选型指导-转鼓格栅

选型指导-转鼓格栅
选型指导-转鼓格栅

格栅设计

格栅设计

一、课程设计的内容 (1)污水处理厂的工艺流程比选,并对工艺构筑物选型做说明; (2)主要处理设施格栅的工艺计算; (3)确定污水处理厂平面和高程布置; (4)绘制主要构筑物图纸。 二、课程设计应完成的工作 (1)确定合理的污水处理厂的工艺流程,并对所选择工艺构筑物选型做适当说明; (2)确定主要处理构筑物格栅的尺寸,完成设计计算说明书; (3)绘制主要处理构筑物格栅的设计图纸。

目录 1总论 (2) 1.1污水处理的必要性 (2) 1.2设计任务和内容 (2) 1.3基本资料 (2) 1.3.1格栅的作用 (2) 1.3.2格栅的种类 (2) 1.3.3格栅的工艺参数 (2) 1.3.4待处理污水的各项指标及出水指标要求 (3) 2污水处理工艺流程 (4) 2.1污水处理方法 (4) 2.1.1基本原理及优点 (4) 2.1.2存在问题 (4) 2.2处理工艺流程 (4) 3 处理构筑物设计——格栅设计 (5) 3.1格栅种类选择 (5) 3.2格栅设计计算 (5) 结论 (8) 参考文献 (9)

1总论 1.1污水处理的必要性 随着工农业生产的迅速发展和人民生活水平的不断提高,用水紧张和污水排放的问题已越来越突出。污水未经处理直接排放,加重了对环境的污染。在国家可持续发展的新政策下,环境保护已受到各级政府和全国人民的重视,对污水进行彻底的治理以保护人类赖以生存的环境的重要性越来越大,高效节能的城市污水处理技术与工艺已能为国民经济的发展起到较大的推动作用。 1.2设计任务和内容 (1)确定污水处理厂的工艺流程,并对工艺构筑物选型做说明; (2)主要处理设施格栅的工艺计算; (3)完成格栅三视图 1.3基本资料 1.3.1 格栅的作用 格栅是由一组平行的金属栅条或筛网、格栅柜和清渣耙三部分组成,安装在污水处理厂的端部。格栅主要作用是将污水中的大块污染物拦截出来,否则这些大块污染物将堵塞后续单元的机泵或工艺管线。格栅上的拦截物成为栅渣,其中包括十种杂物,大至腐尸,小至树杈、木料、塑料袋、破布条、碎砖石块、瓶盖、尼龙绳等均能在栅渣中发现。 1.3.2 格栅的种类 (1)按格栅条间距的大小分类:细格栅、中格栅和粗格栅3类,其栅条间距分别为4~10mm,15~25mm和大于40mm。 (2)按清渣方式不同分类:人工除渣格栅和机械除渣格栅两种。人工清渣主要是粗格栅。 (3)按栅耙的位置不同分类:前清渣式格栅和后清渣式格栅。前清渣式格栅要顺水流清渣,后清渣式格栅要逆水流清渣。 (4)按形状不同分类:平面格栅和曲面格栅。平面格栅在实际工程中使用较多。 (5)按构造特点不同分类:抓扒格栅、循环式格栅、弧形格栅、回转式格栅、转鼓式格栅和阶梯式格栅。 1.3.3格栅的工艺参数

格栅的设计计算

格栅的设计计算 (1)栅条的间隙数n Q max、sin X n ehv 式中Qmax --------- 最大设计流量,m3/s ――格栅倾角,度,取=60° h ----- 栅前水深,m,取h=0.4m e ----- 栅条间隙,m,取e=0.02m n――栅条间隙数,个 v ----- 过栅流速,m/s,取v=1.0m/s 格栅设两组,按两组同时工作设计,一格停用,一格工作校核 则:n如五O'2* '歸 23个 ehv 0.02*0.4*1.0 (2)栅槽宽度B 栅槽宽度一般比格栅宽0.2-0.3米,取0.2米 设栅条宽度S=10mm 则栅槽宽度B S(n 1) bn 0.01*(23 1) 0.02*23 0.68n (3)通过格栅的水头损失h g %k

2 0.36 2 0.18m L L 1 L 2 1.0 0.5 H 1 ta n V sin 2g h i ――过栅水头损失, h 0 计算水头损失,m g ----- 重力加速度,9.8 m/ s 2 k ――系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用 k=3 ――阻力系数,与栅条断面形状有关, (-)4,当为矩形断面时, e =2.42。 2 h 1 h o k (-) |—s in k 『2g 0.01 4 1.0 0 2.42*( 冶 si n60°*3 0.02 3 2*9.8 0.13m (4)栅后槽总高度H 设栅前渠道超高 ① 0.3m H h 0 d 0.4 0.13 0.3 0.83m (5)栅槽总长度L 进水渠道渐宽部分的长度L 1,设进水渠宽B 1=0.45m ,其渐宽部分展开角度 a =200,进水渠道内的流速为0.77m/s 。 1 B B 1 1 2ta n 1 °68 °45 0.36m 2ta n20° 栅槽与出水渠道连接处的渐窄部分长度 L 2 h o 式中 L 2

污水处理平面格栅机介绍及选型方法

平面格栅除污机 平面格栅除污机定义为利用平面格栅和齿耙清除流体中污渣的设备,包括链传动式格栅机、回转式格栅机、步进式格栅机等。 相关标准《CJ/T 3048-1995 平面格栅除污机》。 链传动式格栅机 链传动式格栅机为齿耙插入静止的栅条,通过链的带动将污物与 水分离的格栅一种除污机。 (一) 基本参数与设计要求 链传动式格栅机的基本参数见表1 表1 基本参数 齿耙上耙齿与两侧栅条的间距要求见表2 表2 耙齿与两侧栅条的间距要求 齿耙顶端与托渣板之间的间距要求见表 3 表3 齿耙顶端与托渣板之间的间距要求 同时,对于载荷的要求如下: ( I ) 单个齿耙的额定载荷不小于1000N/ m。 (2) 除污机工作平面的额定载荷不小于400N/㎡ 回转式格栅机 回转式格栅机没有静止的栅条,由密布的齿耙随着回转牵引链的

运动将污水中悬浮物打捞出来的格栅机。 (一)基本组成及工作程序 设备由传动装置、链轮、机架、齿耙等组成。齿耙材质为ABS 工程塑料、尼龙或不锈 钢制成,机架材质一般由碳钢或不锈钢制成。 工作时,齿耙按一定的顺序通过齿耙轴与链轮的组合,形成串联的封闭式齿耙链,由传动装置带动两边链轮在迎水面自下而上的按顺时针方向旋转,齿耙的间距相当于格栅的有效间距,由此形成过流和分离的空间。当齿耙携带杂物到达格栅上端后反向运行时,杂物依靠自重脱落,同时有板刷对经过的每排齿耙做清扫。回转式格栅机见图1 图1 回转式格栅机 更多污水处理技术文章参考易净水网资料库步进式格栅机 (一)格栅的组成、工作原理 格栅由驱动装置、传动机构、机架、动栅片、静栅片等部分组成。 工作原理是通过设置于格栅上部的驱动装置,带动两组分布于格栅机架两边的偏心轮和连杆机构,使一组阶梯形栅片相对于另一组固定阶梯形栅片作小圆周运动,将水中的漂浮渣物截留在栅面上,并将渣物从水中逐步上推至栅片顶端排出,实现拦污、清渣的目的。其结构示意图见图1。步进式格栅机改变了以往机械格栅

格栅的设计计算

格栅的设计计算 (1)栅条的间隙数n max Q n ehv = 式中 Qmax ——最大设计流量,m 3/s α——格栅倾角,度,取α=600 h ——栅前水深,m ,取h=0.4m e ——栅条间隙,m ,取e=0.02m n ——栅条间隙数,个 v ——过栅流速,m/s ,取v=1.0m/s 格栅设两组,按两组同时工作设计,一格停用,一格工作校核。 则 :max 230.02*0.4*1.0 Q n ehv ==≈个 (2)栅槽宽度B 栅槽宽度一般比格栅宽0.2-0.3米,取0.2米。 设栅条宽度S=10mm 则栅槽宽度(1)B S n bn =-+ 0.01*(231)0.02*23 0.68m =-+≈ (3)通过格栅的水头损失h 10h h k = 2 0sin 2v h g ξα= 43()s b ξβ= 式中 1h ——过栅水头损失,m+ 0h ——计算水头损失,m g ——重力加速度,9.82/m s

k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3 ξ——阻力系数,与栅条断面形状有关,43 ()s e ξβ=,当为矩形断面时,β=2.42。 S=栅条的宽度 b=栅条的间隙 2410()sin 2s v h h k k b g βα== 20430.01 1.02.42*()sin 60*30.022*9.8 = 0.13m = (4)栅后槽总高度H 设栅前渠道超高20.3h m = 120.40.130.30.83H h h h m =++=++= (5)栅槽总长度L 进水渠道渐宽部分的长度L 1,设进水渠宽B 1=0.45m ,其渐宽部分展开角度α1=200,进水渠道内的流速为0.77m/s 。 11010.680.450.362tan 2tan 20 B B L m α--==≈ 栅槽与出水渠道连接处的渐窄部分长度2L 120.360.1822 L L m ==≈ 112 1.00.5tan H L L L α =++++ 式中 1H 为栅前渠道深,12H h h =+ 00.40.30.360.180.5 1.0tan60L +=++++ 2.44m =

调节池、格栅设计计算

调节池 3.1功能描述 调节池主要起到收集污水,调节水量,均匀水质的作用。 3.2设计要点 调节池的水力停留时间(HRT )一般取 4-6h ;其有效高度一般取4-5m ,设计时,按水力停留时间计算池容并确定其规格。 3.3调节池设计计算: (1)有效容积V e HRT Q V e ?=max 式中:Q max ——设计进水流量 (m 3/h) HRT ——水力停留时间(h ); (2)有效面积A e e e e h V A = 式中:h e ——调节池有效高度 (3)调节池实际尺寸 )5.0(+??e h B L 式中:0.5 ——超高 (4)配套设备

潜水搅拌器,按体积校核,1m 3体积对应8W 功率的潜水搅拌器。 4.格栅 4.1功能描述 格栅由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎石、毛发、木屑、果皮、蔬菜、塑制品等,以便减轻后续处理构筑物的处理负荷,并使之正常运行。按照栅栅条的净间隙,可分为粗格栅(50~100mm )、中格栅(10~40mm )、细格栅(3~10mm )。 4.2设计要点 设置格栅的目的是拦截废水中粗大的悬浮物,首先废水的水质选择栅条净间隙,然后废水的水量和栅条净间隙来计算格栅的一些参数 (B 、L ),得到的这些参数就可以选择格栅的型号。工业废水一般采用e=5mm,如造纸废水、制糖废水、制药废水等。采用格栅的型号一般有固定格栅、回转式机械格栅。 4.3格栅的设计 (1)栅槽宽度 n e n S B ?+-=)1( ehv Q n αsin max =

格栅的计算

第一章 工艺设计和计算 一. 格栅的计算 设计说明 格栅是一组(或多组)相互平行的金属栅条与框架组成,倾斜安装在进水渠 道,以控制水中粗大悬浮物及杂质,对下面的微滤机和水泵其保护作用,拟采用 细格姗,格栅间距取16mm. 设计流量:最大流量s m d m Q /092.0/800033max == 设计参数:栅条间距d=16.00mm,栅前水深h=0.3m,过栅流速v=0.6m/s ,安装 倾角α=600 1.栅条的间隙数n 2.栅槽的有效宽度b.取¢10圆钢为栅条,即s=0.01m,栅槽宽度一般要比格姗 宽0.2-0.3m,这里取0.2 m. 3.通过格栅的水头损失h 2,m 设栅条断面为锐边圆形断面,取阻力系数 β=1.83,k=3.36v-1.32=3.36*0.6-1.32=0.7,则 4.栅后槽总高度H ,m 设栅前渠道超高h 1=0.3m.,有H=h+h 1+h 2=0.3+0.3+0.02=0.62 m , 5.格姗的总建设长度L 1l ----进水渠道渐宽部分的长度(m), 设进水渠宽b 1=0.23 m ,其渐宽部分展开角 度α=200 )(306 .03.0016.060sin 092.0sin 0 max 个≈??==bhv Q n α) (97.02.030016.0)130(01.02.0)1(m dn n s b ≈+?+-=++-=)(02.060sin 7.08 .926.083.1sin 202 21m k g v h ≈????==αβα tg H l l L 1 215.00.1++++=)(5.020 223.097.02011m tg tg b b l ≈-=-=α

格栅设计与选型

格栅设计与选型

环科0801 陈得者200806660101 格栅设计与选型 格栅的工艺参数: 过栅流速:v=0.6~1.0m/s 栅前水深:h=0.4m 安装角度:a=45~75° 格栅间隙b:一般15~30mm,最大为40 mm 栅条宽度bs:细格栅3~10mm 中格栅10~40mm 粗格栅50~100mm 进水渠宽:B1=0.65m 渐宽部分展开角度a1=20° 栅前渠道超高h2=0.3m 由于流量非常大,为防止垃圾堵塞格栅,达到去除粗大物质、保护处理厂的机械设备的目的,故选用一粗一细两个格栅。 主要设计参数: 粗格栅

1.栅条的间隙数n 取栅前水深h=0.4m 过栅流速v=0.7m/s 间隙宽度b=0.04m 安装角度a=60°Q=50000m3/d= 0.579 m3/s=579L/s 总变化系数根据流量Q=579L/s,查下表内插得K z=1.38 Q max=1.38Q=1.38×0.579m3/s=0.799 m3/s n=Q max×sina b×h×v = 0.799×sin60° 0.04×0.4×0.7 =66.4 取n=67 2.栅槽宽度B 取栅条宽b s=0.02m B=b s(n-1)+b×n=0.02×(67-1)+0.04×67=4m 3.进水渠道至栅槽渐宽部分长l1 进水渠宽B1=0.65m 渐宽部分展开角度a1=20° l1=B-B1 2tga1= 4-0.65 2tg20° =4.60m 4.栅槽至出水渠道间渐缩部分长l2 l2=l1 2=2.30m 5.通过格栅的水头损失h1

选用锐边矩形栅条断面 由上表可知公式为ζ=β(b s b )4/3 β=2.42 水头增大系数k=3 h 1=kh 0=k ζv 22g sina=k β(b s b )4/3v 22g sina =3×2.42×(0.020.04 )4/3×0.72 2×9.8 ×sin60°=0.062m 6.栅后槽总高度H 取栅前渠道超高h 2=0.3m H=h+h1+h2=0.4+0.046+0.3=0.746m 7.栅槽总长度L L=l 1+l 2+0.5+1.0+H 1tga =4.60+2.30+0.5+1.0+0.4+0.3tg60° =8.81m 8.每日栅渣量W ①当栅条间距为16~25mm 时,栅渣截留量为0.10~0.05m 3/103m 3污水。 ②当栅条间距为40mm 左右时,栅渣截留量为0.03~0.01m 3/103m 3污水。 在栅间隙为0.04m 的条件下,取W 1=0.02m 3/103m 3污水 W=Q max W 1K z 1000 =50000×1.38×0.021.38×1000 =1m 3/d >0.2 m 3/d 由于污水流量和栅渣量都较大,宜采用RAG 型回转耙齿式机械格栅清渣,可以设置两台,一台工作,一台备用。 9.电动机功率P 根据B 和H 查下表可得 P=3kw

格栅计算

3.细格栅设计计算 (1)栅条间隙数(n ): bhv Q n αsin max = 式中Q max ------最大设计流量,0.327m 3/s ;28252.8m 3/d α------格栅倾角,(o ),取α=60; b ------栅条隙间,m ,取b=0.03 m ; n-------栅条间隙数,个; h-------栅前水深,m ,取h=0.4m ; v-------过栅流速,m/s,取v=0.9 m/s ; 隔栅设两组,按两组同时工作设计,一格停用,一格工作校核30个 (2)栅条宽度(B): 设栅条宽度 S=0.01m 栅槽宽度一般比格栅宽0.2~0.3 m,取0.2 m ; 则栅槽宽度 B= S(n-1)+bn+0.2 =0.01×(28-1)+0.02×28+0.2 =1.32 (m) (3)进水渠道渐宽部分的长度L 1,设进水渠道B 1=0.85m ,其渐宽部分展开 角度α1=20°,进水渠道内的流速为0.77 m/s. m B B ≈?-=?-=α (4)格栅与出水总渠道连接处的渐窄部分长度L 2 . )(37.02 74.02L 12m L === (5)通过格栅的水头损失 h 1,m h 1=h 0?k 0h 34 2)(,2sin b S g v βεα ε== 式中 h 1 -------设计水头损失,m ;

h 0 -------计算水头损失,m ; g -------重力加速度,m/s 2 k ------系数,格栅受污物堵塞时水头损失增大倍数,一般采用 3; ξ ------阻力系数,与栅条断面形状有关;设栅条断面为锐边矩形 断面,β=2.42. g k v b S k h h 2sin )(234 01αβ== 6.19360sin 9.0)02.001.0(42.20234??= =0.1 (m)(符合0.08~0.15m 范围). (6)栅槽总长度L ,m α tan 0.15.0121H L L L ++++= 式中,H 1为栅前渠道深,21h h H += m. 360 tan 3.04.00.15.037.074.00≈+++++=L m (7)栅前槽总高度H 1,m H 1=h+h 2=0.425+0.3=0.725m (8)栅后槽总高度H ,m 设栅前渠道超高h 2=0.3m H=h+h 1+h 2=0.425+0.1+0.3=0.825(m) (9)每日栅渣量W ,m 3/d 100086400 2max ??=Z K W Q W 式中,W 1为栅渣量,m 3/103m 3污水,格栅间隙16~25mm 时,W 1=0.10~0.05m 3/103m 3污水;格栅间隙30~50mm 时,W 1=0.03~0.1m 3/103m 3污水;本工程格 栅间隙为20mm ,取W 1=0.08污水 332.0/m 6.11000 4.18640008.0327.0m d W >=???=采用机械清渣.

格栅设计与选型

环科0801 陈得者200806660101 格栅设计与选型 格栅的工艺参数: 过栅流速:v=0.6~1.0m/s 栅前水深:h=0.4m 安装角度:a=45~75° 格栅间隙b:一般15~30mm,最大为40 mm 栅条宽度bs:细格栅3~10mm 中格栅10~40mm 粗格栅50~100mm 进水渠宽:B1=0.65m 渐宽部分展开角度a1=20° 栅前渠道超高h2=0.3m 由于流量非常大,为防止垃圾堵塞格栅,达到去除粗大物质、保护处理厂的机械设备的目的,故选用一粗一细两个格栅。 主要设计参数: 粗格栅

1. 栅条的间隙数n 取栅前水深h=0.4m 过栅流速v=0.7m/s 间隙宽度b=0.04m 安装角度a=60° Q=50000m 3/d= 0.579 m 3/s=579L/s 总变化系数根据流量Q=579L/s ,查下表内插得K z =1.38 Q max =1.38Q=1.38×0.579m 3/s=0.799 m 3/s n=Q max ×sina b ×h ×v =0.799×sin60° 0.04×0.4×0.7 =66.4 取n=67 2.栅槽宽度B 取栅条宽b s =0.02m B=b s (n-1)+b ×n=0.02×(67-1)+0.04×67=4m 3.进水渠道至栅槽渐宽部分长l 1 进水渠宽B 1=0.65m 渐宽部分展开角度a 1=20° l 1=B-B 12tga 1 =4-0.652tg20° =4.60m 4.栅槽至出水渠道间渐缩部分长l 2 l 2=l 12 =2.30m 5.通过格栅的水头损失h 1 选用锐边矩形栅条断面

格栅计算书

1、粗格栅 栅前流速取0.6m/s,栅前水深根据最优水力断面公B 1=2h= v Q 2=6 .023 .0*2=0.88m ,则h=0.44m,过栅流速取v=0.7m/s ,栅条间隙e=20mm ,格栅的安装倾角为60°,则栅条的间隙数为: n=Q max *sin а 0.5 /ehv =0.23*(sin60°)0.5/(0.02*0.44*0.7) =34.7 n 取38 栅槽宽度:取栅条宽度为S=0.01 m ,取进水栅槽宽0.8m ,一般栅槽比格栅宽0.2-0.3m ,取0.2m , B 2=S*(n-1)+e*n+0.2 =0.01*(38-1)+0.02*38+0.2=1.33m ,即槽宽为1.33m ,取1.3m 则 栅槽总长度: L=L 1+L 2+1.0+0.5+ α tg H 1 , L 1= 1 1 2αtg B B -=(1.33-0.8)/(2*tg20°)=0.73m L 2= L 1/2=0.37m H 1=h+h 2=0.4+0.3=0.7m 则, L=L 1+L 2+1.0+0.5+ α tg H 1 =0.73+0.37+1.0+0.5+0.7/tg60°=3.0m 每日栅渣量:(单位栅渣量取W 1=0.05 m 3栅渣/103 m 3污水) W=Q max * W 1*86400/(K 总*1000) =0.23*0.05*86400/1*1000

=1.0m 3/d >0.2 m 3/d 宜采用机械清渣方式 栅槽高度: H=h+h 1+h 2=0.4+0.1+0.3=0.8m 2、细格栅设计: 设栅前水深h=0.4m ,进水渠宽度B 1=2h=0.8。过栅流速取v=0.8m/s ,栅条间隙e=10mm ,格栅的安装倾角为60°,则 栅条的间隙数为: n=Q max ·sin а 0.5 /ehv =0.23*(sin60°)0.5/(0.01*0.4*0.8) =66.84 n 取67 栅槽宽度:取栅条宽度为S=0.01 m B 2=S*(n-1)+e*n+0.2 =0.01*(67-1)+0.01*67+0.2 = 1.53m 取1.50m 进水渠道渐宽部分长度: L 1= (B 2- B 1)/2tg 1α=(1.53-0.8)/2tg20°=1.0m 1α—进水渠展开角,B 2=B —栅槽总宽,B 1—进水渠宽度。 栅槽与出水渠连接渠的渐宽长度: L 2= L 1/2=1.0/2=0.5m 过栅水头损失: 设栅条为矩形断面,h 1=k*ξ*v 22 *sin α /2g k —系数,格栅受污物堵塞后,水头损失增大的倍数,取k=3;

格栅的设计计算

格栅的设计计算 Document number:PBGCG-0857-BTDO-0089-PTT1998

格栅的设计计算 (1)栅条的间隙数n max Q n ehv = 式中 Qmax ——最大设计流量,m 3/s α——格栅倾角,度,取α=600 h ——栅前水深,m ,取h=0.4m e ——栅条间隙,m ,取e=0.02m n ——栅条间隙数,个 v ——过栅流速,m/s ,取v=1.0m/s 格栅设两组,按两组同时工作设计,一格停用,一格工作校核。 则 :max 230.02*0.4*1.0Q n ehv ==≈个 (2)栅槽宽度B 栅槽宽度一般比格栅宽米,取米。 设栅条宽度S=10mm 则栅槽宽度(1)B S n bn =-+ 0.01*(231)0.02*23 0.68m =-+≈ (3)通过格栅的水头损失h 10h h k = 20sin 2v h g ξα= 4 3()s b ξβ=

式中 1h ——过栅水头损失,m 0h ——计算水头损失,m g ——重力加速度,2/m s k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3 ξ——阻力系数,与栅条断面形状有关,4 3()s e ξβ=,当为矩形断面时,β=。 24103()sin 2s v h h k k b g βα== 20430.01 1.02.42*()sin 60*30.022*9.8 = 0.13m = (4)栅后槽总高度H 设栅前渠道超高20.3h m = 120.40.130.30.83H h h h m =++=++= (5)栅槽总长度L 进水渠道渐宽部分的长度L 1,设进水渠宽B 1=,其渐宽部分展开角度α1=200,进水渠道内的流速为s 。 11010.680.450.362tan 2tan 20 B B L m α--==≈ 栅槽与出水渠道连接处的渐窄部分长度2L 120.360.1822 L L m ==≈ 112 1.00.5tan H L L L α =++++ 式中 1H 为栅前渠道深,1 2H h h =+

格栅设计与选型

环科0801 得者 1 格栅设计与选型 格栅的工艺参数: 过栅流速:v=0.6~1.0m/s 栅前水深:h=0.4m 安装角度:a=45~75° 格栅间隙b :一般15~30mm ,最大为40 mm 栅条宽度bs :细格栅 3~10mm 中格栅 10~40mm 粗格栅 50~100mm 进水渠宽:B 1=0.65m 渐宽部分展开角度a 1=20° 栅前渠道超高h 2=0.3m Q(m 3/d) COD Cr (mg/L ) BOD 5(mg/L ) SS (mg/L ) TN (mg/L ) TKN (mg/L ) TP (mg/L ) pH 50,000 557 240 228 30 27 3.1 7.2 由于流量非常大,为防止垃圾堵塞格栅,达到去除粗大物质、保护处理厂的机械设备的目的,故选用一粗一细两个格栅。 主要设计参数: 粗格栅

1.栅条的间隙数n 取栅前水深h=0.4m 过栅流速v=0.7m/s 间隙宽度b=0.04m 安装角度a=60°Q=50000m3/d= 0.579 m3/s=579L/s 总变化系数根据流量Q=579L/s,查下表插得K z =1.38 Q max =1.38Q=1.38×0.579m3/s=0.799 m3/s n=Q max ×sina b×h×v = 0.799×sin60° 0.04×0.4×0.7 =66.4 取n=67 2.栅槽宽度B 取栅条宽b s =0.02m B=b s (n-1)+b×n=0.02×(67-1)+0.04×67=4m 3.进水渠道至栅槽渐宽部分长l1 进水渠宽B 1=0.65m 渐宽部分展开角度a 1 =20° l 1= B-B 1 2tga 1 = 4-0.65 2tg20° =4.60m 4.栅槽至出水渠道间渐缩部分长l2 l 2= l 1 2 =2.30m 5.通过格栅的水头损失h1 选用锐边矩形栅条断面

格栅计算

2.2粗细格栅间 1、设计流量(高日高时):Q=30000m3/d=1250 m3/h=0.347 m3/s 2、渠道分组:分两格,则单格设计流量: Q=1250/2 m3/h=625 m3/h=0.174 m3/s 3、格栅机的选用:选用回转式格栅除污机。 格条宽S=10mm,栅条间隙b=20mm(规范16-25mm),α=60°4、一般规定(给排水手册五P280页) a格栅前渠道内的水流速度一般采用0.4~0.9 m/s。(设计手册280页) b过栅流速一般采用0.6~1.0 m/s。(设计规范45页) 5、设计计算: a、假定渠道中水流速度V=0.4~0.9 m/s 相应单格渠道过水断面积:A0.4=Q/V=0.174/0.4=0.435m2 A0.9=Q/V=0.174/0.9=0.193m2 假定渠道宽选用0.8m,则渠中有效水深: h0.4=0.435/0.8=0.544m h0.9=0.193/0.8=0.242m 按常规选用渠道有效宽度0.8m,在流速0.4m/s时有效水深已达0.54m,应该说渠道宽是合适的,另一方面有助于设备安装及检修。 根据天雨公司回转式格栅除污机样本,井宽B=0.8m,其设备宽为B1=B-0.06=0.74m,埋件宽B2=B+0.4=1.2m。功率为1.1kw。 格栅机过栅流速核算: 假定栅前水深h=0.544 格栅栅条间隙数目:n=(0.74+0.01)/(0.01+0.02)=25个 格栅栅条间隙总面积:A=0.544*25*0.02=0.272m2 过栅流速:V=Q/A=0.174X(sin750)1/2/0.272=0.63(在0.6~1.0m/s的范围内)

格栅设计说明书最终版

格栅 一、作用:在污水处理系统(包括水泵)前,均需设置格栅,以拦截较大的呈悬浮或漂浮 状态的固体污染物。 二、分类:按形状,可分为平面格栅和曲面格栅两种;按栅条净间隙,可分为粗格栅(50 —100mm)、中格栅(16—40mm)、细格栅(3—10mm)三种;按清渣方式,可分为人工清除格栅和机械清除格栅两种。 三、设计数据: 1.水泵前格栅栅条间隙,应根据水泵要求确定。 2.污水处理系统前格栅栅条净间隙,应符合下列要求: 人工清除:25——100mm; 机械清除:16——100mm; 最大间隙:100mm。 污水处理厂可设置中、细两道格栅,大型污水处理厂亦可设置粗、中、细三道格栅。 3.栅渣量与地区的特点、格栅的间隙大小、污水流量以及下水道系统的类型等因素有关。 在无当地运行资料时,可采用: 格栅间隙16——25mm:0.10——0.05m3栅渣/103m3污水; 格栅间隙30——50mm:0.03——0.01m3栅渣/103m3污水。、 栅渣的含水率一般为80%,密度约为960kg/m3。 4.在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般采用机械清渣。 小型污水处理厂也可采用机械清渣。 5.机械格栅不宜少于2台。如为1台时,应设人工清除格栅备用。 6.过栅流速一般采用0.6——1.0m/s。 7.栅前流速,一般采用0.4——0.9m/s。 8.格栅倾角,一般采用45°——75°。人工清除的格栅倾角小时,较省力,但占地多。 9.通过格栅的水头损失,一般采用0.08——0.15m。 10.格栅间必须设置工作台,台面应高出栅前最高设计水位0.5m。工作台上应有安全和冲洗 设施。 11.格栅间工作台两侧过道宽度不应小于0.7m。工作台正面过道宽度: 人工清除:不应小于1.2m; 机械清除:不应小于1.5m。 12.机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。 13.设计格栅装置的构筑物,必须考虑设有良好的通风措施。 14.格栅间内应安设吊运设备,以进行格栅及其他设备的检修、栅渣的日常清除。 15.格栅的栅条断面形状,按下表选用: 栅条断面形状及尺寸:

机械格栅的分类和选择

机械格栅的分类与选择方法 1概述 1.1产品名称及定义 在排水工程中,格栅是用来去除可能堵塞水泵机组及管道阀门的较粗大悬浮物,并保证后续处理设施能正常运行,是由一组(或多组)相平行的金属栅条和框架组成,倾斜安装在进水的渠道里,或进水泵站集水井的进口处,以拦截污水中粗大的悬浮物及杂质。 1.2产品分类、功能及特点、适用范围 格栅种类及分类方式很多,总体可分为格栅机和筛网(条)两大类。格栅机适用于较高悬浮物浓度污水,筛网适用于低悬浮物浓度污水。常用格栅机类型有:臂式格栅机、链式格栅机、钢绳式格栅机、回转式格栅机等。其适用范围与特点见表1。 1.3格栅通用技术要求 1)栅条间隙根据污水种类、流量、代表性杂物种类和大小来确定,一般选取范围如下:机械 清栅:3~25mm;人工清栅:5~15mm;筛网:0.1~2mm。

2)在大中型污水站,应设置两道机械格栅:第一道为粗格栅:10~40mm,第二道为细格栅:3~ 10mm(大型污水处理厂推荐15mm+4mm组合)。在小污水站,设置一道格栅即可,栅条间隙应为3~15mm(粗格栅用人工格栅可以选15mm,机械格栅推荐用5mm)。 3)过栅流速:污水在栅前渠道内的流速应控制在0.4~0.8m/s,经过格栅的流速应为0.6~ 1.0m/s。过栅水头损失与过栅流速相关,一般应控制在0.1~0.3m之间。栅后渠底应比栅 前相应降低0.1~0.3m。 4)格栅有效过水面积按流速0.6~1.0m/s计算,但总宽度不小于进水管渠宽度的1.2倍,格 栅倾角应为45°~75°,如果为人工格栅则采用安装角度30°~60°。 5)格栅必须设置工作台,台面应高出栅前最高水位0.5m,台上应设安全和冲洗设施。工作台 两侧过道宽度不应小于0.7m。台正面宽度,当采用人工清渣时,不应小于1.2m,当采用机械清渣时,不应小于1.5m。 6)格栅间应设置机器通风设施,常用的有轴流排风扇。如果污水中含有有毒气体则格栅间应 设置有毒有害气体的检测与报警系统。大中型格栅间应安装吊运设备,便于设备检修和栅渣的日常清除。 7)格栅的耙齿、链节长时间浸泡在水中,为了防止腐蚀生锈,一般选用高强度塑料或不锈钢 制成,其链轴也采用不锈钢。 2分类产品名称 常用机械格栅可分为如上表所列几种:臂式格栅机、链式格栅机、钢绳式格栅机、回转式格栅机等。 2.1选用主要技术指标(或因素) 选用设备时需要控制的主要技术指标有有效深度(沟深)、有效宽度(栅宽)、栅条间隙、安装角度、进水水质、水温等。 2.2主要技术性能要求 1)臂式格栅机 臂式格栅除污机,可在固定的轨道上移动清捞污物,主要适用于大、中型雨、污水泵站及城市防汛防洪泵站,可适合于池深在10m左右。格栅用扁钢加工制作,栅条净间隙一般为50-100㎜,总宽度可在5-30m范围内根据进水流量选择。 2)高链式格栅除污机 由传动装置、框架、除污耙、撇渣机构、同步链条、栅条等组成。机内两侧各有一圈链条作同步运转,当链条由除污机上部的驱动装置带动后,耙架受链条铰结点和导轨的约束作平面运动,当耙板运动到除渣口部位时,除渣装置在重力作用下,把耙板上的污物铲刮到除渣口

格栅选型在污水泵站项目中的应用

格栅选型在污水泵站项目中的应用 介绍了城市污水处理泵站项目中常用格栅的类型、结构组成、工作原理,并结合实际 案例介绍了污水泵站项目格栅选型方法。对过去污水泵站格栅选型盲目追求“进口时髦”,而不针对使用工况的现象提出了思考和建议。 1、前言 城市污水处理系统可以包括一级处理、二级处理和深度处理,但无论哪种处理工艺, 都必须经过污水预处理。预处理过程就去除有害污染物而言,可能不起关键作用,容易成为污水系统建设被忽略的环节,但预处理对于保证整个污水处理厂的正常运转则是至关重要的。因此,顶处理过程的设备选型、使用维护应该引起足够的重视。 污水格栅是用来去除可能堵塞水泵机组及管道阀门的较粗大悬浮物,保证后续处理设 施能正常运行,由一组(或多组)相平行的金属栅条和框架组成,截留废水中粗大污物的预处理设施。一般城市污水泵站的第一道格栅叫粗格栅,设计栅距一般在10~40mm左右, 常用类型为钢绳式粗格栅机和高链式粗格栅机。污水泵站的格栅可以认为是城市排水系统中第一道真正意义上的预处理设施,其处理效果、运行管理对于后续的管网运行、一级处理都有着重要的影响。 2、格栅分类、基本原理及其技术特征

格栅种类及分类方式很多,按格栅距划分可分为粗格栅、细格栅,按总体可分为筛网(条)和格栅机两大类。筛网适用于低悬浮物浓度污水,格栅机适用于较高悬浮物浓度污水。由于我国城市污水管网多为“合流制”,污水泵站纳污系统工况复杂,含有较高悬浮物,城市污水处理系统工艺中普遍采用的固液筛分专用设备作为预处理设备。 污水提升泵站实际使用过程中一般采用栅距在10~20mm之间的粗格栅机,基本类型有:臂式格栅机、链式格栅机(GL型)、钢绳式格栅机、回转式格栅机(HF型),此外还有较为新型的反捞式格栅机(FHL)和在国外应用较多的转鼓式格栅清污机、粉碎型格栅清污机等。 选用格栅设备时需要控制的主要技术指标有:1有效深度(沟深)、2有效宽度(栅宽)、3栅条间隙、4安装角度、5进水水质、水温、6最大流量。 3、不同类型格栅的基本原理、适用范围和优缺点比较 1)臂式格栅机 臂式格栅除污机,可在固定的轨道上移动清捞污物,主要适用于大、中型雨、污水泵站及城市防汛防洪泵站,可适合于池深在10m左右。格栅用扁钢加工制作,栅条净间隙一般为50-100㎜,总宽度可在5-30m范围内根据进水流量选择。 2)链式格栅除污机(GL) 由传动装置、框架、除污耙、撇渣机构、同步链条、栅条等组成。机内两侧各有一圈链条作同步运转,当链条由除污机上部的驱动装置带动后,耙架受链条铰结点和导轨的约束作平面运动,当耙板运动到除渣口部位时,除渣装置在重力作用下,把耙板上的污物铲刮到除渣口,该机适用于污水或雨水等水深不超过2米的泵站,以及污水处理厂,以去除污水中粗大漂浮物,对后续工序起保护作用和减轻负荷作用。该除污机为链传动固定式结构,所有传动件全部在水上,防腐性好,便于维护保养。 3)绳式格栅除污机 此类格栅适用于雨水及污水处理站或污水处理厂内,用于去除水中粗大悬浮物或漂浮物,最适合于较深的除污井。 4)回转式格栅除污机 此类格栅是目前污水处理行业试用最普遍的一种格栅。其性能特点如下: 工作原理:当含有漂浮物或较小尺寸固体颗粒物的污水经过格栅时,漂浮物和大于格栅间隙的颗粒物、纤维等如水草、烟头、木屑、麻丝等废弃物被拦截在耙齿上,通过连续运转的回转式机械格栅从栅井中将截留物提升上来,到达排渣口后,依靠栅渣的自重和具有特

格栅的计算

一. 格栅的计算 设计说明 格栅是一组(或多组)相互平行的金属栅条与框架组成,倾斜安装在进水渠道,以控制 水中粗大 悬浮物及杂质,对下面的微滤机和水泵其保护作用,拟采用细格姗,格栅间距取 16mm. 设计流量:最大流量 Q max 8000m 3/d 0.092m 3/s 设计参数:栅条间距d=16.00mm 栅前水深h=0.3m,过栅流速v=0.6m/s ,安装倾角a =60° 1. 栅条的间隙数n Q max 暫 — 0.092 Jsin 60。 n bhv 0.016 0.3 0.6 2. 栅槽的有效宽度 b.取C b s(n 1) dn 0.2 0.01(30 1) 0.016 30 0.2 0.97(m) 0.2-0.3m,这里取 0.2 m. 3. 通过格栅的水头损失h 2, m 设栅条断面为锐边圆形断面,取阻力系数 =1.83,k=3.36v-1.32=3.36*0.6-1.32=0.7 ,则 4. 栅后槽总高度H, m 设栅前渠道超高 h 1=0.3m.,有 H=h+h+h 2=0.3+0.3+0.02=0.62 m , 5. 格姗的总建设长度L L h 丨2 1.0 0.5 —— tg 丨1----进水渠道渐宽部分的长度(m ),设进水渠宽b 1=0.23 m,其渐宽部分展开角度a =200 丨2----栅槽与出水渠道连接处的渐窄部分长度(m), —般丨2=0.5丨1 b b 1 0.97 0.23 l 1 0 0.5(m) L 的2 1.02tg20 —- 0.5 0.25 1.0 0.5 一 0- 2.42(m) tg tg 60 则 6. 每日的栅渣量w 工 艺 设 计 和 计 算 30(个) 10圆钢为栅条,即 s=0.01m,栅槽宽度一般要比格姗宽 h 1 y 2 ——ksin 2g 1.83 0.62 2 9.8 0.7 si n60° 0.02(m)

7.7常用格栅机的分类及选型推荐

常用格栅机的分类及选型推荐--绿烨环保 格栅机是一种可连续清除流体中杂物的固液分离设备,是城市污水处理、自来水厂、电厂进水口、纺织、食品加工、造纸、皮革等行业生产工艺中不可缺少的专用设备,是目前国内普遍采用的固液筛分设备。 很多人对格栅机的选型不大了解,今天小编给大家讲讲格栅机分类和选型的知识: 一、格栅机分类: 粗格栅,一般设计栅距10~20mm,常用类型为钢绳式粗格栅和高链式粗格栅 细格栅,一般设计栅距4~lOmm,常用类型为转鼓式细格栅和回转式细格栅。 粗格栅 1、钢绳式粗格栅构造:主要由机架、导轨、背板及栅条、三条钢丝绳、驱动装置及检修平台,齿耙(耙斗),升降装置,开闭装置,刮渣机构,限位、过载、断绳保护装置以及爬梯等部件组件 工作原理:闭耙放置---开耙下行---闭耙上行---限位停机 2、高链式粗格栅构造:由机架,导轨,背板及栅条,三条链条,驱动装置及检修平台,齿耙(耙斗),升降装置,开闭装置,刮渣机构,限位、过载保护装置以及爬梯等部件组件。 工作原理:同钢绳式格栅机一样,不同的是牵引由钢丝绳变为链条。考虑到链条断裂的可能性极低,一般取消链条断开的保护设置。

3、优缺点比较 1)链条式粗格栅的链条一旦调校准确后,正常负荷下的变形极小。而钢绳式粗格栅的钢丝绳在运行一段时间后,需要定期对三条钢丝绳进行调校维护,以防止耙斗的歪斜,减少因牵引负荷失衡导致的断绳故障。 2)链条的价格比钢丝绳的价格高很多,但钢丝绳维修成本较高 3)迟早都会面临更换牵引机构的工作,更换链条的工作量要比更换钢丝绳的工作量大很多。 4)链条式粗格栅的故障会较少,不频繁,故障维修时间长。 钢绳式粗格栅的故障会较多,较为频繁,较短时间内维修好。 细格栅 1、转鼓式细格栅构造:由机架、圆柱形转鼓、反冲洗装置、螺旋压榨和栅渣输送装置 1)一体式转鼓细格栅 组成:格栅与压榨螺旋一体化的设备,主要由机架、圆柱形转鼓、内置压榨螺旋、反冲洗装置、驱动装置和配套带式输送装置 工作原理:转鼓以一定的速度旋转,污水从转鼓中心进入,从两侧流出,拦截的栅渣由转鼓带到上部。转鼓上部有尼龙刷和高压反冲水喷淋装置,将栅渣与转鼓分离并冲入转鼓内部的螺旋压榨机内,栅渣通过螺旋输送运转压榨脱水,并运至上端排料斗排出,被挤出的水随污水通过细格栅转鼓进入下一个工艺单元。 安装方式:倾斜安装于过水廊道里

污水处理格栅和调节池设计计算书

污水处理格栅和调节池设计计算书 1.格栅设计由于废水中的固体以悬浮状为主,个体较小,设计流程只选择细格栅,人工 捞渣方式,减轻后续处理构筑物的处理负担。 1.1 设计参数设定: a.栅条宽度为S=0.01m; b.格条间隙宽度b=10mm; c.栅前渠道水流速度一般采用0.4,0.8m/s,取0.6m/s; d.过栅流速一般采用0.6,1.0m/s,取0.8m/s; e.栅前水深h=0.2m; f.格栅倾角一般采用45?,75?。人工清除格栅倾角小时,较省力,但占地 [1]面积大。 1.2 设计计算: 33a.流量为Q=1000m/d=0.012m/s; 取废水变化系数为K=3,则最大设计流量 3Q=K?Q=3×0.012=0.036m/s; Max 格栅间隙数目 QSin,0.036Sin60:Max n ,==28(个) b,h,v0.01,0.2,0.6 格栅总宽度B , S?(n,1),b?n ,0.01×(28,1),0.010×28 = 0.55(m) 取B=0.6m, 则B=S?(n,1),b?n n=30 b.取进水渠道宽度B1=0.3m,其渐宽部分展开角度α,20? 则进水渠道渐宽部分长度

,BB1l= 12tg, 0.5,0.3 = 2tg20: =0.27(m) c.栅槽与出水渠道连接处的渐窄部分长度 l0.271l===0.14(m) 222 d.通过格栅的水头损失 取格栅断面为迎水面为半圆形的矩形,设计水头损失为h,格栅阻力增大0 [20]系数为k,根据经验定k=3,则格栅前后水位落差h为: 1 423sv,,h=h?k = ,,,,sin,,k,,10b2g,, 4230.010.8,, = 1.83,,,sin60:,3,,0.012g,, =0.16(m) 则栅室总高度为 H=h+h+h=0.2+0.16+0.3=0.66(m) 112 f.栅槽总长 h,h2L=l+l+0.5+1.0+ 12tg, 0.2,0.3,0.27,0.14,0.5,1.0, tg60: ,2.2(m) g.出水管计算 Q4取水流流速为0.5m/s,则管径应为D=,0.175(m), ,v取管径为200mm,则流速为0.54m/s。 2 调节池设计 2.1 设计参数设定 [21]取停留时间t为8小时,最低水位为0.3m。 2.2 设计计算: a.进水管设计 Q4取水流流速为0.5m/s,则管径应为D=,0.175(m), ,v取管径为200mm,则流速为0..38m/s,设计标高为,1.40;

相关文档
最新文档