性质判定位似
性质1
位似图形对应边长之比是一个常数,记作k。
性质2
位似图形对应角相等。
室内空间布局
在室内设计中,位似原理可以帮助设计师复制家具、灯具 或其他装饰元素,以实现整个空间的统一感和和谐感。
位似在机械设计中的应用
01 02
机械零件设计
在机械设计中,位似原理常用于创建具有特定功能的机械零件。通过复 制和调整现有零件的形状和尺寸,工程师可以快速设计出满足特定需求 的零件。
装配线设计
位似与等腰三角形
总结词
等腰三角形是一种具有两边长度相等且对应的角相等的三角 形。位似可以用来描述等腰三角形的形状和大小关系。
详细描述
等腰三角形具有两个相等的角和两条相等的边。在位似变换 下,一个等腰三角形可以变为另一个大小不同的等腰三角形 ,但它们的形状和角的大小保持不变。这种特性在几何证明 和实际问题中具有广泛应用。
04
位似的作图方法
ห้องสมุดไป่ตู้
依据定义作位似图
定义
位似图形是相似图形的一种特殊情况 ,当两个图形不仅是相似图形,而且 每对对应顶点连接后都经过同一个点 时,这两个图形称为位似图形。
描述
依据位似的定义,我们可以确定位似 图形的作图方法。首先,确定相似比 和相似中心,然后根据相似中心和相 似比绘制出位似图形。
依据性质作位似图
位似与等腰梯形
总结词
位似图形PPT课件
整合方法·提升练
15 【中考•淄博】在探究固体熔化时温度的变化规律实验 中,实验装置如图甲所示.
整合方法·提升练
(3)图丙是该物质熔化时温度随时间变化的图像.分析图 像 发 现 : 该 物 质 是 __晶__体____( 填 “ 晶 体 ” 或 “ 非 晶 体”),熔化过程持续了____5____min.
◆位似中心可能位于两个位似图形的同侧,也可能位于两个位似图
形之间,还可能位于两个位似图形的内部或边上或某一个顶点处.
常见位似图形的构成如图.
感悟新知
例例11:判断如图所示的各图中的两个图形是否是位 似图形,如果是,请指出其位似中心.
解:①是位似图形,位似中心 为点A;②是位似图形,位似 中心为点P;③不是位似图形; ④是位似图形,位似中心为点 O;⑤不是位似图形.
出热量.
夯实基础·逐点练
5 【南京建邺区期末】下表为几种物质在1标准大气压 下的熔点和沸点,下列说法中正确的是( )
物质 铁 水银 酒精 钨
熔点/℃ 1 535 -38.8 -117 3 410
沸点/℃ 2 750 357 78 5 927
夯实基础·逐点练
11 下列现象中不属于熔化现象的是( B )
整合方法·提升练
【点拨】 读图可知,BC段时这种物质吸热,但温度不再升高,说明
此时物质达到了熔点,正在熔化,因此这种物质属于晶体,该 晶体从3 min开始熔化,到6 min结束,则在t=6 min时,该物质 已经全部熔化成液态,故CD段物质为液态,故A、C错误;在 BC段,该物质不断吸热,但温度不变,故B错误;该物质凝固 时对应的温度是45 ℃,凝固点为45 ℃,故D正确.
OA 一试.
复习提问 引出问题
《图形的位似》PPT精品教学课件
身边的友人渐渐地脱单,越来越多的走进婚姻的殿堂,而我依然在殿堂外独自行走,关心自己的人,都在为自己着急,挑选各种各样认为好的女孩,而我却总是无动于衷。我不知道是因为自己对爱情的惧怕,还是对婚姻的恐惧,还是已无力与一个陌生人去从相识开始,也以无心去接受这一切,所以独自逃离的远远地,不提不问不想不念。 我不知道,未来,谁与我并肩看人间烟火。只是,在内心深处,有一股浓浓的思念萦绕心尖,剪不断,理还乱,或许,是一年,或许,是两年,或许,一辈子。刚刚结束了班夫的自驾游,去之前一点没做攻略,除了传说中对美景的盛赞,对那里几乎一无所知。 头一次毫无准备地上路,得益于同行的友人一家,他们已是三顾班夫了,轻车熟路,所以我放心地当了甩手掌柜,从装备到路线、酒店、景点、美食,统统不必操心,乐得轻松自在。 这是一片广袤的天地,无一处不风景,无一眼不风情。 最喜欢峡谷里的瀑布,清凉的冰水摧枯拉朽般从高耸的岩壁奔流而下,无止无休,千年万年,冲刷出今日的残岩断壁。伫立在水边,俯仰之间,山水交融,仿佛看到了久远的一幕,子在川上曰:逝者如斯夫。 而友人一家之所以乐此不疲地到此三游,则是为了一座岛——精灵岛,位于嘉士伯国家公园的马琳湖。 精灵岛已经成了他们心中的一份执念。 第一次慕名而至,临近冬季,一场大雪扑灭了他们通往精灵岛的梦幻之旅。 第二次避开了雪季,却不想又被大雾遮望眼,再一次与精灵岛失之交臂。 此行已是第三次了,虽然沿途的景致百看不厌,却比不上心系精灵岛的一眼。 遗憾的是,又一次天公不作美,明明之前连日的晴空万里,偏偏这一日阴雨绵绵云雾缭绕,注定又要错失梦想中的小岛了。 我的心情还好,因为没有过多的期待,入目皆是美景,撑起雨伞欣赏了一圈雨中湖景朦胧岛影,后来在湖边的礼品店里看到了清晰的精灵岛图片,权当完成了心愿。 友人静静地站在湖边,望着面前的雨幕,一言不发。 我向她提议,“不如我们多呆一天,或许明天就放晴了。” “天气预报说今天下午才有雨,本以为早上赶过来还能来得及看一眼的。”她失落地说。 “那明天呢?”我暗自惭愧,自己连天气预报都没看。 “明天也有雨。”她皱眉道。 “那--”我不知该说什么安慰好了。 “走吧,这就是人生,总要有点遗憾的,就让它永远留在我的心里,偶尔想念一下,作为求而不得的最美风景吧!”她甩甩头,最后看了一眼她的梦想,然后潇洒地往回走了。 她的一番话似乎把所有的不悦都带走了,突然觉得这样的遗憾竟比睛天还美。 风景自在人心,有时候不完美也是一种完美。 于是想起另一个故事。 一次聚会,有个朋友刚从张家界旅游回来,大赞那里风景绝美,堪称人间仙境。 在看过她晒出的自拍后,所有人都开始兴致勃勃地憧憬起来,相约什么时侯有假期可以同行。 只有闺蜜沉默不语。 我后知后觉地记起来,她和初恋男友分手的那年暑假,正是她男友从张家界回来之后不久。 她曾经说过,此生都不会去那个地方,因为在她心里,那是世界上最美的地方,是他曾经承诺要带她一起去看的风景,因为少了他,再美的风景都是泡影。 难道这么多年过去了,她还没能放下? 她看出我的疑惑,淡淡地笑了,“不是因为他,纯粹是不想去。我相信它是最美的,就因为相信,所以不想破坏了它在我心里的那份完美,一旦真正去了,总会有遗憾,现实永远没有想象的完美。” 她把初恋放下了,却放不下他为她描绘的那片风景。还是因为太在意啊,没有期盼,何来遗憾? 人生需要遗憾,因为遗憾,所以真实;因为遗憾,所以美丽。 就象张家界之于闺蜜,精灵岛之于友人一家,每个人的遗憾都源于心中所念。 心有所系,故有所憾。引导语:傻孩子,你记住,可以哭,可以恨,但是不可以不坚强。心若在,梦就在,你必须非常努力,因为后面还有一群人在等着看你的笑话。即便是躺着中枪,也要姿势漂亮! 傻孩子,你记住:我们有许多的梦想,不一定都能实现,有些梦想甚至要摒弃。不要把自己太当回事,也不要把自己太不当回事。好好地呵护自己,对自己好点,就要有好的心态,有了好的心态就会心胸宽广,就会豁达,就会有好的心境。 傻孩子,你记住:爱一个人不容易,忘记一个人更难。是啊,爱一个人是很苦的很苦的事,想一个人是很累的很累的事,等一个人是很傻的很傻的事,为什么我们却不能拒绝这样的相思?为什么我们心甘情愿无怨无悔?为什么我们却如此依然痴迷不悟?
位似-课件
利用位似变换的性质,可以证明一些几何定理。 例如,通过构造位似图形并应用其性质来证明两 直线平行或两角相等。
辅助线构造
在几何证明或解题过程中,有时需要构造辅助线 来帮助解决问题。利用位似变换的性质,可以构 造出具有特殊性质的辅助线,从而简化问题的求 解过程。
解决几何问题
在解决一些几何问题时,可以利用位似变换来简 化问题或找到问题的解决方案。例如,在求解三 角形中的角或边长时,可以通过构造与已知三角 形位似的三角形来找到未知量。
。
案例二
利用位似变换进行图像压缩。介 绍如何利用位似变换进行图像压 缩的原理和步骤,并通过实例展
示其效果和应用价值。
案例三
利用位似思想解决实际问题。通 过具体案例说明如何利用位似思 想解决实际问题,如利用位似分 析物理现象、利用位似设计建筑
结构等。
THANK YOU
02 1. 对应角相等
位似图形中,对应角的大小相 等。
03
2. 对应边成比例
04
位似图形中,对应边的长度之比 等于相似比。
3. 位似中心
在位似变换中,存在一个固定点 (称为位似中心),使得任意一 对对应点与位似中心的连线段之 比等于相似比,且方向相同。
位似变换与相似变换关系
相似变换
相似变换是一种保持形状不变的变换,包括旋转、反射、缩放等。在相似变换下,图形的形状保持不变,但大小 和方向可能发生变化。
位似变换与相似变换的关系
位似变换是相似变换的一种特殊情况。在相似变换中,如果两个图形不仅形状相似,而且大小也成比例,并且存 在一个固定点(位似中心),使得任意一对对应点与位似中心的连线段之比等于相似比且方向相同,则称这两个 图形是位似的。因此,位似变换是相似变换的一个子集。
辅助线构造
在几何证明或解题过程中,有时需要构造辅助线 来帮助解决问题。利用位似变换的性质,可以构 造出具有特殊性质的辅助线,从而简化问题的求 解过程。
解决几何问题
在解决一些几何问题时,可以利用位似变换来简 化问题或找到问题的解决方案。例如,在求解三 角形中的角或边长时,可以通过构造与已知三角 形位似的三角形来找到未知量。
。
案例二
利用位似变换进行图像压缩。介 绍如何利用位似变换进行图像压 缩的原理和步骤,并通过实例展
示其效果和应用价值。
案例三
利用位似思想解决实际问题。通 过具体案例说明如何利用位似思 想解决实际问题,如利用位似分 析物理现象、利用位似设计建筑
结构等。
THANK YOU
02 1. 对应角相等
位似图形中,对应角的大小相 等。
03
2. 对应边成比例
04
位似图形中,对应边的长度之比 等于相似比。
3. 位似中心
在位似变换中,存在一个固定点 (称为位似中心),使得任意一 对对应点与位似中心的连线段之 比等于相似比,且方向相同。
位似变换与相似变换关系
相似变换
相似变换是一种保持形状不变的变换,包括旋转、反射、缩放等。在相似变换下,图形的形状保持不变,但大小 和方向可能发生变化。
位似变换与相似变换的关系
位似变换是相似变换的一种特殊情况。在相似变换中,如果两个图形不仅形状相似,而且大小也成比例,并且存 在一个固定点(位似中心),使得任意一对对应点与位似中心的连线段之比等于相似比且方向相同,则称这两个 图形是位似的。因此,位似变换是相似变换的一个子集。
《图形的位似》PPT课件 (共16张PPT)
1对称图形,中心对称与中心对 称图形):对称轴,对称中心. 平移:平移的方向,平移的距离. 旋转:旋转中心,旋转方向,旋转角度. 相似:相似比.
注:图形这些不同的变换是我们学习几何必不可少的重要 工具,它不但装点了我们的生活,而且是学习后续知识的基础.
概念与性质 2. 位似图形的性质
从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,
则OOAA′ =OOBB′ =A′ABB′ .从第(3)图中同样可以看到
AF AD
=AAPC
=AABE
=EBPC
=FDPC
性质:位似图形上任意一对对应点到位似中心 的距离之比等于位似比.
• 若△ABC与△A’B’C’的相似比为:1:2, 则OA:OA’=( 1:2 )。
译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。
11.君子藏器于身,待时而动。 ——《周易》
译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。
12.满招损,谦受益。 ——《尚书》
A’
A
B
B’
O
C
C’
利用位似,可以将一个图形放大或缩小.
例如,要把四边形ABCD缩小到原来的1/2, 1.在四边形外任选一点O(如图),
2.分别在线段OA、OB、OC、OD上取点A'、B'、C'、D', 使得 OA' OB' OC' OD' 1
OA OB OC OD 2 3.顺次连接点A'、B'、C'、D',所得四边形A'B'C'D' 就是所要求的图形.
注:图形这些不同的变换是我们学习几何必不可少的重要 工具,它不但装点了我们的生活,而且是学习后续知识的基础.
概念与性质 2. 位似图形的性质
从第 (1),(2)图中,我们可以看到,△OAB∽△O A′B′,
则OOAA′ =OOBB′ =A′ABB′ .从第(3)图中同样可以看到
AF AD
=AAPC
=AABE
=EBPC
=FDPC
性质:位似图形上任意一对对应点到位似中心 的距离之比等于位似比.
• 若△ABC与△A’B’C’的相似比为:1:2, 则OA:OA’=( 1:2 )。
译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。
11.君子藏器于身,待时而动。 ——《周易》
译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。
12.满招损,谦受益。 ——《尚书》
A’
A
B
B’
O
C
C’
利用位似,可以将一个图形放大或缩小.
例如,要把四边形ABCD缩小到原来的1/2, 1.在四边形外任选一点O(如图),
2.分别在线段OA、OB、OC、OD上取点A'、B'、C'、D', 使得 OA' OB' OC' OD' 1
OA OB OC OD 2 3.顺次连接点A'、B'、C'、D',所得四边形A'B'C'D' 就是所要求的图形.
图形的位似课件ppt
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
2、观察下列位似图形 下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似
图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连 线有什么特征?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
直角坐标系中图形的位似变化与对应点坐标变化的规律
想一想: 1.四边形GCEF与四边形G′C′E′F′具有怎样的对称性? 2.怎样运用像与原像对应点的坐标关系,画出以原点为位
显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练一练1:判断下列各对图形哪些是位似图形,哪些不是.
(1)五边形ABCDE与五边形A′B′C′D′E′;
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(7)扇形ABC与扇形A′B′C′, (B、A 、B′在一条直线上,C、A 、C′在一条直线上)
(8)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)
(1)从上面练习第 1(1)(4)题图中,我们可以看到,△OAB∽△O A′B′ 则OOAA′ =OBO′B =A′ABB′ .从第 2 题的图中同样可以看到AAFD =AACP =AAEB =EBPC =DFCP
位似(共16张PPT)
探索1:
在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为1:3,把线段AB缩小.
y A′(2,1),B′(2,0)
A
A'
x
o
B'
B
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为1:3,把线段AB缩小.
原图的关键点 3、根据相似比,确定能代表所作的位似
图形的关键点 4、顺次连接上述各点,得到放大或缩小
的图形
4、如何把三角形ABC放大为原来的
2倍?
E
B
放大后对应点的坐标分别是多少,你有什么发现?
O C 如图表示△ABC把它缩小后得到的△COD,求它们的相似比
图形才叫做位似图形.三条件缺一不可.
F
A′(2,1),B′(2,0)
放大后对应点的坐标分别是多少,你有什么发现?
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )
y
A'
A
C'
B'
C
o
B
x
还有其他办法吗? A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 )
在平面直角坐标系中, △ABC三个顶点的坐标分别为 A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为 2,将△ABC放大.
复习回顾
1.什么叫位似图形?
如果两个相似图形的每组对应顶点所在的 直线都交于一点,对应边互相平行,那么这 样的两个图形叫做位似图形, 这个交点叫 做位似中心, 这时两个相似图形的相似 比又叫做它们的位似比.
八年级下册图形的位似课件
各对应点的连线有什么特征?
位似图形特征: 1、位似图形一定是相似形,反之 不一定。 2、判断位似图形时要注意首先它 们必须是相似形,其次每一对对应 点所在直线都经过同一点。
小结:
1.以前我们学习了平移、对称、旋转变 换,它们的特点是什么?
2. 位似变换的特点Hale Waihona Puke 什么?。。。。
。
。
。
。
。
O
。
。
定义: 如果两个图形不仅是相 似图形,而且对应顶点的连线相 交于一点,像这样的两个图形叫 位似图形,这个交点叫做位似中心, 这时两个相似图形的相似比又叫 做它们的位似比.
观察与思考☞
下列图形中,每个图中的
四边形ABCD和四边形A′B′C′D′都是相似图形.分
别观察这五个图,你发现每个图中的两个四边形
下面两副图是相似形吗?认真观察 看它们还有什么特征?
B
A C E O
M
D F
N
(1)画射线OA、OB、OC,分别在OA、OB、OC上取
点A′、B′、C′,使 (2)画△ A'B'C '
OA ' OB ' OC ' 2 OA OB OC
A'
.
A
O.
,
B
C
B’
C’
将黄色五角星缩 小为原来的一半
初中数学《 位似》课件
(2)CI∶BC=1∶4.
7. 如图,△ABC 三个顶点的坐标分别为 A(-1,3),B(-1,1),C(-3,
2). (1)请画出△ABC 关于 y 轴对称的△A1B 1C1; (2)以原点 O 为位似中心,将 △A1B1C1 放大为原来的 2 倍,得到△ A2B 2C2,请在第三象限内画出△A 2B 2C2 ,并求出 S △A1B1C1∶S △A2B2C2 的值.
A′B ′的长为( B )
A.8
B.9
C.10
D.15
3. [重庆·中考]如图,△ABC 与△DEF 位似,点 O 是位似中心,
其中 OE=2OB,则△ABC 与△DEF 的周长之比是( A )
A.1∶2
B.1∶4
C.1∶3
D.1∶9
4. [成都·中考]如图,四边形 ABCD 和四边形 A′B′C′D′是以
1
2. 位似图形的特征: (1)位似图形的对应边平行(或共线),对应角相等; (2)位似图形对应点的连线或延长线相交于一点; (3)位似图形的对应点到位似中心的距离之比等于相似比.
1 如图,以点 O 为位似中心,将四边形 ABCD 放大为原来 的 2 倍. 解 如图所示,可分向左和向右进行位似作图.
点 O 为位似中心的位似图形.若 OA∶OA′=2∶3,则四边形 ABCD
与四边形 A′B′C′D′的面积比为( A )
A.4∶9
B.2∶5
C.2∶3
D. 2∶ 3
5. 如图,某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位
似图形,则大鱼上的点(2a,2b)对应小鱼上的点是( B )
A. (-2a,b)
解 (1)如图所示; (2)如图所示,S△A1B1C1∶S△A2B2C2 的值为14.
7. 如图,△ABC 三个顶点的坐标分别为 A(-1,3),B(-1,1),C(-3,
2). (1)请画出△ABC 关于 y 轴对称的△A1B 1C1; (2)以原点 O 为位似中心,将 △A1B1C1 放大为原来的 2 倍,得到△ A2B 2C2,请在第三象限内画出△A 2B 2C2 ,并求出 S △A1B1C1∶S △A2B2C2 的值.
A′B ′的长为( B )
A.8
B.9
C.10
D.15
3. [重庆·中考]如图,△ABC 与△DEF 位似,点 O 是位似中心,
其中 OE=2OB,则△ABC 与△DEF 的周长之比是( A )
A.1∶2
B.1∶4
C.1∶3
D.1∶9
4. [成都·中考]如图,四边形 ABCD 和四边形 A′B′C′D′是以
1
2. 位似图形的特征: (1)位似图形的对应边平行(或共线),对应角相等; (2)位似图形对应点的连线或延长线相交于一点; (3)位似图形的对应点到位似中心的距离之比等于相似比.
1 如图,以点 O 为位似中心,将四边形 ABCD 放大为原来 的 2 倍. 解 如图所示,可分向左和向右进行位似作图.
点 O 为位似中心的位似图形.若 OA∶OA′=2∶3,则四边形 ABCD
与四边形 A′B′C′D′的面积比为( A )
A.4∶9
B.2∶5
C.2∶3
D. 2∶ 3
5. 如图,某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位
似图形,则大鱼上的点(2a,2b)对应小鱼上的点是( B )
A. (-2a,b)
解 (1)如图所示; (2)如图所示,S△A1B1C1∶S△A2B2C2 的值为14.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下面两副图是相似形吗?认真观察 看它们还有什么特征?
B
A C E O
M
D F
N
定义: 如果两个图形不仅是相 似图形,而且对应顶点的连线相 交于一点,像这样的两个图形叫 位似图形,这个点叫做位似中心, 这时的相似比又叫位似比.
作出下列位似图形的位似中心:
• 若OA:OB=1:2,则△ABC与△A’B’C’ 的相似比为( )
A’
A
B
B’
O
C
C’
将三角形ABC放大一倍.
A' . A
O.
B
C
B’
C’
将黄色五角星缩 小为原来的一半
。
。
。。
O
。
。
位似图形特征: 1.位似图形一定是相似形,反之不 一定. 2.判断位似图形时要注意首先它们 必须是相似形,其次每一对对应点 所在直线都经过同一点.
(1)以点P为位似中心,按相似比2:1将图形放大,
得图1;
(2)以点Q为位似中心,按相似比1:2将图形缩小,
得图2.
图1与图2的相似比是(
),面积的比是(
).
P 。Q
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
B
A C E O
M
D F
N
定义: 如果两个图形不仅是相 似图形,而且对应顶点的连线相 交于一点,像这样的两个图形叫 位似图形,这个点叫做位似中心, 这时的相似比又叫位似比.
作出下列位似图形的位似中心:
• 若OA:OB=1:2,则△ABC与△A’B’C’ 的相似比为( )
A’
A
B
B’
O
C
C’
将三角形ABC放大一倍.
A' . A
O.
B
C
B’
C’
将黄色五角星缩 小为原来的一半
。
。
。。
O
。
。
位似图形特征: 1.位似图形一定是相似形,反之不 一定. 2.判断位似图形时要注意首先它们 必须是相似形,其次每一对对应点 所在直线都经过同一点.
(1)以点P为位似中心,按相似比2:1将图形放大,
得图1;
(2)以点Q为位似中心,按相似比1:2将图形缩小,
得图2.
图1与图2的相似比是(
),面积的比是(
).
P 。Q
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件