数学符号的起源与发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学符号的起源与发展

第一章数学符号的起源

第二章数学符号的分类

第三章数学符号的解析

(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率∏。

(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。

(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。

(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—” (5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”

(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R 个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。

符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪ 集合并∩ 集合交≣ 大于等于≢ 小于等于≡ 恒等于或同余ln(x) 以e为底的对数

lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数

x mod y 求余数小数部分x - floor(x) ∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分

P为真等于1否则等于0 ∑[1≢k≢n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)

∑∑[1≢i≢j≢n]n^2

lim f(x) (x->?) 求极限

f(z) f关于z的m阶导函数

C(n:m) 组合数,n中取m P(n:m) 排列数m|n m整除n m⊥n m与n互质

a ∈ A a属于集合 A #A 集合A中的元素个数

0是极为重要的数字,0这个数字由古印度人在约公元5世纪时发明。在东方国家由于数学是以运算为主(西方当时以几何并在开头写了“印度人的9个数字,加上阿拉伯人发明的0符号便可以写出所有数字。由于一些原因,在初引入0这个符号到西方时,曾经引起西方人的困惑,因当时西方认为所有数都是正数,而且0这个数字会使很多算式、逻辑不能成立(如除以0),甚至认为是魔鬼数字,而被禁用。直至约公元15,16世纪0和负数才逐渐给西方人所认同,才使西方数学有快速发展。

0的另一个历史:0的发现始于印度。公元左右,印度最古老的文献《吠陀》已有“0”这个符号的应用,当时的0在印度表示无(空)的位置。约在6世纪初,印度开始使用命位记数法。7世纪初印度大数学家葛拉夫.玛格蒲达首先说明了0的0是0,任何数加上0或减去0得任何数。遗憾的是,他并没有提到以命位记数法来进行计算的实例。也有的学者认为,0的概念之所以在印度产生并得以发展,是因为印度佛教中存在着“绝对无”这一哲学思想。公元733年,印度一位天文学家在访问现伊拉克首都巴格达期间,将印度的这种记数法介绍给了阿拉伯人,因为这种方法简便易行,不久就取代了在此之前的阿拉伯数字。这套记数法后来又传入西欧

相关文档
最新文档