最新人教版高中数学必修二平面与平面垂直的性质公开课优质教案

合集下载

人教版高中数学必修二2.3.4 平面与平面垂直性质教案

人教版高中数学必修二2.3.4 平面与平面垂直性质教案

平面与平面垂直的性质教学设计(一)知识与技能让学生理解和掌握面面垂直性质定理,能运用性质定理证明一些简单命题. (二)过程与方法1) 由“直观感知、操作确认、推理证明”理解和掌握面面垂直性质定理; 2) 由证明一些空间位置关系的简单命题,体会性质定理的初步运用. (三)情感、态度与价值观1) 由面面垂直性质定理的引入与证明,发展学生空间想象力,培养学生逻辑推理能力; 2) 由线面垂直和面面垂直的相互转化,体会转化思想在立几中重要性,进一步帮助学生树立辨证统一思想;3) 由实际问题与数学模型间的转化,让学生体会到数学学习的重要性,激发学生数学学习的主观能动性.(一)教学重点平面与平面垂直性质定理 (二)教学难点平面与平面垂直性质定理应用 (三)教学模式,学生自主探究(一)情境创设、引入课题复习回顾 两个平面互相垂直定义、判定定理.生活感知 教室里就有许多平面与平面垂直的例子.问 题1 黑板所在面与地面垂直,能否在黑板上画一条直线与地面垂直? 直观感知 在黑板面内画地面垂线 板书课题 平面与平面垂直的性质 (二)合作探究、形成知识(1)合作探究,证明定理抽象概括 实际问题化归为数学模型 动手操作 小组合作例1 如图,已知平面α⊥平面β,CD αβ=, 直线,AB AB CD α⊂⊥于点B ,求证:AB ⊥β. 展示操作 几何画板演示学生思路,CD B =β.则一个平面内垂直于交线的直线与另一个平面垂直黑板地面βBDACα符号描述 ,,CD AB AB AB CD αβαββα⊥=⎫⇒⊥⎬⊂⊥⎭图形描述(2)小题竞答,夯实基础想一想: 判断下列语句是否正确,并说明理由:①两个平面不垂直,则一个平面内一定不存在直线与另一个平面垂直.( ) ②两个平面垂直,则一个平面内的已知直线必垂直于另一个平面.( )③两个平面垂直,则过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面( ) 展示操作 由几何画板展示命题3的示意图.强调条件 由此我们也认识到,性质定理的成立,必须具备哪几个条件? 习惯引导 我们在学习定义、法则或定理时,要紧扣其关键词.变式引入 现在我们把问题3的条件改变一下,看看又有什么样的结论?(3)类比迁移,发展思维问 题2 面α⊥面β,过一个平面α内任意一点P 作平面β的垂线a ,则直线a 与面α具有板书推论 两个平面垂直,经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内. (三)小试牛刀、应用巩固过渡引入 性质定理的结论是线面垂直,它还能解决其它空间位置关系问题吗? 问题展示 例2 如图,已知平面α⊥平面β,且l αβ=,直线a ,a βα⊥⊄,试判断直线a 与平面α的位置关系. 逻辑推理 l β=,所以所以//a b 所以//a α. βBDACααalβαalβ变式练习 改变条件,结论如何?如图,已知平面α⊥平面β,且l αβ=,直线//a α,且a l ⊥,试判断直线a 与平面β的位置关系.学生交流 小组合作b γ=,由又因为a l ⊥,所以⊥β,且l αβ=,所以a β⊥,即直线a 与平面激发学习兴趣! 课后延展 作业意图 (四)归纳总结、提升认识1、我们主要学习了:性质定理2、我们还了解了: 转化思想 线线垂直↔线面垂直↔面面垂直(五)布置作业、板书设计 教材P 73页A 组练习第5题,CD AB CDαβ=⎫⎬⊥符号描述。

高一下学期数学人教A版 必修第二册8.6.3平面与平面垂直(第三课时)教学设计

高一下学期数学人教A版 必修第二册8.6.3平面与平面垂直(第三课时)教学设计

8.6.3平面与平面垂直复习课(第三课时)(人教A版普通高中教科书数学必修第二册第八章)一、教学目标1.进一步加深理解和掌握平面与平面垂直的定义、判定定理及性质定理,并能应用定理解决相关问题;2.理顺空间垂直位置关系的知识架构,并能应用相关知识对问题进行分析、转化和解决;3.通过平面与平面垂直判定和性质定理的综合应用,以及空间问题平面化的思维方式,体会化归思想方法的应用.二、教学重难点1.平面与平面垂直的判定定理和性质定理的应用.2.应用定理证明过程中表述的条理性和严谨性.三、教学过程1.知识回顾1.1面面垂直的定义(1)定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与平面β垂直,记作:α⊥β.(2)画法:如图,画两个互相垂直的平面时,通常把表示平面的两个平行四边形的一组边画成垂直.【设计意图】复习面面垂直的定义,做到温故而知新.11.2【微训练】1.对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β【设计意图】通过小题训练,帮助学生回顾平面与平面垂直的判定定理.平面与平面垂直的判定定理2.判断题(1)若平面α⊥平面β,则平面α内所有直线都垂直于平面β.( )(2)若平面α⊥平面β,则平面α内一定存在直线平行于平面β.( )(3)若平面α不垂直于平面β,则平面α内一定不存在直线垂直于平面β.( )【设计意图】通过题组训练,帮助学生加深对平面与平面垂直的性质定理的理解. 平面与平面垂直的性质定理2图形语言2.课堂互动题型一求二面角的大小【活动要求】让学生提前练习,老师检查学生答题情况.如图所示,AB是⊙O的直径,P A垂直于⊙O所在的平面,C是圆周上的一点,且P A=AC,求二面角P-BC-A的大小.【活动预设】引导学生找二面角的平面角.【设计意图】加强对二面角的理解,熟练的计算二面角的平面角.题型二平面与平面垂直的证明【活动要求】让学生提前练习,老师检查、点评学生的答题情况.如图,在四棱锥P­ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面P AC;(2)若∠ABC=60°,求证:平面P AB⊥平面P AE.3【设计意图】通过对问题进行分析,学生可以体会和应用平面与平面垂直的判定定理在分析问题和解决问题中的转化功能,体会应用所学知识解决问题的心理愉悦.老师点评旨在规范学生的解题格式,注重表述的条理性和严谨性.题型三平面与平面垂直的性质及应用【活动要求】让学生提前练习,老师检查、点评学生的答题情况.如图所示,四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD,G为AD边的中点.求证:(1)BG⊥平面P AD;(2)AD⊥PB;(3)求点D到面PAB的距离.4【设计意图】让学生体会和应用平面与平面垂直的性质定理在分析问题和解决问题中的转化功能,体会应用所学知识解决问题的心理愉悦.老师点评旨在规范学生的解题格式,注重表述的条理性和严谨性.3.归纳小结【设计意图】(1)梳理平面与平面垂直的定义、判定定理、性质定理,提高应用定理解决相关问题的能力;(2)激发学生的探究精神,养成独立思考的习惯.四、课外作业1.四边形ABCD是正方形,P A⊥平面ABCD,且P A=AB.(1)求二面角A-PD-C的平面角的度数;(2)求二面角B-P A-D的平面角的度数;(3)求二面角B-P A-C的平面角的度数;(4)求二面角B-PC-D的平面角的度数.2.图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.53.如图1所示,在等腰梯形ABCD中,AB∥CD,∠BAD=45°,AB=2CD=4,点E为AB的中点.将△ADE 沿DE折起,使点A到达点P的位置,得到如图2所示的四棱锥P­EBCD,点M为棱PB的中点.(1)求证:PD∥平面MCE;(2)若平面PDE⊥平面EBCD,求三棱锥M­BCE的体积.6。

高中数学新人教版必修2教案2.3.2平面与平面垂直的判定(教案).doc

高中数学新人教版必修2教案2.3.2平面与平面垂直的判定(教案).doc
课堂教学设计
备课人
授课时间
课题
§2.3.2平面与平面垂直的判定




知识与技能
使学生掌握两个平面垂直的判定定理及其简单的应用;使学生理会“类比归纳”思想在数学问题解决上的作用。
过程与方法
启发引导,充分发挥学生的主体作用
情感态度价值观
激发学生积极思维,培养学生的观察、分析、解决问题能力
重点
平面与平面垂直的判定
2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB的大小与点O在L上的位置无关?




(1)二面角以及平面角的有关概念
(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?
课后
反思
3
教师特别指出:
图2.3-3
(1)在表示二面角的平面角时,要求“OA⊥L”,OB⊥L;
(2)∠AOB的大小与点O在L上位置无关;
(3)当二面角的平面角是直角时,这两个平
面的位置关系怎样?
承上
2




教学内容
教学环节与活动设计
承上启下,引导学生观察,类比、自主探究,得两个平面互相垂直的判定定理:
一个平面过另一个平面的垂线,则这两个平面垂直。
难点
如何度量二面角的大小




教学内容
教学环节与活动设计
(一)创设情景,揭示课题
问题1:平面几何中“角”是怎样定义的?
问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?
以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。

人教课标版高中数学必修2《平面和平面垂直的判定和性质》教学设计

人教课标版高中数学必修2《平面和平面垂直的判定和性质》教学设计

2.3.2平面和平面垂直的判定和性质一、教学目标(一)核心素养(1)通过本节教学,提高学生空间想象能力.(2)通过问题解决,提高等价转化思想渗透的意识.(3)进一步提高学生分析问题、解决问题的能力.(二)学习目标(1)两个平面互相垂直的判定.(2)两个平面互相垂直的性质.(三)学习重点两个平面垂直的判定、性质.(四)学习难点(1)两个平面垂直的判定定理、性质定理运用.(2)正确作出符合题意的空间图形.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第67页到第69页,填空:二面角的定义:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角;以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(2)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎬⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎬⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α1.直线a⊥直线b,a⊥平面β,则b与β的位置关系是()A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β【解题过程】由垂直和平行的有关性质可知b⊂β或b∥β,故选D.【答案】D2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题过程】若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.故选A.【答案】A3.设m、n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥α.B.若m∥β,β⊥α,则m⊥α.C.若m⊥β,n⊥β,n⊥α,则m⊥α.D.若m⊥n,n⊥β,β⊥α,则m⊥α.【解题过程】A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.【答案】C(二)课堂设计1.知识回顾(1)直线和平面垂直的判定定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α(2)直线和平面垂直的判定的另外一种判定方法文字语言图形语言符号语言判定方法如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.ba//,α⊥a.则α⊥b(3)直线和平面垂直的性质定理性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒a∥b2.问题探究探究一实例引领,认识平面和平面垂直的概念★●活动①简单类比,引出定义两个平面互相垂直是两个平面相交的特殊情形.教室的墙面与地面、一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念类似,也是用它们所成的角为直角来定义的.请同学思考两个平面互相垂直的定义.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.那么两个互相垂直的平面画其直观图时,应把直立平面的边画成和水平平面的横边垂直,如下图.平面α和β垂直,记作α⊥β.●活动②实例引领,思维激活实例:如图,检查工件的相邻两个平面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,这是为什么?曲尺的一边在一面内转动即为形成一个平面,而另一边与此平面垂直,且又紧靠在另一平面上,即垂线在另一平面内.所以我们得到面面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.)下面我们一起给出分析,证明:已知:AB⊥β,AB∩β=B,AB⊂α.【解题过程】要证α⊥β,需证α 和β 构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB⊂α知,AB、CD共面.∵AB⊥β,CD⊂β,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD.则∠ABE是二面角α-CD-β的平面角.又AB⊥BE,即二面角α-CD-β是直二面角.∴α⊥β.现在同学们明确了面面垂直的判定定理,请思考:建筑工人在砌墙时,常用一段系有铅锤的线来检查所砌墙面是否和水平面垂直,依据是什么?[学生]依据是两个平面垂直的判定定理,一面经过另一面的一条垂线.[老师]从转化的角度来看,两个平面垂直的判定定理可简述为:线面垂直⇒面面垂直请同学们接着思考如下问题:在所给正方体中,下式是否正确:①平面ADD1A1⊥平面ABCD;②D1A⊥AB;③D1A⊥面ABCD.[学生]①∵AB⊥面ADD1A1,AB⊂面ABCD.∴平面ABCD⊥平面ADD1A1.②∵AB⊥面ADD1A1,D1A⊂面ADD1A1∴AB⊥D1A③∵AA1⊥面ABCD,∴AD1与平面ABCD不垂直.平面ADD1A1⊥面ABCD,平面ADD1A1∩平面ABCD=AD,A是平面ADD1A1内一点.过点A可以在平面ADD1A1内作无数条直线,而这些直线满足什么条件就可以使之与平面垂直?判定定理解决两个平面如何垂直,性质定理可以解决上述线面垂直.从转化的角度可表述为:面面垂直,则线面垂直.也给了我们以后证明问题的一种思想方法.下面我们一起来完成证明.证明过程如下:已知:α⊥β、α∩β=a,AB⊂α,AB⊥a于B.【解题过程】:在平面β内作BE⊥a垂足为B,则∠ABE就是二面角α-a-β的平面角.由α⊥β可知,AB⊥BE.又AB⊥a,BE与a是β内两条相交直线,∴AB⊥β.证明的难点在于“作BE⊥a”.为什么要做这一步?主要是由两面垂直的关系,去找其二面角的平面角来决定的.【设计意图】构造二面角的平面角过程可以体现学生的创新精神、转化能力.【答案】见解题过程.探究二层层深化,掌握平面和平面垂直的判定定理和性质定理.●活动①互动交流,初步实践例1 求证:(1)如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直;(2)如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直.【知识点】平面和平面垂直的判定.【数学思想】化归思想.【解题过程】(1)已知:l∥α,l⊥β,求证:α⊥β.证明:在平面α内任取一点P.∵l ∥α,∴P ∉l .P 、l 可确定一平面γ.设α∩γ=l ′则l ∥l ′.⎪⎭⎪⎬⎫⊂'⊥'⇒⎭⎬⎫'⊥αββl l l l l //⇒α⊥β[该题目难在构造既符合题,又能使问题得证的立体图形.] (2)已知:α⊥β,β∥γ.求证:α⊥γ证明:过β 内一点P 作直线l ,使l ⊥α则l ⊂β. l 与γ内任一点Q 确定平面δ,设δ∩γ=l ′,则l ∥l ′. l ′⊥α,因此γ⊥α.【思路点拨】题目较抽象,构造图形,创造条件,使问题转化为可利用已有定理来解决.由此我们又多了两个判断面面垂直的结论. 【答案】见解题过程. ●活动②巩固基础,检查反馈例2 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面P AC ⊥平面PBC .【知识点】平面和平面垂直的判定 【数学思想】化归思想【解题过程】证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有BC ⊥AC ①.因为P A ⊥平面ABC ,BC ⊂平面ABC ,则P A ⊥BC ②. 由①②及AC ∩PA =A ,得BC ⊥平面P AC .因为BC⊂平面PBC,有平面P AC⊥平面PBC.【思路点拨】低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.【答案】见解题过程.例3 如图,P是△ABC所在平面外的一点,且P A⊥平面ABC,平面P AC⊥平面PBC,求证:BC⊥AC.【知识点】平面和平面垂直的判断和性质.【数学思想】转化思想.【解题过程】证明:在平面P AC内作AD⊥PC,交PC于D.因为平面P AC⊥平面PBC于PC,AD⊂平面P AC,且AD⊥PC,所以AD⊥平面PBC.又因为BC⊂平面PBC,于是有AD⊥BC①.另外P A⊥平面ABC,BC⊂平面ABC,所以P A ⊥BC.由①②及AC∩PA=A,可知BC⊥平面P AC.因为AC⊂平面P AC,所以BC⊥AC.【思路点拨】在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.【答案】见解题过程.例4 P为120°角α-a-β内一点,P到α和β的距离均为10,求点P到棱a的距离.【知识点】二面角的概念,距离.【数学思想】化归思想.【解题过程】如图,过点P 作P A ⊥α于A ,PB ⊥β于B ,设相交直线P A 、PB 确定的平面为γ,a ∩γ=O ,则α∩γ=OA ,β∩γ=OB 连结PO ,则AP =BP =10∵P A ⊥α,PB ⊥β,∴a ⊥γ,而PO ⊂平面γ,∴a ⊥PO , ∴PO 的长即为点P 到直线a 的距离. 又∵a ⊥γ,γ⊂OA ,γ⊂OB∴∠AOB 是二面角α-a -β的平面角,即∠AOB =120°.而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径. ∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用△APB . 在△APB 中,AP =BP =10,∠APB =60°,∴AB =10. 由正弦定理:332060sin 2=︒==AB R PO . 【思路点拨】(1)该题寻找120°的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形P AOB 为一圆内接四边形,∵P A ⊥OA ,PB ⊥OB ,∵PO 即为其外接圆直径,然后借助于四边形的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.【答案】.3320活动③ 强化提升,灵活应用例5.过点S 引三条不共面的直线SA 、SB 、SC ,如图,∠BSC =90°,∠ASC =∠ASB =60°,若截取SA =SB =SC =a .(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.【知识点】面面垂直的证明,距离. 【数学思想】化归思想【解题过程】(1)证明:∵SA =SB =SC =a , 又∠ASC =∠ASB =60°,∴△ASB 和△ASC 都是等边三角形,∴AB =AC =a , 取BC 的中点H ,连结AH ,∴AH ⊥BC . 在Rt △BSC 中,BS =CS =a , ∴SH ⊥BC ,a BC 2=,∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在△SHA 中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴AH ⊥SH ,∴AH ⊥平面SBC .∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC . 或:∵SA =AC =AB ,∴顶点A 在平面BSC 内的射影H 为△BSC 的外心, 又△BSC 为Rt △,∴H 在斜边BC 上,又△BSC 为等腰直角三角形,∴H 为BC 的中点,∴AH ⊥平面BSC . ∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC .(2)由前所证:SH ⊥AH ,SH ⊥BC ,∴SH ⊥平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==,∴点S到平面ABC的距离为a22.【思路点拨】(1)要证明平面ABC⊥平面BSC,根据面面垂直的判定定理,须在平面ABC或平面BSC内找到一条与另一个平面垂直的直线;(2)外心为三角形外接圆的圆心,即三条中垂线的交点.【答案】(1)见解题过程;(2)a22.同类训练如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥B C.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【知识点】线面平行的判定,面面垂直的证明.【解题过程】(1)证明:在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF 平面ACE,∴DF∥平面ACE.又∵DF⊂平面DEF,平面ACE∩平面DEF=a,∴DF∥a.(2)线段BE上存在点G,且BG=13BE,使得平面DFG⊥平面CDE.证明如下:取CE的中点O,连接FO并延长交BE于点G,连接GD、GF,∵CF=EF,∴GF⊥CE.在三棱台ABC-DEF中,AB⊥BC⇒DE⊥EF.由CF⊥平面DEF⇒CF⊥DE.又CF ∩EF =F ,∴DE ⊥平面BEF ,∴DE ⊥GF .GF CE GF DE GF CDE CE DE E ⎫⎪⇒⎬⎪⎭⊥⊥⊥平面=.又GF ⊂平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,∵O 为CE 的中点,EF =CF =2BC ,由平面几何知识易证△HOC ≌△FOE ,∴HB =BC =12EF .由△HGB ∽△FGE 可知12BG GE =,即13BG BE =. 【思路点拨】“探索性问题”的规律方法:一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.【答案】(1)见解题过程;(2)线段BE 上存在点G ,且13BG BE =,使得平面DFG ⊥平面CDE .3. 课堂总结知识梳理(1)证明面面垂直的方法(2)重难点归纳空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.(三)课后作业基础型 自主突破一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.【思路点拨】由题意,画出满足条件的图形,依据面面垂直的性质以及线面平行的性质等知识解答.【答案】D.2.设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是()A.过a一定存在平面β,使得β∥αB.过a一定存在平面β,使得β⊥αC.在平面α内一定不存在直线b,使得a⊥bD.在平面α内一定不存在直线b,使得a∥b【知识点】线面平行的判定,面面垂直的证明.【解题过程】当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误.【思路点拨】A.根据面面平行的定义和性质判断;B.利用面面垂直的性质和定义判断;C.根据线面垂直的性质判断;D.根据线面平行的性质判断.【答案】B.3.设直线l⊥平面α,直线m⊂平面β,()A.若m∥α,则l∥m B.若α∥β,则l⊥mC.若l⊥m,则α∥β D.若α⊥β,则l∥m【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中直线l与m互相垂直,不正确;B中根据两个平面平行的性质知是正确的;C中的α与β也可能相交;D中l与m也可能异面,也可能相交,故选B.【思路点拨】通过线面平行的性质定理和线面垂直的性质定理即可判断A;由一直线垂直于两个平行平面中的一个,也垂直于另一个,结合线面垂直的性质定理即可判断B;举反例,由线面垂直的性质定理即可判断C;举反例,结合线面垂直和面面垂直的性质定理即可判断D.【答案】B.4.设a、b是两条不同的直线,α、β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D 中,两直线可以平行,相交或异面,故不正确.【思路点拨】通过线面垂直的性质定理判断A;通过面面平行的性质和线面垂直的性质判断B;通过面面平行的性质和线面垂直的定义判断C;由线面平行的性质和面面垂直的性质判断D.【答案】C.5.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE【知识点】面面垂直的判定.【解题过程】因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE ,所以选C.【思路点拨】缺少【答案】C.6.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直”,则______.【解题过程】此题是突破以往高考命题模式的又一典范,丰富的想象和联想是增强创新意识的利器,本题如果能联想构造一长方体,用一平面去截长方体易得满足条件的棱锥A -BCD ,进而易证结论:“2222ABC ACD ADB BCD SS S S ++=.” 【答案】2222ABC ACD ADB BCD S S S S ++=.7.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为正确的条件即可).【知识点】线面平行的判定,面面垂直的证明.【解题过程】∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥P C.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD ⊥平面PC D.【答案】DM⊥PC(或BM⊥PC)8.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD =DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【知识点】线面平行的判定,面面垂直的证明。

平面与平面垂直的性质【新教材】人教A版高中数学必修第二册优质课件

平面与平面垂直的性质【新教材】人教A版高中数学必修第二册优质课件
利用面面垂直的性质定理证明垂直 [例 1] 如图,P 是四边形 ABCD 所在平 面外的一点,四边形 ABCD 是∠DAB=60° 且边长为 a 的菱形.△PAD 为正三角形,其 所在平面垂直于平面 ABCD.若 G 为 AD 边的 中点. 求证:平面 PBG⊥平面 PAD.
8 . 6 . 3 第 二 课时 平 面 与 平 面 垂直的 性质-【 新教材 】人教 A版( 2019) 高中数 学必修 第二册 课件(共 17张P PT)
C.直线 a 不一定垂直于第二个平面
D.过 a 的平面必垂直于过 b 的平面
解析:直线 a 与直线 b 均不一定为两面的交线.故选 C.
答案:C
4.平面 α⊥平面 β,α∩β=l,n⊂β,n⊥l,直线 m⊥α,则直线 m 与 n 的位置关系是________. 解析:因为 α⊥β,α∩β=l,n⊂β,n⊥l, 所以 n⊥α.又 m⊥α,所以 m∥n. 答案:平行
[证明] (1)∵AD∥BC,BC⊂平面 PBC,AD⊄平面 PBC, ∴AD∥平面 PBC. 又∵平面 ADMN∩平面 PBC=MN,∴AD∥MN. 又∵BC∥AD,∴MN∥BC. 又∵N 是 PB 的中点,∴点 M 为 PC 的中点. ∴MN∥BC 且 MN=12BC, 又∵E 为 AD 的中点,∴MN∥DE 且 MN=DE. ∴四边形 DENM 为平行四边形. ∴EN∥DM,且 DM⊂平面 PDC. ∴EN∥平面 PDC.
8 . 6 . 3 第 二 课时 平 面 与 平 面 垂直的 性质-【 新教材 】人教 A版( 2019) 高中数 学必修 第二册 课件(共 17张P PT)
[变式训练]
如图所示,在三棱锥P-ABC中,PA⊥平面ABC,平 面PAC⊥平面PBC. 求证:BC⊥AC. 证明:如图,在平面PAC内作AD⊥PC交PC于点 D,∵平面PAC⊥平面PBC,AD⊂平面PAC,且 AD⊥PC,平面PAC∩平面PBC=PC,∴AD⊥平 面PBC,又∵BC⊂平面PBC,∴AD⊥BC. ∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC, ∵AD∩PA=A,∴BC⊥平面PAC, ∵AC⊂平面PAC,∴BC⊥AC.

高中数学必修二《平面与平面垂直的性质》优秀教学设计

高中数学必修二《平面与平面垂直的性质》优秀教学设计
四、运用新知
例1.如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,平面PAC⊥平面ABC,(1)证明:BC⊥平面PAC.
(2)判断平面PBC与平面PAC的位置关系.
例2:如图,四棱锥P-ABCD的底面是菱形,PA⊥底面ABCD,E为PC上任意一点,
求证:平面BED⊥平面PAC.
例2变式:若平面BED⊥平面ABCD,求证EO//PA.
【设计意图】面向全体学生,夯实基础,面向学有余力的学生,能力提升继续练习“直观感知—操作确认—推理证明”的学习方法,进一步提升学生的空间想象能力和逻辑推理能力.
五、课堂小结.
线线垂直←→线面垂直←→面面垂直
课外作业
课本P73:练习1,2
册P48:类型2,类型3;P49:5,7,8
2、面面垂直的判定:一个平面过另一个平面的垂线,则这两个平面垂直.
二、引入新课
教室的黑板所在平面与地面是什么位置关系?你能在黑板面内找到一条直线与地面平行、相交或垂直吗?这样的直线分别有什么性质?
猜想:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
【设计意图】在复习面面垂直判定定理的同时,让学生感受到数学知识在生活中的实例.通过简单的实物操作,为新知识找到生长点.
3、探究新知
已知:平面 平面 , 求证:
面面垂直的性质定理:两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
符号语言表述:
面面垂直 线面垂直
关键点:1.线面垂直;2.线在平面内;3.线垂直于交线.
概念巩固练习:
1.若 ,那么 内的所有直线都垂直于 .
2.两平面互相垂直,分别在这两平面内的两直线互相垂直.
情感、态度与价值观目标:

最新高中人教A版数学必修二:§2.3.4平面与平面垂直的性质 优质教案

最新高中人教A版数学必修二:§2.3.4平面与平面垂直的性质  优质教案

§2.3.4 平面与平面垂直的性质一、教材分析空间中平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的性质定理具备以下两个特点:(1)它是立体几何中最难、最“高级”的定理.(2)它往往又是一个复杂问题的开端,即先由面面垂直转化为线面垂直,否则无法解决问题.因此,面面垂直的性质定理是立体几何中最重要的定理.二、教学目标1.知识与技能(1)使学生掌握平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.三、教学重点与难点教学重点:平面与平面垂直的性质定理.教学难点:平面与平面性质定理的应用.四、课时安排1课时五、教学设计(一)复习(1)面面垂直的定义.如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.(2)面面垂直的判定定理.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:⇒⎭⎬⎫⊂⊥αβAB AB α⊥β.两个平面垂直的判定定理图形表述为:图1(二)导入新课思路1.(情境导入)黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?思路2.(事例导入)如图2,长方体ABCD—A′B′C′D′中,平面A′ADD′与平面ABCD垂直,直线A′A垂直于其交线AD.平面A′ADD′内的直线A′A与平面ABCD垂直吗?图2(二)推进新课、新知探究、提出问题①如图3,若α⊥β,α∩β=CD,AB α,AB⊥CD,AB∩CD=B.请同学们讨论直线AB与平面β的位置关系.图3②用三种语言描述平面与平面垂直的性质定理,并给出证明.③设平面α⊥平面β,点P∈α,P∈a,a⊥β,请同学们讨论直线a与平面α的关系.④分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.⑤总结应用面面垂直的性质定理的口诀.活动:问题①引导学生作图或借助模型探究得出直线AB与平面β的关系.问题②引导学生进行语言转换.问题③引导学生作图或借助模型探究得出直线a与平面α的关系.问题④引导学生回忆立体几何的核心,以及平面与平面垂直的性质定理的特点.问题⑤引导学生找出应用平面与平面垂直的性质定理的口诀.讨论结果:①通过学生作图或借助模型探究得出直线AB 与平面β垂直,如图3.②两个平面垂直的性质定理用文字语言描述为:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面.两个平面垂直的性质定理用图形语言描述为:如图4.图4两个平面垂直的性质定理用符号语言描述为:⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⋂⊥=⋂⊂⊥B CD AB CD AB CD AB βααβαAB ⊥β.两个平面垂直的性质定理证明过程如下:图5如图5,已知α⊥β,α∩β=a,AB ⊂α,AB ⊥a 于B.求证:AB ⊥β.证明:在平面β内作BE ⊥CD 垂足为B,则∠ABE 就是二面角αCDβ的平面角.由α⊥β,可知AB ⊥BE.又AB ⊥CD ,BE 与CD 是β内两条相交直线,∴AB ⊥β.③问题③也是阐述面面垂直的性质,变为文字叙述为:求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.下面给出证明.如图6,已知α⊥β,P ∈α,P ∈a ,a ⊥β.求证:a ⊂α.图6证明:设α∩β=c ,过点P 在平面α内作直线b ⊥c ,∵α⊥β,∴b⊥β.而a⊥β,P∈a,∵经过一点只能有一条直线与平面β垂直,∴直线a应与直线b重合.那么a⊂α.利用“同一法”证明问题,主要是在按一般途径不易完成问题的情形下所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线b,不易想到,二是证明直线b和直线a 重合,相对容易些.点P的位置由投影所给的图及证明过程可知,可以在交线上,也可以不在交线上.④我认为立体几何的核心是:直线与平面垂直,因为立体几何的几乎所有问题都是围绕它展开的,例如它不仅是线线垂直与面面垂直相互转化的桥梁,而且由它还可以转化为线线平行,即使作线面角和二面角的平面角也离不开它.两个平面垂直的性质定理的特点就是帮我们找平面的垂线,因此它是立体几何中最重要的定理.⑤应用面面垂直的性质定理口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.(四)应用示例思路1例1 如图7,已知α⊥β,a⊥β,a⊄α,试判断直线a与平面α的位置关系.图7解:在α内作垂直于α与β交线的垂线b,∵α⊥β,∴b⊥β.∵a⊥β,∴a∥b.∵a⊄α,∴a∥α.变式训练如图8,已知平面α交平面β于直线a.α、β同垂直于平面γ,又同平行于直线b.求证:(1)a⊥γ;(2)b⊥γ.图8 图9证明:如图9,(1)设α∩γ=AB,β∩γ=AC.在γ内任取一点P并在γ内作直线PM⊥AB,PN⊥AC.∵γ⊥α,∴PM⊥α.而a⊂α,∴PM⊥a.同理,PN⊥a.又PM⊂γ,PN⊂γ,∴a⊥γ.(2)在a上任取点Q,过b与Q作一平面交α于直线a1,交β于直线a2.∵b∥α,∴b∥a1.同理,b∥a2.∵a1、a2同过Q且平行于b,∴a1、a2重合.又a1⊂α,a2⊂β,∴a1、a2都是α、β的交线,即都重合于a.∵b∥a1,∴b∥a.而a⊥γ,∴b⊥γ.点评:面面垂直的性质定理作用是把面面垂直转化为线面垂直,见到面面垂直首先考虑利用性质定理,其口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.例2 如图10,四棱锥P—ABCD的底面是AB=2,BC=2的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.图10 图11(1)证明侧面PAB⊥侧面PBC;(2)求侧棱PC与底面ABCD所成的角;(3)求直线AB与平面PCD的距离.(1)证明:在矩形ABCD中,BC⊥AB,又∵面PAB⊥底面ABCD,侧面PAB∩底面ABCD=AB,∴BC⊥侧面PAB.又∵BC⊂侧面PBC,∴侧面PAB⊥侧面PBC.(2)解:如图11,取AB中点E,连接PE、CE,又∵△PAB是等边三角形,∴PE⊥AB.又∵侧面PAB ⊥底面ABCD ,∴PE ⊥面ABCD.∴∠PCE 为侧棱PC 与底面ABCD 所成角. PE=23BA=3,CE=22BC BE +=3, 在Rt △PEC 中,∠PCE=45°为所求.(3)解:在矩形ABCD 中,AB ∥CD,∵CD ⊂侧面PCD ,AB ⊄侧面PCD ,∴AB ∥侧面PCD.取CD 中点F ,连接EF 、PF ,则EF ⊥AB.又∵PE ⊥AB,∴AB ⊥平面PEF.又∵AB ∥CD,∴CD ⊥平面PEF.∴平面PCD ⊥平面PEF.作EG ⊥PF ,垂足为G ,则EG ⊥平面PCD.在Rt △PEF 中,EG=530=•PF EC PE 为所求. 变式训练如图12,斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成60°角,侧面BCC 1B 1⊥面ABC.求平面AB 1C 1与底面ABC 所成二面角的大小.图12活动:请同学考虑面BB 1C 1C ⊥面ABC 及棱长相等两个条件,师生共同完成表述过程,并作出相应辅助线.解:∵面ABC ∥面A 1B 1C 1,则面BB 1C 1C∩面ABC=BC,面BB 1C 1C∩面A 1B 1C 1=B 1C 1,∴BC ∥B 1C 1,则B 1C 1∥面ABC.设所求两面交线为AE ,即二面角的棱为AE,则B 1C 1∥AE ,即BC ∥AE.过C 1作C 1D ⊥BC 于D ,∵面BB 1C 1C ⊥面ABC,∴C 1D ⊥面ABC ,C 1D ⊥BC.又∠C 1CD=60°,CC 1=a,故CD=2a ,即D 为BC 的中点. 又△ABC 是等边三角形,∴BC ⊥AD.那么有BC ⊥面DAC 1,即AE ⊥面DAC 1.故AE ⊥AD ,AE ⊥AC 1,∠C 1AD 就是所求二面角的平面角.∵C 1D=23a ,AD=23a ,C 1D ⊥AD,故∠C 1AD=45°. 点评:利用平面与平面垂直的性质定理,找出平面的垂线是解决问题的关键.思路2例1 如图13,把等腰直角三角形ABC 沿斜边AB 旋转至△ABD 的位置,使CD=AC,图13(1)求证:平面ABD ⊥平面ABC ;(2)求二面角CBDA 的余弦值.(1)证明:(证法一):由题设,知AD=CD=BD,作DO ⊥平面ABC ,O 为垂足,则OA=OB=OC. ∴O 是△ABC 的外心,即AB 的中点. ∴O ∈AB ,即O ∈平面ABD.∴OD ⊂平面ABD.∴平面ABD ⊥平面ABC.(证法二):取AB 中点O ,连接OD 、OC,则有OD ⊥AB ,OC ⊥AB ,即∠COD 是二面角CABD 的平面角.设AC=a ,则OC=OD=a 22, 又CD=AD=AC,∴CD=a.∴△COD 是直角三角形,即∠COD=90°.∴二面角是直二面角,即平面ABD ⊥平面ABC.(2)解:取BD 的中点E ,连接CE 、OE 、OC,∵△BCD 为正三角形,∴CE ⊥BD.又△BOD 为等腰直角三角形,∴OE ⊥BD.∴∠OEC 为二面角CBDA 的平面角.同(1)可证OC ⊥平面ABD,∴OC ⊥OE.∴△COE 为直角三角形.设BC=a ,则CE=23a ,OE=21a,∴cos ∠OEC=33=CE OE 即为所求.变式训练如图14,在矩形ABCD 中,AB=33,BC=3,沿对角线BD 把△BCD 折起,使C 移到C′,且C′在面ABC 内的射影O 恰好落在AB 上.图14(1)求证:AC′⊥BC′;(2)求AB 与平面BC′D 所成的角的正弦值;(3)求二面角C′BDA 的正切值.(1)证明:由题意,知C′O ⊥面ABD,∵C′O ⊂ABC′,∴面ABC′⊥面ABD.又∵AD ⊥AB,面ABC′∩面ABD=AB,∴AD ⊥面ABC′.∴AD ⊥BC′.∵BC′⊥C′D,∴BC′⊥面AC′D.∴BC′⊥AC′.(2)解:∵BC′⊥面AC′D,BC′⊂面BC′D,∴面AC′D ⊥面BC′D.作AH ⊥C′D 于H,则AH ⊥面BC′D,连接BH,则BH 为AB 在面BC′D 上的射影,∴∠ABH 为AB 与面BC′D 所成的角.又在Rt △AC′D 中,C′D=33,AD=3,∴AC′=32.∴AH=6.∴sin ∠ABH=32=AB AH ,即AB 与平面BC′D 所成角的正弦值为32. (3)解:过O 作OG ⊥BD 于G ,连接C′G ,则C′G ⊥BD,则∠C′GO 为二面角C′BDA 的平面角. 在Rt △AC′B 中,C′O=6''=•AB BC AC , 在Rt △BC′D 中,C′G=233''=•BD D C BC . ∴OG=22C G C '-'=23.∴tan ∠C′GO=22'=OG O C , 即二面角C′BDA 的正切值为22.点评:直线与平面垂直是立体几何的核心,它是证明垂直问题和求二面角的基础,因此利用平面与平面垂直的性质定理找出平面的垂线,就显得非常重要了.例2 如图15,三棱柱ABC —A 1B 1C 1中,∠BAC=90°,AB=BB 1=1,直线B 1C 与平面ABC 成30°角,求二面角BB 1CA 的正弦值.图15活动:可以知道,平面ABC 与平面BCC 1B 1垂直,故可由面面垂直的性质来寻找从一个半平面到另一个半平面的垂线.解:由直三棱柱性质得平面ABC ⊥平面BCC 1B 1,过A 作AN ⊥平面BCC 1B 1,垂足为N ,则AN ⊥平面BCC 1B 1(AN 即为我们要找的垂线),在平面BCB 1内过N 作NQ ⊥棱B 1C ,垂足为Q ,连接QA ,则∠NQA 即为二面角的平面角.∵AB 1在平面ABC 内的射影为AB ,CA ⊥AB ,∴CA ⊥B 1A.AB=BB 1=1,得AB 1=2.∵直线B 1C 与平面ABC 成30°角,∴∠B 1CB=30°,B 1C=2.在Rt △B 1AC 中,由勾股定理,得AC=2.∴AQ=1.在Rt △BAC 中,AB=1,AC=2,得AN=36. sin ∠AQN=AQ AN =36, 即二面角BB 1CA 的正弦值为36. 变式训练 如图16,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=22,M 为BC 的中点.(1)证明:AM ⊥PM ;(2)求二面角PAMD 的大小.图16 图17(1)证明:如图17,取CD 的中点E ,连接PE 、EM 、EA,∵△PCD 为正三角形,∴PE ⊥CD ,PE=PDsin ∠PDE=2sin60°=3.∵平面PCD ⊥平面ABCD,∴PE ⊥平面ABCD.∵四边形ABCD 是矩形,∴△ADE 、△ECM 、△ABM 均为直角三角形.由勾股定理可求得EM=3,AM=6,AE=3,∴EM 2+AM 2=AE 2.∴AM ⊥EM. 又EM 是PM 在平面ABCD 上的射影,∴∠AME=90°.∴AM ⊥PM.(2)解:由(1)可知EM ⊥AM ,PM ⊥AM,∴∠PME 是二面角PAMD 的平面角.∴tan ∠PME=33 EM PE =1.∴∠PME=45°. ∴二面角PAMD 为45°.(五)知能训练课本本节练习.(六)拓展提升(2007全国高考,理18)如图18,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC=90°,O 为BC 中点.(1)证明SO ⊥平面ABC;(2)求二面角ASCB 的余弦值.图18 图19 (1)证明:如图19,由题设,知AB=AC=SB=SC=SA.连接OA,△ABC 为等腰直角三角形,所以OA=OB=OC=22SA,且AO ⊥BC.又△SBC 为等腰三角形,故SO ⊥BC,且SO=22SA. 从而OA 2+SO 2=SA 2.所以△SOA 为直角三角形,SO ⊥AO.又AO∩BC=O,所以SO ⊥平面ABC.(2)解:如图19,取SC 中点M,连接AM 、OM,由(1),知SO=OC,SA=AC,得OM ⊥SC,AM ⊥SC.所以∠OMA 为二面角ASCB 的平面角.由AO ⊥BC,AO ⊥SO,SO∩BC=O,得AO ⊥平面SBC.所以AO ⊥OM.又AM=23SA,故 sin ∠AMO=3632==AM AO . 所以二面角ASCB 的余弦值为33.(七)课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业课本习题2.3 B 组3、4.。

新人教A版高中数学必修二《8.6.3平面与平面垂直》教学设计

新人教A版高中数学必修二《8.6.3平面与平面垂直》教学设计

人教A 版必修第二册§8.6.3 平面与平面垂直教学设计一、教学内容分析本节课选自普通高中课程标准实验教科书人教版必修必修第二册第八章《立体几何初步》第六节《空间直线、平面的垂直》,主要为两个平面互相垂直的定义、两个平面互相垂直的判定定理,是一节新授课。

平面与平面的垂直关系是“立体几何初步”章节中的又一个重点,是继直线、平面的平行关系,直线与平面的垂直关系之后的迁移与拓展,是“类比”与“转化”思想的又一重要体现。

这一节的学习对理顺“立体几何初步”章节的知识结构体系、提高学生的综合能力起着十分重要的作用。

平面与平面垂直是平面与平面相交的特殊情况,生活中平面与平面垂直的例子大量存在,引导学生观察、发现大量实例,通过类比直线、平面平行关系的判定以及直线与平面垂直的判定,提出“平面与平面垂直判”判定的猜想,选择“如果一个平面过另一个平面的垂线,那么这两个平面互相垂直”等典型猜想进行说理。

本节课中,几何直观、空间想象、合情推理和论证推理的结合有助于学生数学核心素养的培养。

二、教学目标与核心素养课程目标学科素养1.通过实例,学生运用类比的思想,独立探索空间中两个平面互相垂直的定义方法,体会定义一个数学对象的基本思想;2.熟悉线线垂直、线面垂直的转化;3.通过运用所学定理的过程,达到巩固理解所学知识的目标,提高学生类比化归能力,培养学生降低空间维数的转化与化归1.数学抽象、直观想象:平面与平面垂直的定义;2.逻辑推理:用定理证明垂直关系;三、学情分析经过前面的学习,学生有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的几何直观能力、推理论证能力等,能较准确地使用图形和数学语言表述几何对象的位置关系;已了解“平行关系”的性质和判定方法,以及直线与直线、直线与平面“垂直关系”的性质和判定方法;已基本掌握解决空间问题的一般方法—平面化,具备学习本节课所需的知识。

然而,学生的能力发展正处于由形象思维向抽象思维转折的阶段,但更注重形象思维,对两个平面的垂直关系还停留在感性的认识阶段,没有上升到理论。

人教版数学必修二2.3.2《平面与平面垂直的判定》教学教案设计

人教版数学必修二2.3.2《平面与平面垂直的判定》教学教案设计

课题:平面与平面垂直的判定(新授课)
1.教学任务分析:通过教学活动,
(1)使学生了解、感受二面角的概念,感受到生活中处处有数学、数学用途广泛,增强学数学的兴趣.
(2)在二面角的概念教学中,让学生体会以下几点:
a.二面角的大小是用平面角来度量的.
b.二面角的平面角的大小由二面角的两个面的位置唯一确定.
c.平面角的两边分别在二面角的两个平面内,且两边都与二面角的棱垂直,由这个角所
确定的平面和二面角的棱垂直.
(3)了解平面与平面垂直的定义,通过探究掌握平面与平面垂直的判定定理.
(4)通过例题教学,探究确定二面角的平面角的方法,会求特殊二面角的大小.
2.教学难点、重点:
(1)重点:
确定二面角,面面垂直判定定理的应用.
(2)难点:
各种情景下确定二面角的平面角.
3.教学方式与手段:
采用“启发式”、“探究式”、“讲练结合”法.
借助多媒体电脑平台.
4.教学基本流程(总体设计):
从生活实例让学生感性认识二面角

二面角的概念

二面角的平面角

定义两平面垂直

面面垂直的判定

应用、探究

课堂小结、作业
5.页面设计(相应内容逐步演示):
课题:平面与平面垂直的判定
1.二面角概念
2.确定二面角的平面角的方法
3.平面与平面垂直的定义
4.平面与平面垂直的判定定理
5.应用举例
6.小结与作业。

高中数学必修二 平面与平面垂直的性质公开课教案课件教案课件

高中数学必修二 平面与平面垂直的性质公开课教案课件教案课件

2. 3.4 平面与平面垂直的性质【教学目标】(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;(2)能运用性质定理证明一些空间位置关系的简单命题,进一步培养学生空间观念.(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握等价转化思想在解决问题中的运用.【教学重难点】重点:理解掌握面面垂直的性质定理和内容和推导。

难点:运用性质定理解决实际问题。

【教学过程】(一) 复习提问1.线面垂直判定定理:如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面.2.面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.(二)引入新课已知黑板面与地面垂直,你能在黑板面内找到一条直线与地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由!(三)探求新知已知:面α⊥面β,α∩β= a, AB α, AB⊥a于 B,求证:AB⊥β(让学生思考怎样证明)分析:要证明直线垂直于平面,须证明直线垂直于平面内两条相交直线,而题中条件已有一条,故可过该直线作辅助线.证明:在平面β内过B作BE⊥a,又∵AB⊥a,∴∠ABE为α﹣a﹣β的二面角,又∵α⊥β,∴∠ABE = 90° , ∴AB⊥BE又∵AB⊥a, BE∩a = B,∴AB⊥β面面垂直的性质定理:两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(用符号语言表述) 若α⊥β,α∩β=a, AB ⊂α, AB⊥a 于 B ,则 AB ⊥β师:从面面垂直的性质定理可知,要证明线垂直于面可通过面面垂直来证明,而前面我们知道,面面垂直也可通过线面垂直来证明。

这种互相转换的证明方法是常用的数学思想方法。

同学们在学习中要认真理解和体会。

(四)拓展应用例1.求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.例2.如图,已知平面α 、β,α⊥β,α∩β =AB, 直线a ⊥β, a ⊄α,试判断直线a 与平面α的位置关系(求证:a ∥α )(引导学生思考)分析:因为直线与平面有在平面内、相交、平行三种关系)解:在α内作垂直于α 、β交线AB 的直线b ,∵ α⊥β ∴b ⊥β∵ a ⊥β ∴ a ∥b ,又∵a ⊄α ∴ a ∥α课堂练习:73P 练习 第1、2题73P A 组 第1题(四)当堂检测1.如图,长方体ABCD ﹣A ′B ′C ′D ′中,判断下面结论的正误。

高中数学234平面与平面垂直的性质教案新人教A版必修2教案

高中数学234平面与平面垂直的性质教案新人教A版必修2教案

高中数学234平面与平面垂直的性质教案新人教A版必修2教案教学内容:高中数学《平面与平面垂直的性质》教学设计教学目标:1.理解平面与平面垂直的定义;2.掌握平面与平面垂直的判定方法;3.运用平面与平面垂直的性质解决实际问题。

教学重点:1.平面与平面垂直的定义;2.平面与平面垂直的判定方法。

教学难点:1.运用平面与平面垂直的性质解决实际问题。

教学准备:1.多媒体设备;2.教学课件;3.板书工具。

教学过程:Step 1:导入新知以两面相交直线的垂直为例,复习垂直线段的定义与判定方法,并引入本节课的主要内容:平面与平面垂直。

Step 2:引入新知1.解释平面与平面垂直的定义:当两个平面的交线与其中一个平面的一条直线垂直时,称这两个平面垂直。

2.图示两个平面垂直的情况,强调交线与直线垂直的关系。

Step 3:判定平面与平面垂直的方法1.利用平面与直线垂直的性质,结合两个平面所包含的直线,判定两个平面垂直。

2.指导学生通过观察图形,判定哪些平面是垂直的。

Step 4:例题讲解结合具体示例,讲解平面与平面垂直的判定方法。

例题:已知平面P与平面Q的交线与直线l垂直,l与平面Q的交线与平面R的交线垂直。

问平面P与平面R是否垂直?解题思路:由已知条件可知,平面P与平面Q的交线与直线l垂直,说明平面P与平面Q垂直;同时l与平面Q的交线与平面R的交线垂直,说明平面R与平面Q垂直。

因此,根据垂直的传递性推论,可以得出平面P与平面R垂直。

Step 5:解决实际问题给学生提供一些有关平面与平面垂直的实际问题,引导学生用所学知识解决问题。

Step 6:归纳总结总结平面与平面垂直的定义与判定方法。

Step 7:课堂练习布置一些练习题,让学生进行巩固练习。

Step 8:作业布置布置课后作业,要求学生进一步巩固所学知识。

教学反思:通过本节课的教学,学生能够理解平面与平面垂直的定义,并能够熟练运用判定方法解决问题。

同时,通过解决实际问题的训练,提高了学生的应用能力。

高中数学新人教版必修2教案2.3.4平面与平面垂直的性质(教案).doc

高中数学新人教版必修2教案2.3.4平面与平面垂直的性质(教案).doc
课堂教学设计
备课人
滕领涛
授课时间
12.14
课题
§2、3.4平面与平面垂直的性质




知识与技能
使学生掌握平面与平面垂直的性质定理;能运用性质定理解决一些简单问题
过程与方法
启发引导,充分发挥学生的主体作用
情感态度价值观
通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力
重点
性质定理的证明
难点
性质定理的证明及应用




教学内容
教学环节与活动设计
(一)复习导入
问题:直线与平面垂直的性质定理,如何推导的?
(二)研探新知
类比上面定理:若在两个平面互相垂直的条件下,又会得出怎样的结论呢?
课本P71思考(1)(2)
例如:如何在黑板面上画一条与地面垂直的直线?
课本P72思考
结论:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内
(三)应用巩固
例子:课本P.74例4
做法:教师给出问题,学生思考探究、判断并说理由,教师最后评议。
课本P72探究
要注意判定定理和性质定理的交替运用,同时还要贯通三种垂直关系,即直线与直线垂直,直线与平面垂直,平面与平面垂直的相互转化
教师引导学生观察教室相邻两面墙的交线,容易发现该交线与地面垂直.
让学生发现只要在黑板上画出一条与这交线平行的直线,则所画直线必与地面垂直。然后师生互动,共同完成性质定理的确认与证明,并归纳性质定理:
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
1

学设Βιβλιοθήκη 计教学内容教学环节与活动设计

《2.3.4平面与平面垂直的性质》教学案2-公开课-优质课(人教A版必修二精品)

《2.3.4平面与平面垂直的性质》教学案2-公开课-优质课(人教A版必修二精品)
《2.3.4平面与平面垂直的性质》教学案2




1.知识与技能
(1)使学生掌握平面与平面垂直的性质定理;
(2)能运用性质定理解决一些简单问题;
(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.
2.过程与方法
(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;
练习:书本P72探究、P73练习1、2
活动四:归纳整理、提高认识(2分钟)
在师生互动中让学生了解:
(1)本节课学习了哪些知识内容?
(2)请归纳一下证明直线与平面垂直的方法?
活动五:作业布置、提高巩固
1、教材第73页习题2.3A组第1、2、5题;P74页B组第3题
板书设计:
一、平面与平面垂直的性质定理
活动二:师生交流、进入新知,(20分钟)
例1设 , =CD, ,AB⊥CD,AB⊥CD=B求证AB
证明:在 内引直线BE⊥CD,垂足为B,则∠ABE是二面角 的平面角.由 知,AB⊥BE,又AB⊥CD,BE与CD是 内的两条相交直线,所以AB⊥
3.平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
批注
活动一:创设情景、引入课题(5分钟)
问题1:分别用三种语言来描述上一节课我们学过的直线与平面垂直的性质定理?
问题2:总结一下,从初中学习到现在,有几种方法可以判定两条直线平行?
问题3:黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?
点题:今天学习空间中平面与平面的垂直的性质(板书课题)
(2)性质定理的推理论证.
3.情感、态度与价值观
通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.

最新人教版高中数学必修2第二章《平面与平面垂直的性质》教案1

最新人教版高中数学必修2第二章《平面与平面垂直的性质》教案1

《平面与平面垂直的性质》教案教学目标:1.掌握平面与平面垂直的性质定理及证明;了解平面与平面垂直的性质定理的作用并能运用平面与平面垂直的性质定理解决一些简单问题;2.通过对定理的探究和证明,向学生渗透从特殊到一般、类比与转化等数学思想,培养学生观察、比较、想象、概括等逻辑推理能力;通过实验提出自己的猜想并能进行论证,提高灵活运用知识分析问题、解决问题的能力;3.进一步丰富数学学习的成功体验,激发对空间图形研究的兴趣,形成积极参与数学活动,主动与他人合作交流的意识.教学重点难点:1.重点:理解并掌握面面垂直的性质定理和内容和推导.2.难点:运用平面与平面垂直的性质定理解决实际问题.教法与学法:1.教法选择:采用“启发-探究”的教学方法.2.学法指导:通过实验、分析、猜想、归纳、论证等活动过程,从中了解和体验空间线面、面面之间的垂直关系,在实验、猜想和论证中发展学生的逻辑推理能力、空间想象能力和分析问题、解决问题的能力.教学过程:一、设置情境,激发探索平面与平面垂直的性质定理的探究1.将上述情景抽象成数学问题: ,,,AB l AB l αββαβ⊥⊂⋂=⊥则AB 与α的位置关系怎样?(让学生思考怎样证明)分析:要证明直线垂直于平面,需证明直线垂直于平面内两条相交直线,而题中条件已有一条,故可过该直线作辅助线.引导学生归纳为文字语言.面面垂直的性质定理.二、变式演练,提高能力例 1 如图,已知α⊥β,a⊥β,a⊄α,试判断直线a与平面α的位置关系.图分析:面面垂直的性质定理作用是把面面垂直转化为线面垂直.解:在α内作垂直于α与β交线的垂线b,∵α⊥β,∴b⊥β.∵a⊥β,∴a∥b.∵a⊄α,∴a∥α.例2将两块三角板(有一块30o角和一块45o角)拼成如图形状提炼出的数学知识,需要经过严格的证明才能成为规律,通过证明培养学生严密的数学思维与知识应用能力.三、归纳小结,课堂延展巩固作业:课本对应习题提升练习:如图,三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角BB1CA的正弦值.延展作业:谈谈你对本节的学习的心得体会?体学生的巩固应用,又兼顾学有余力的学生,同时将探究的空间由课堂延伸到课外.教学设计说明1.教材地位分析:空间中平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用广泛,而且是空间问题平面化的典范,面面垂直的性质定理是立体几何中最重要的定理,也是高考考查的重点,其中所涉及的观点、思想和能力方法是学生今后学习和工作中必备的数学素养.2.学生现实状况分析:在学习本课之前,学生已具备了对空间几何图形的一定水平层次的想象能力,已具备一定的逻辑推理能力和分析问题的能力.这个阶段的学生还以抽象逻辑思维为主要发展趋势,他们的思维正在从经验性的逻辑思维向抽象的逻辑思维发展,仍需依赖一定的具体形象的材料来理解抽象的逻辑关系.3.以学生的经验为基础,通过教学初步培养学生分析问题的能力和解决实际问题的能力;在与位置有关的推理、想象与描述等数学活动感知和体验空间与图形的现实意义.在探索空间线线、线面、面面关系过程中逐步建立空间观念.逐步培养抽象的逻辑思维,使学生学会提出问题,培养学生解决问题的能力.。

最新人教版高中数学必修2第二章《平面与平面垂直》教案2

最新人教版高中数学必修2第二章《平面与平面垂直》教案2

示范教案整体设计教学分析教材通过实例操作,归纳出了两个平面互相垂直的定义,进一步归纳出了平面与平面垂直的判定定理和性质定理.值得注意的是在教学中要留给学生适当的思考时间,避免出现直接给出定义和定理,那样做会不符合新课标的精神的.三维目标1.掌握两个平面互相垂直的定义,提高学生的归纳能力.2.掌握两个平面垂直的判定定理和性质定理,以及应用定理解决有关问题,提高学生抽象思维能力,培养空间想象能力.重点难点教学重点:两个平面垂直的判定和性质.教学难点:归纳判定定理和性质定理.课时安排1课时教学过程导入新课设计1.回顾直线与平面垂直的定义,是用线线垂直来定义的,那么如何定义平面与平面垂直呢?用什么来定义?教师点出课题.设计2.如下图所示,在长方体AC′中,棱AA′垂直平面AC,那么过AA′的平面AB′和平面AD′垂直于平面AC吗?教师点出课题.推进新课新知探究提出问题(1)如右下图,两个平面α,β相交,交线为CD,在CD上任取一点B,过点B分别在α,β内作直线BA和BE,使BA⊥CD,BE⊥CD.于是,直线CD⊥平面ABE.容易看到,当∠ABE为直角时,给我们两平面互相垂直的印象.由此归纳出两平面垂直的一个定义?(2)在下图中,由于∠ABE为直角,可知BA⊥BE.又BA⊥CD,所以BA⊥β.这就是说平面α过平面β的垂线BA.现在要问,如果平面α过平面β的垂线BA,那么这两个平面是否相互垂直呢?归纳平面与平面垂直的判定定理.(3)下面我们再来研究两平面垂直的性质.再观察右上图,设平面α与平面β垂直,α∩β=CD,如果平面α内的直线BA⊥CD,这时,BA是否垂直平面β?归纳平面与平面垂直的性质定理,并加以证明.讨论结果:(1)如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α,β互相垂直,记作α⊥β.(2)答案是肯定的.事实上,只要在平面β内作BE⊥CD,由于BA⊥β,所以BA⊥BE,因此∠ABE为直角依两个平面垂直的定义,就可以推出α⊥β.由以上观察和分析,我们可以得到平面与平面垂直的判定定理:定理如果一个平面过另一个平面的一条垂线,则两个平面互相垂直.建筑工人在砌墙时,常用一端系有铅锤的线来检查所砌的墙是否和水平面垂直(如下图),实际上就是依据这个定理.(3)定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.已知:(如下图)平面α⊥平面β,α∩β=CD,BA α,BA⊥CD,B为垂足.求证:BA⊥β.证明:在平面β内过点B作BE⊥CD.因为α⊥β,所以BA⊥BE.又因为BA⊥CD,CD∩BE=B,所以BA⊥β.应用示例思路1例1 已知:如下图,平面α⊥平面β,在α与β的交线上取线段AB=4 cm,AC,BD 分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3 cm,BD=12 cm,求CD的长.解:连结BC.因为BD⊥AB,直线AB是两个互相垂直的平面α和β的交线,所以BD⊥α,BD⊥BC.所以△CBD是直角三角形.在直角△BAC中,BC=32+42=5.在直角△CBD中,CD=52+122=13.所以CD长为13 cm.变式训练如下图,长方体ABCD—A′B′C′D′中,MN在平面BCC′B′内,MN⊥BC于M.判断MN与AB是否垂直?并说明理由.解:显然,平面BCC′B′⊥平面ABCD,交线为BC.因为MN在平面BCC′B′内,且MN⊥BC,所以MN⊥平面ABCD.从而MN⊥AB.例2 已知Rt△ABC中,AB=AC=a,AD是斜边BC上的高,以AD为折痕使∠BDC 成直角(如下图).(1)(2)求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC;(2)∠BAC=60°.证明:(1)如上图(2),因为AD⊥BD,AD⊥DC,所以AD⊥平面BDC.因为平面ABD和平面ACD都过AD,所以平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)如上图(1),在直角三角形BAC中,因为AB=AC=a,所以BC=2a,BD=DC=2 2a.如上图(2),△BDC是等腰直角三角形,所以BC=2BD=2×22a=a.所以AB=AC=BC. 因此∠BAC=60°.点评:证明面面垂直转化为证明线面垂直.变式训练如下图,四边形ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.求证:平面PBD⊥平面PAC.证明:设AC与BD交于点O,连结PO,∵底面ABCD是菱形,∴BD⊥AC.∵PA⊥底面ABCD,BD⊂平面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC.又∵BD⊂平面PBD,∴平面PBD⊥平面PAC.思路2例3 如下图,已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.求证:(1)直线MF∥平面ABCD;(2)平面AFC1⊥平面ACC1A1.证明:如下图,(1)延长C1F交CB的延长线于点N,连结AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又∵MF平面ABCD,AN⊂平面ABCD,∴MF∥平面ABCD.(2)连结BD,由直四棱柱ABCD—A1B1C1D1,可知AA1⊥平面ABCD,又∵BD⊂平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC、A1A⊂平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN且DA=BN,∴四边形DANB为平行四边形.故NA∥BD.∴NA⊥平面ACC1A1.又∵NA⊂平面AFC1,∴平面AFC1⊥平面ACC1A1.变式训练如左下图,已知平面α交平面β于直线a.α、β同垂直于平面γ.求证:a⊥γ.证明:如右上图,设α∩γ=AB,β∩γ=AC.在γ内任取一点P并在γ内作直线PM⊥AB,PN⊥AC.∵γ⊥α,∴PM⊥α.而a⊂α,∴PM⊥a.同理,PN⊥a.又PM⊂γ,PN⊂γ,且PN∩PM=P,∴a⊥γ.知能训练如下图所示,在四棱锥S—ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,且AB=2,SC=SD= 2.求证:平面SAD⊥平面SBC.证明:在△SDC中,∵SC=SD=2,CD=AB=2,∴∠DSC=90°,即DS⊥SC.∵底面ABCD是矩形,∴BC⊥CD.又∵平面SDC⊥平面ABCD,∴BC⊥面SDC.∴DS⊥BC.∴DS⊥平面SBC.∵DS ⊂平面SAD,∴平面SAD⊥平面SBC.拓展提升如下图,在四棱锥P—ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、D、N三点的平面交PC于M,E为AD的中点.(1)求证:EN∥平面PCD;(2)求证:平面PBC⊥平面ADMN.(1)证明:∵AD∥BC,BC 面PBC,AD面PBC,∴AD∥面PBC.又面ADN∩面PBC=MN,∴AD∥MN.∴MN∥BC.∴点M为PC的中点.∴MN 12BC.又E为AD的中点,∴四边形DENM为平行四边形.∴EN∥DM.∴EN∥面PDC.(2)证明:连结PE、BE,∵四边形ABCD为边长为2的菱形,且∠BAD=60°,∴BE⊥AD.又∵PE⊥AD,∴AD⊥面PBE.∴AD⊥PB.又∵PA=AB且N为PB的中点,∴AN⊥PB.而AN∩AD=A,∴PB⊥面ADMN.∴平面PBC⊥平面ADMN.课堂小结知识总结:利用垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业本节练习A4题;练习B3题.设计感想本节教学设计体现了学生的主体地位,充分调动了学生的积极性.在实际应用时,尽量借助于信息技术.备课资料备选习题1.如下图,正三棱柱ABC—A1B1C1的所有棱长都为2,D为CC1中点.求证:AB1⊥平面A1BD;证明:如下图,取BC中点O,连结AO.∵△ABC为正三角形,∴AO⊥BC.∵在正三棱柱ABC—A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1.∴AO⊥BD.连结B1O,在正方形BB1C1C中,O、D分别为BC、CC1的中点,∴B1O⊥BD.又AO∩B1O=O,∴BD⊥面AOB1.AB1⊂面AOB1,∴AB1⊥BD.在正方形ABB1A1中,AB1⊥A1B,∴AB1⊥平面A1BD.2.如下图,在直三棱柱ABC—A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点.(1)求证:B1C∥平面A1BD;(2)求证:B1C1⊥平面ABB1A1;(3)设E是CC1上一点,试确定E的位置使平面A1BD⊥平面BDE,并说明理由.分析:(1)转化为证明B1C∥MD;(2)转化为证明A1B⊥B1C1,BB1⊥B1C1;(3)可猜测点E为C1C的中点.证明:(1)如下图,连结AB1与A1B相交于M.则M为A1B的中点,连结MD,又D为AC的中点,∴B1C∥MD,又B1C平面A1BD,MD⊂平面A1BD,∴B1C∥平面A1BD.(2)∵AB=B1B,∴四边形ABB1A1为正方形,∴A1B⊥AB1,又∵AC1⊥面A1BD,∴AC1⊥A1B,∴A1B⊥面AB1C1,∴A1B⊥B1C1,又在直棱柱ABC—A1B1C1中BB1⊥B1C1,BB1∩A1B=B,∴B1C1⊥平面ABB1A1.(3)解:当点E为C1C的中点时,平面A1BD⊥平面BDE,∵D、E分别为AC、C1C的中点,∴DE∥AC1,∵AC1⊥平面A1BD,∴DE⊥平面A1BD.又DE 平面BDE,∴平面A1BD⊥平面BDE.。

人教版高中数学必修二直线与平面垂直的性质公开课优质教案

人教版高中数学必修二直线与平面垂直的性质公开课优质教案

2.3.3 直线与平面垂直的性质一、教材分析空间中直线与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中直线与平面垂直的性质定理不仅是由线面关系转化为线线关系,而且将垂直关系转化为平行关系,因此直线与平面垂直的性质定理在立体几何中有着特殊的地位和作用.本节重点是在巩固线线垂直和面面垂直的基础上,讨论直线与平面垂直的性质定理的应用.二、教学目标1.知识与技能(1)使学生掌握直线与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;( 3 )了解直线与平面的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明” ,培养学生空间概念、空间想象能力以及逻辑推理能力.三、教学重点与难点直线与平面垂直的性质定理及其应用.四、课时安排1 课时五、教学设计(一)复习直线与平面垂直的定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相如图 1,表示方法为: a ⊥ α.a 由直线与平面垂直的定义不难得出:b ⊥ a.b (二)导入新课思路 1.(情境导入 )大家都读过茅盾先生的《白杨礼赞》 ,在广阔的西北平原上,矗立着一排排白杨树,它们像哨兵 守卫着祖国疆土 .一排排的白杨树,它们都垂直地面,那么它们之间的位置关系如何呢?思路 2.(事例导入 )如图 2,长方体 ABCD —A ′B ′C ′中D ,′棱 AA ′、BB ′、CC ′、DD ′所在直线都垂直所在的平面们之间具有什么位置关系?三)推进新课、新知探究、提出问题① 回忆空间两直线平行的定义② 判断同垂直于一条直线的两条直线的位置关系?③ 找出恰当空间模型探究同垂直于一个平面的两条直线的位置关系ABCD ,它图1图2④用三种语言描述直线与平面垂直的性质定理.⑤如何理解直线与平面垂直的性质定理的地位与作用?讨论结果:①如果两条直线没有公共点,我们说这两条直线平行.它的定义是以否定形式给出的,其证明方法多用反证法③如图4,长方体ABCD —A′B′C′中D,′棱AA′、BB′、CC′、DD′所在直线都垂直于所在的平面ABCD ,它们之间具有什么位置关系?棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD ,它们之间互相平行④直线和平面垂直的性质定理用文字语言表示为:垂直于同一个平面的两条直线平行,也可简记为线面垂直、线线平行a直线和平面垂直的性质定理用符号语言表示为:b∥ a.b直线和平面垂直的性质定理用图形语言表示为:如图 5.⑤直线与平面垂直的性质定理不仅揭示了线面之间的关系,而且揭示了平行与垂直之间的内在联系四)应用示例思路1例 1 证明垂直于同一个平面的两条直线平行解:已知a⊥α,b⊥α.求证:a∥ b.②如图3,同垂直于图6证明:(反证法)如图6,假定a与b不平行,且b∩α=O作,直线b′,使O∈b′,∥a b′ 直线b′与直线 b 确定平面β,设α∩β=则c, O∈ c.∵a⊥α,b⊥α∴,a⊥c,b⊥c.∵b′∥a,∴b′⊥c.又∵O∈b,O∈b′,b β,b ′β,a∥ b′显然不可能,因此b∥ a.例 2 如图7,已知α∩β =l,E⊥A α于点A,EB ⊥β于点B,a α,a⊥AB.求证:a∥ l.EA ,EB l EA证明:l ⊥平面EAB.l l EB又∵ a α,EA⊥α∴,a⊥EA.又∵ a⊥AB, ∴ a⊥平面EAB.∴a∥l.思路2例 1 如图8,已知直线a⊥b,b⊥ α,a α.求证:a∥ α.证明:在直线 a 上取一点 A ,过 A 作b′∥ b,则b′必与α相交,设交点为B,过相交直线a、b′作平面β,设 α∩β =a ′,∵ b ′∥b , a ⊥b,∴ a ⊥ b ′∵.b ⊥ α,b ′∥ b,∴ b ′⊥ α.又∵ a ′ α∴,b ′⊥ a ′.由 a ,b ′,a ′都在平面 β内,且 b ′⊥ a , b ′⊥ a ′知 a ∥ a ′∴.a ∥ α.例 2 如图 9,已知 PA ⊥矩形 ABCD 所在平面, M 、N 分别是 AB 、PC 的中点 .( 1)求证: MN ⊥CD ;(2)若∠ PDA=45° ,求证 :MN ⊥面 PCD.图91 证明: (1)取 PD 中点 E,又 N 为PC 中点 ,连接 NE,则 NE ∥CD,NE= CD. 21 又∵ AM ∥ CD,AM= CD, 2∴ AM NE.∴四边形 AMNE 为平行四边形 .∴MN ∥AE. PA 平面 ABCD CD PACD 平面 ADP ∵ CD 平面 ABCD CD AD CD ⊥AE.AE 平面 ADP(2)当∠ PDA=45°时 ,Rt △PAD 为等腰直角三角形 ,则 AE ⊥ PD.又 MN ∥AE,∴MN ⊥PD,PD ∩CD=D.∴MN ⊥平面 PCD.变式训练已知 a 、b 、c 是平面 α内相交于一点 O 的三条直线,而直线 l 和平面 α相交,并且和 a 、b 、c 三条直 线成等角 .求证: l ⊥ α.证明:分别在a、b、c上取点A、B、C并使AO=BO=CO. 设l 经过O,在l 上取一点P,在△POA、△ POB、△POC 中,∵PO=PO=PO,AO=BO=CO ,∠ POA= ∠POB=∠POC,∴△ POA ≌△ POB≌△ POC.∴ PA=PB=PC.取AB 的中点D,连接OD 、PD,则OD⊥AB ,PD⊥ AB.∵ PD∩OD=D, ∴AB ⊥平面POD.∵PO 平面POD, ∴PO⊥AB.同理,可证PO⊥ BC.∵AB α,BC α,AB∩BC=B, ∴PO⊥α,即l⊥α.若l 不经过点O时,可经过点O作l ∥′l.用上述方法证明l ′⊥α,∴l⊥α.(五)知能训练如图10,已知正方体ABCD —A1B1C1D1 的棱长为a,(1)求证:BD 1⊥平面B1AC;(2)求 B 到平面B1AC 的距离.1)证明:∵AB ⊥B1C,BC1⊥B1C,∴B1C⊥面ABC 1D 1.又BD 1 面ABC 1D1,∴B1C⊥ BD1.∵OF ∥BE ,BE ⊥α.∵B 1B ⊥AC ,BD ⊥ AC,∴AC ⊥面 BB 1D 1D.又 BD 1 面 BB 1D 1D,∴AC ⊥BD 1.∴BD 1⊥平面 B 1AC.(2)解:∵O ∈BD,∴连接 OB 1交 BD 1于 E.又 O ∈AC ,∴ OB 1 面 B 1AC.∴ BE ⊥OE ,且 BE 即为所求距离 .BE BD BD 2a 2 3 ∵ ,∴ BE= ·OB= a a .OB BD 1 BD 1 3a 2 3(六)拓展提升已知在梯形 ABCD 中, AB ∥ CD , CD 在平面 α内, AB∶CD=4 ∶ 6, AB 到 α的距离为 10 cm ,求梯 形对角线的交点 O 到 α的距离 .解:如图所示,过 B 作 BE ⊥α交 α于点 E ,连接 DE,过 O 作 OF ⊥DE 交 DE 于点 F,∵AB ∥CD ,AB α,CD α,∴ AB ∥α又. BE ⊥α,∴BE 即为 AB 到 α的距离, BE=10 cm 且∠ BED=90°∵ OF ⊥DE, ∴OF ∥ BE,得 OF ODBE BD∵AB ∥CD, ∴△ AOB ∽△ COD.CD 6OD,得AB 4 BD3∴ OF= ×10=65OD OB OF BE OD BD BE=10 cm,10cm )∴OF⊥α,即OF 即为所求距离为 6 cm.(七)课堂小结知识总结:利用线面垂直的性质定理将线面垂直问题转化为线线平行,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业课本习题 2.3 B 组1、 2.。

高中数学必修二平面与平面垂直的概念和判定公开课教案课件教案课件

高中数学必修二平面与平面垂直的概念和判定公开课教案课件教案课件

平面与平面垂直的概念和判定[适用章节]数学②中1.2.3空间中的垂直关系之2平面与平面垂直[使用目的]使学生通过操作理解平面与平面垂直的概念和判定定理,并结合图形理解这样定义两平面垂直的合理性,及用这个定义说明两平面垂直判定定理正确性的思路。

[操作说明]拖动绿色标尺可以选择要研究的内容。

对主要按钮画面上都有文字说明。

“慢加”、“慢减”按钮可以手控转动图形,“擦去”是用来隐去说明文字的,“隐面”、“隐角”可以隐去截面和截得的角。

“还原”按钮可以回到初始界面。

图2126图2126时比较第三个平面垂直及不垂直已知两平面交线时的图形。

活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。

”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。

听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。

水说:“同学们,你们知道我有多重要吗?”齐答:“知道。

”甲:如果没有水,我们人类就无法生存。

小熊说:我们动物可喜欢你了,没有水我们会死掉的。

花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。

主持人:下面请听快板《水的用处真叫大》竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。

栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。

主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。

乙说:看了表演后,我知道水对庄稼、植物是非常重要的。

丙说:我还知道水对美化城市起很大作用。

[精品]新人教A版必修2高中数学2.3.2平面与平面垂直的判定优质课教案

[精品]新人教A版必修2高中数学2.3.2平面与平面垂直的判定优质课教案

第二课时平面与平面垂直的判定(一)教学目标1.知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在教学问题解决上的作用.2.过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理.3.情态、态度与价值观通过揭示概念的形成、发展和应有和过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力.(二)教学重点、难点重点:平面与平面垂直的判定;难点:如何度量二面角的大小.(三)教学方法实物观察、类比归纳、语言表达,讲练结合.教学过程教学内容师生互动设计意图新课导入问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?学生自由发言,教师小结,并投影两个平面所成角的实际例子:公路上的表面与水平面,打开的门与门椎所在平面等,怎样定义两个平面所成的角呢?复习巩固,以旧导新探索新知一、二面角1.二面角(1)半平面平面内的一条直线把平面分成两部分,这两部分通常称为半平面.(2)二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).教师结合二面角模型,类比以上几个问题,归纳出二面角的概念及记法表示(可将角与二面角从图形、定义、构成、表示进行列表对比).师生共同实验(折纸)思考二面角的大小与哪一个角的大小相同?这个角的边与二面角的棱有什么通过模型教学,培养学生几何直观能力,通过类比教学,加深学生对知识的理解.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.(3)二面角的求法与画法棱为AB、面分别为α、β的二面角记作二面角ABαβ--. 有时为了方便,也可在,αβ内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角P–AB –Q.如果棱记作l,那么这个二面角记作二面角lαβ--或P–l–Q.2.二面角的平面角如图关系?生:过二面角棱上一点O在二面角的面上分别作射线与二面角的棱垂直,得到的角与二面角大小相等.师:改变O的位置,这个角的大小变不变.生:由等角定理知不变.通过实验,培养学生学习兴趣和探索意识,加深对知识的理解与掌握.(1)在二面角cαβ--的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB 叫做二面角的平面角.(2)二面角的平面角的大小与O点位置无关.(3)二面角的平面角的范围是[0,180°] (4)平面角为直角的二面角叫做直二面角.探索新知二、平面与平面垂直1.平面与平面垂直的定义,记法与画法.一般地,两个平面相交,如果它们所成的二面角是直二面角,就学生自学,教师点拔一下注意事项.师:以教室的门为例,由于门框木柱与地面垂直,那么经过木柱的门无论转到什么位置都有门面垂培养学生自学能力,通过实验,培养学生观察能力,归纳说这两个平面互相垂直.两个互相垂直的平面通常画成此图的样子,此时,把直立平面的竖边画成与水平平面的横边垂直.平面α与β垂直,记作α⊥β.2.两个平面互相垂直的判定定理,一个平面过另一个平面的垂线,则这两个平面垂直. 直于地面,即αβ⊥,请同学给出面面垂直的判定定理.能力,语言表达能力.典例分析例3 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.师:平面与平面垂直的判定方法有面面垂直的定义和面面垂直的判定定理,而本题二面角A –PC–B的平面角不好找,故应选择判定定理,而应用判定定理正面面垂直的关键是在其中巩固所学知识,培养学生观察能力,空间想象能力,书写表达能力.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BC在α内,所以PA⊥BC.因为点C是圆周上不同于A、B的任意一点,AB是⊙O的直径,所以,∠BCA是直角,即BC⊥AC.又因为PA与AC是△PAC所在平面内的两条直线.所以BC⊥平面PAC.又因为BC在平面PBC内,所以,平面PAC⊥平面PBC. 一个平面内找(作)一条直线与另一平面垂直,在已有图形中BC符合解题要求,为什么?学生分析,教师板书随堂练习1.如图,正方形SG1G2G3中,E,F分别是学生独立完成巩固知识提升能力G1G2,G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S –EFG中必有( A )A.SG⊥EFG所在平面B.SD⊥EFG所在平面C.GF⊥SEF所在平面D.GD⊥SEF所在平面2.如图,已知AB ⊥平面BCD,BC⊥CD,你能发现哪些平面互相垂直,为什么?答:面ABC ⊥面BCD 面ABD ⊥面BCD 面ACD ⊥面ABC . 归纳总结1.二面角的定义画法与记法.2.二面角的平面角定义与范围.3.面面垂直的判定方法.4.转化思想.学生总结、教师补充完善回顾、反思、归纳知训提高自我整合知识的能力课后作业 2.3 第二课时 习案学生独立完成固化知识 提升能力备选例题例1 如图,平面角为锐角的二面角EF αβ--,A ∈EF ,AG α⊂,∠GAE = 45°若AG 与β所成角为30°,求二面角EF αβ--的平面角.【分析】首先在图形中作出有关的量,AG 与β所成的角(过G 到β的垂线段GH ,连AH ,∠GAH = 30°),二面角EF αβ--的平面角,注意在作平面角是要试图与GAH 建立联系,抓住GH ⊥β这一特殊条件,作HB ⊥EF ,连接GB ,利用相关关系即可解决问题.【解析】作GH ⊥β于H ,作HB ⊥EF 于B ,连结GB , 则CB ⊥EF ,∠GBH 是二面角的平面角. 又∠GAH 是AG 与β所成的角, 设AG = a ,则21,22GB a GH a ==,2sin 2GH GBH GB ∠==.所以∠GBH = 45°反思研究:本题的成功之处在于作图时注意建立各量之间的有效联系.例2 如图所示,四边形ABCD 是平行四边形,直线SC ⊥平面ABCD ,E 是S A 的中点,求证:平面EDB ⊥平面ABCD .【分析】要证面面垂直,需证线面垂直.这里需 要寻找已知条件“SC ⊥平面ABCD ”与需证结论“平面EDB ⊥平面ABCD ”之间的桥梁. 【证明】连结AC 、BD ,交点为F ,连结EF , ∴EF 是△SAC 的中位线,∴EF ∥SC . ∵SC ⊥平面ABCD ,∴EF ⊥平面ABCD . 又EF ⊂平面BDE , ∴平面BDE ⊥平面ABCD .【评析】将面面垂直转化为线面垂直是证明此类题的关键. 例3 如图,四棱锥P – ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD .证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°.BSC【分析】由△PAD ≌ △PCD ,可利用定义法构造二面角的平面角,证明所成角的余弦值恒小于零即可.【解析】不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作AE ⊥DP ,垂足为E ,连接EC ,则△ADE ≌△CDE .∴AE = CE ,∠CED = 90°.故∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设AC 与BD 相交于点O .连接EO ,则EO ⊥AC .∴22a OA AE AD a =<<=, 在△AEC 中,222(2)cos 2AE EC OA AEC AE EC+-∠=⋅=2(2)(2)0AE OA AE OA AE +-<,∴∠AEC > 90°.所以面PAD 与面PCD 所成的二面角恒大于90°. 【评析】求二面角的大小应注意作(找)、证、求、答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3.4 平面与平面垂直的性质一、教材分析空间中平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的性质定理具备以下两个特点:(1)它是立体几何中最难、最“高级”的定理.(2)它往往又是一个复杂问题的开端,即先由面面垂直转化为线面垂直,否则无法解决问题.因此,面面垂直的性质定理是立体几何中最重要的定理.二、教学目标1.知识与技能(1)使学生掌握平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.三、教学重点与难点教学重点:平面与平面垂直的性质定理.教学难点:平面与平面性质定理的应用.四、课时安排1课时五、教学设计(一)复习(1)面面垂直的定义.如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.(2)面面垂直的判定定理.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:ABAB α⊥β.两个平面垂直的判定定理图形表述为:图1(二)导入新课思路1.(情境导入)黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?思路2.(事例导入)如图2,长方体ABCD —A ′B ′C ′D ′中,平面A ′ADD ′与平面ABCD 垂直,直线A ′A垂直于其交线AD.平面A ′ADD ′内的直线A ′A与平面ABCD 垂直吗?图2(二)推进新课、新知探究、提出问题①如图3,若α⊥β,α∩β=CD,AB α,AB ⊥CD,AB ∩CD=B.请同学们讨论直线AB 与平面β的位置关系.图3②用三种语言描述平面与平面垂直的性质定理,并给出证明.③设平面α⊥平面β,点P ∈α,P ∈a,a ⊥β,请同学们讨论直线a 与平面α的关系.④分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.⑤总结应用面面垂直的性质定理的口诀.活动:问题①引导学生作图或借助模型探究得出直线AB 与平面β的关系.问题②引导学生进行语言转换.问题③引导学生作图或借助模型探究得出直线a 与平面α的关系.问题④引导学生回忆立体几何的核心,以及平面与平面垂直的性质定理的特点.问题⑤引导学生找出应用平面与平面垂直的性质定理的口诀.讨论结果:①通过学生作图或借助模型探究得出直线AB 与平面β垂直,如图3.②两个平面垂直的性质定理用文字语言描述为:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面.两个平面垂直的性质定理用图形语言描述为:如图4.图4两个平面垂直的性质定理用符号语言描述为:BCDABCD AB CDABAB ⊥β.两个平面垂直的性质定理证明过程如下:图5如图5,已知α⊥β,α∩β=a,ABα,AB⊥a于B.求证:AB⊥β.证明:在平面β内作BE⊥CD垂足为B,则∠ABE就是二面角αCDβ的平面角.可知AB⊥BE.又AB⊥CD,BE与CD是β内两条相交直线,∴AB⊥β.由α⊥β,③问题③也是阐述面面垂直的性质,变为文字叙述为:求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.下面给出证明.求证:aα.如图6,已知α⊥β,P∈α,P∈a,a⊥β.图6证明:设α∩β=c,过点P在平面α内作直线b⊥c,∴b⊥β.而a⊥β,P∈a,∵α⊥β,∵经过一点只能有一条直线与平面β垂直,∴直线a应与直线b重合.那么aα.利用“同一法”证明问题,主要是在按一般途径不易完成问题的情形下所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线b,不易想到,二是证明直线b和直线a重合,相对容易些.点P 的位置由投影所给的图及证明过程可知,可以在交线上,也可以不在交线上.④我认为立体几何的核心是:直线与平面垂直,因为立体几何的几乎所有问题都是围绕它展开的,例如它不仅是线线垂直与面面垂直相互转化的桥梁,而且由它还可以转化为线线平行,即使作线面角和二面角的平面角也离不开它.两个平面垂直的性质定理的特点就是帮我们找平面的垂线,因此它是立体几何中最重要的定理.⑤应用面面垂直的性质定理口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.(四)应用示例思路1例1 如图7,已知α⊥β,a⊥β,aα,试判断直线a与平面α的位置关系.图7解:在α内作垂直于α与β交线的垂线b,∵α⊥β,∴b⊥β.∵a⊥β,∴a∥b.∵aα,∴a∥α.变式训练如图8,已知平面α交平面β于直线 a.α、β同垂直于平面γ,又同平行于直线 b.求证:(1)a⊥γ;(2)b⊥γ.图8 图9证明:如图9,在γ内任取一点P并在γ内作直线PM⊥AB,PN⊥AC.,β∩γ=AC.(1)设α∩γ=AB∵γ⊥α,∴PM⊥α.而aα,∴PM⊥a.同理,PN⊥a.又PMγ,PNγ,∴a⊥γ.(2)在a上任取点Q,过b与Q作一平面交α于直线a1,交β于直线a2.∵b∥α,∴b∥a1.同理,b∥a2.∵a1、a2同过Q且平行于b,∴a1、a2重合.又a1α,a2β,∴a1、a2都是α、β的交线,即都重合于 a.∵b∥a1,∴b∥a.而a⊥γ,∴b⊥γ.点评:面面垂直的性质定理作用是把面面垂直转化为线面垂直,见到面面垂直首先考虑利用性质定理,其口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.例2 如图10,四棱锥P—ABCD的底面是AB=2,BC=2的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.图10 图11(1)证明侧面PAB⊥侧面PBC;(2)求侧棱PC与底面ABCD所成的角;(3)求直线AB与平面PCD的距离.(1)证明:在矩形ABCD中,BC⊥AB,又∵面PAB⊥底面ABCD,侧面PAB∩底面ABCD=AB,∴BC⊥侧面PAB.又∵BC侧面PBC,∴侧面PAB⊥侧面PBC.(2)解:如图11,取AB中点E,连接PE、CE,又∵△PAB是等边三角形,∴PE⊥AB.又∵侧面PAB ⊥底面ABCD ,∴PE ⊥面ABCD. ∴∠PCE 为侧棱PC 与底面ABCD 所成角.PE=23BA=3,CE=22BCBE=3,在Rt △PEC 中,∠PCE=45°为所求. (3)解:在矩形ABCD 中,AB ∥CD, ∵CD侧面PCD ,AB侧面PCD ,∴AB ∥侧面PCD.取CD 中点F ,连接EF 、PF ,则EF ⊥AB. 又∵PE ⊥AB,∴AB ⊥平面PEF.又∵AB ∥CD, ∴CD ⊥平面PEF.∴平面PCD ⊥平面PEF. 作EG ⊥PF ,垂足为G ,则EG ⊥平面PCD.在Rt △PEF 中,EG=530PFEC PE 为所求.变式训练如图12,斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成60°角,侧面BCC 1B 1⊥面ABC.求平面AB 1C 1与底面ABC 所成二面角的大小.图12活动:请同学考虑面BB 1C 1C ⊥面ABC 及棱长相等两个条件,师生共同完成表述过程,并作出相应辅助线.解:∵面ABC ∥面A 1B 1C 1,则面BB 1C 1C ∩面ABC=BC, 面BB 1C 1C ∩面A 1B 1C 1=B 1C 1,∴BC ∥B 1C 1,则B 1C 1∥面ABC.设所求两面交线为AE ,即二面角的棱为AE,则B 1C 1∥AE ,即BC ∥AE.过C 1作C 1D ⊥BC 于D ,∵面BB 1C 1C ⊥面ABC, ∴C 1D ⊥面ABC ,C 1D ⊥BC. 又∠C 1CD=60°,CC 1=a,故CD=2a ,即D 为BC 的中点.又△ABC 是等边三角形,∴BC ⊥AD. 那么有BC ⊥面DAC 1,即AE ⊥面DAC 1. 故AE ⊥AD ,AE ⊥AC 1, ∠C 1AD 就是所求二面角的平面角.∵C 1D=23a ,AD=23a ,C 1D ⊥AD,故∠C 1AD=45°.点评:利用平面与平面垂直的性质定理,找出平面的垂线是解决问题的关键.思路2例1 如图13,把等腰直角三角形ABC 沿斜边AB 旋转至△ABD 的位置,使CD=AC,图13(1)求证:平面ABD ⊥平面ABC ;(2)求二面角CBDA 的余弦值.(1)证明:(证法一):由题设,知AD=CD=BD,作DO ⊥平面ABC ,O 为垂足,则OA=OB=OC. ∴O 是△ABC 的外心,即AB 的中点. ∴O ∈AB ,即O ∈平面ABD. ∴OD平面ABD.∴平面ABD ⊥平面ABC.(证法二):取AB 中点O ,连接OD 、OC,则有OD ⊥AB ,OC ⊥AB ,即∠COD 是二面角CABD 的平面角.设AC=a ,则OC=OD=a 22,又CD=AD=AC,∴CD=a.∴△COD 是直角三角形,即∠COD=90°.∴二面角是直二面角,即平面ABD ⊥平面ABC.(2)解:取BD 的中点E ,连接CE 、OE 、OC,∵△BCD 为正三角形,∴CE ⊥BD. 又△BOD 为等腰直角三角形,∴OE ⊥BD.∴∠OEC 为二面角CBDA 的平面角.同(1)可证OC ⊥平面ABD,∴OC ⊥OE.∴△COE 为直角三角形.设BC=a ,则CE=23a ,OE=21a,∴cos ∠OEC=33CEOE 即为所求.变式训练如图14,在矩形ABCD 中,AB=33,BC=3,沿对角线BD 把△BCD 折起,使C 移到C ′,且C ′在面ABC 内的射影O 恰好落在AB 上.图14(1)求证:AC ′⊥BC ′;(2)求AB 与平面BC ′D所成的角的正弦值;(3)求二面角C ′BDA 的正切值.(1)证明:由题意,知C ′O⊥面ABD,∵C ′OABC ′,∴面ABC ′⊥面ABD.又∵AD ⊥AB,面ABC ′∩面ABD=AB,∴AD ⊥面ABC ′.∴AD ⊥BC ′.∵BC ′⊥C ′D,∴BC ′⊥面AC ′D.∴BC ′⊥AC ′.(2)解:∵BC ′⊥面AC ′D,BC ′面BC ′D,∴面AC ′D⊥面BC ′D.作AH ⊥C ′D于H,则AH ⊥面BC ′D,连接BH,则BH 为AB 在面BC ′D上的射影, ∴∠ABH 为AB 与面BC ′D所成的角.又在Rt △AC ′D中,C ′D=33,AD=3,∴AC ′=32.∴AH=6.∴sin ∠ABH=32ABAH ,即AB 与平面BC ′D所成角的正弦值为32.(3)解:过O 作OG ⊥BD 于G,连接C ′G,则C ′G⊥BD,则∠C ′GO 为二面角C ′BDA 的平面角.在Rt △AC ′B中,C ′O=6''ABBC AC ,在Rt △BC ′D中,C ′G=233''BD D C BC .∴OG=22CGC =23.∴tan ∠C ′GO=22'OGO C ,即二面角C ′BDA 的正切值为22. 点评:直线与平面垂直是立体几何的核心,它是证明垂直问题和求二面角的基础,因此利用平面与平面垂直的性质定理找出平面的垂线,就显得非常重要了.例2 如图15,三棱柱ABC —A 1B 1C 1中,∠BAC=90°,AB=BB 1=1,直线B 1C 与平面ABC 成30°角,求二面角BB 1CA 的正弦值.图15活动:可以知道,平面ABC 与平面BCC 1B 1垂直,故可由面面垂直的性质来寻找从一个半平面到另一个半平面的垂线.解:由直三棱柱性质得平面ABC ⊥平面BCC 1B 1,过A 作AN ⊥平面BCC 1B 1,垂足为N ,则AN ⊥平面BCC 1B 1(AN 即为我们要找的垂线),在平面BCB 1内过N 作NQ ⊥棱B 1C ,垂足为Q ,连接QA ,则∠NQA 即为二面角的平面角.∵AB 1在平面ABC 内的射影为AB ,CA ⊥AB ,∴CA ⊥B 1A.AB=BB 1=1,得AB 1=2.∵直线B 1C 与平面ABC 成30°角,∴∠B 1CB=30°,B 1C=2.在Rt △B 1AC 中,由勾股定理,得AC=2.∴AQ=1.在Rt △BAC 中,AB=1,AC=2,得AN=36.sin ∠AQN=AQ AN =36,即二面角BB 1CA 的正弦值为36.变式训练如图16,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=22,M为BC 的中点.(1)证明:AM ⊥PM ;(2)求二面角PAMD 的大小.图16 图17(1)证明:如图17,取CD 的中点E ,连接PE 、EM 、EA,∵△PCD 为正三角形,∴PE ⊥CD ,PE=PDsin ∠PDE=2sin60°=3.∵平面PCD ⊥平面ABCD,∴PE ⊥平面ABCD.∵四边形ABCD 是矩形,∴△ADE 、△ECM 、△ABM 均为直角三角形.由勾股定理可求得EM=3,AM=6,AE=3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM.又EM 是PM 在平面ABCD 上的射影,∴∠AME=90°.∴AM ⊥PM.(2)解:由(1)可知EM ⊥AM ,PM ⊥AM,∴∠PME 是二面角PAMD 的平面角.∴tan ∠PME=33EM PE=1.∴∠PME=45°.∴二面角PAMD 为45°.(五)知能训练课本本节练习.(六)拓展提升(2007全国高考,理18)如图18,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC=90°,O 为BC 中点.(1)证明SO ⊥平面ABC;(2)求二面角ASCB 的余弦值.图18图19 (1)证明:如图19,由题设,知AB=AC=SB=SC=SA.连接OA,△ABC 为等腰直角三角形,所以OA=OB=OC=22SA,且AO ⊥BC.又△SBC 为等腰三角形,故SO ⊥BC,且SO=22SA.从而OA 2+SO 2=SA 2.所以△SOA 为直角三角形,SO ⊥AO.又AO ∩BC=O,所以SO ⊥平面ABC.(2)解:如图19,取SC 中点M,连接AM 、OM,由(1),知SO=OC,SA=AC,得OM ⊥SC,AM ⊥SC.所以∠OMA 为二面角ASCB 的平面角.由AO ⊥BC,AO ⊥SO,SO ∩BC=O,得AO ⊥平面SBC.所以AO ⊥OM.又AM=23SA,故sin ∠AMO=3632AM AO .所以二面角ASCB 的余弦值为33.(七)课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题. (八)作业课本习题 2.3 B 组3、4.。

相关文档
最新文档