Midas各种边界条件比较

合集下载

MIDAS入门-支座模拟

MIDAS入门-支座模拟

MIDAS中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。

2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。

还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在在利用midas做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m,如果定义支座轴向刚度,大概在106~107次KN/m左右。

2016新编MIDAS入门-支座模拟

2016新编MIDAS入门-支座模拟

MIDAS中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。

2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。

还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在在利用midas做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m,如果定义支座轴向刚度,大概在106~107次KN/m左右。

midas 路面结构计算

midas 路面结构计算

midas 路面结构计算Midas 路面结构计算引言:路面结构是指由多种材料组成的路面层,用于承载车辆和行人的交通载荷并分散到基础土层。

Midas 路面结构计算是一种基于有限元方法的工程分析软件,可用于设计和评估不同类型的路面结构。

本文将介绍Midas 路面结构计算的原理、应用以及其在路面工程中的重要性。

一、Midas 路面结构计算的原理Midas 路面结构计算基于有限元方法,通过将路面结构分割成小的有限元单元,使用力学原理和数学模型来模拟路面受力和变形的情况。

其原理包括以下几个方面:1.1 材料模型:Midas 路面结构计算提供了多种材料模型,包括弹性模型、线性弹塑性模型和非线性弹塑性模型。

用户可以根据具体情况选择适合的材料模型。

1.2 荷载模型:Midas 路面结构计算考虑了不同类型的荷载,包括轮载荷、静载荷和动载荷。

用户可以根据实际情况输入荷载参数,并考虑不同位置和时间的荷载变化。

1.3 边界条件:Midas 路面结构计算需要输入路面结构的边界条件,包括固定边界和自由边界。

固定边界是指路面结构与周围环境的约束关系,而自由边界是指路面结构与基础土层的接触情况。

二、Midas 路面结构计算的应用Midas 路面结构计算广泛应用于道路、桥梁和机场等交通工程中,可用于以下方面:2.1 路面设计:Midas 路面结构计算可以根据不同的交通载荷和材料特性,设计出合理的路面结构。

通过对路面结构的受力和变形进行分析,可以确定路面结构的厚度和材料的选择,以确保路面的安全性和耐久性。

2.2 路面评估:Midas 路面结构计算可以对现有路面进行评估,分析其受力和变形情况,判断其是否需要修复或重新铺设。

通过对路面结构的评估,可以提前发现潜在的问题,采取相应的维护和修复措施,延长路面的使用寿命。

2.3 路面施工:Midas 路面结构计算可以在施工过程中提供支持,帮助工程师确定适当的施工方法和工艺。

通过模拟路面结构的受力和变形情况,可以预测施工过程中可能出现的问题,并采取相应的措施加以解决。

迈达斯MidasCivilmds建模4-边界条件

迈达斯MidasCivilmds建模4-边界条件

MIDAS/Civil不仅为用户提供了一般的约束边界,而且为用户提供了弹性支撑单元、只受压单元和只受拉单元等各种非线性边界单元。

在建立与地基直接接触的结构物的边界条件时(如筏式基础或隧道等),面弹性支撑首先计算出板单元或实体单元的有效接触面积和地基反力系数,然后程序将自动计算出等效的弹性支撑刚度。

在建立桥梁模型时,用弹性连接模拟桥梁支座并给出支撑方向的刚度值,程序将自动计算出各支座的反力。

释放板端约束与释放梁端约束一样可以释放单元的约束条件。

局部坐标轴一般用于输入倾斜的边界,这样可以输出局部坐标系方向的支座反力。

有扩幅段的弯桥的倾斜边界示意图将箱型钢桥梁的主梁和桥墩用刚性连接单元连接成一体有紧急出口的隧道护壁模型和自动生成的等效Soil Spring示意图财务管理工作总结[财务管理工作总结]2009年上半年,我们驻厂财会组在公司计财部的正确领导下,在厂各部门的大力配合下,全组人员尽“参与、监督、服务”职能,以实现企业生产经营目标为核心,以成本管理为重点,全面落实预算管理,加强会计基础工作,充分发挥财务管理在企业管理中的核心作用,较好地完成了各项工作任务,财务管理水平有了大幅度的提高,财务管理工作总结。

现将二00九年上半年财务工作开展情况汇报如下:一、主要指标完成情况:1、产量90万吨,实现利润1000万元(按外销口径)2、工序成本降低任务:上半年工序成本累计超支1120万元,(受产量影响)。

二、开展以下几方面工作:1、加强思想政治学习,用学习指导工作2009年是转变之年,财务的工作重心由核算向管理转变,全面参与生产经营决策。

对财会组来说,工作重心从确认、核算、报表向预测、控制、分析等管理职能转变,我们就要不断的加强政治学习,用学习指导工作,因此我们组织全组认真学习“十七大”、学习2009年马总的《财务报告》,在学习实践科学发展观活动中,反思过去,制定了2009年工作目标,使我们工作明确了方向,心里也就有了底,干起活来也就随心应手。

Midas各种边界条件比较

Midas各种边界条件比较

Midas各种边界条件比拟Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比拟,各种边界条件的具体使用参照MIDAS帮助文件。

1.定义一般弹性支承类型SDx-SDy整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。

注一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。

在典型的建筑结构中,分析模型不包括桩根底。

而是假定在根底底面或桩帽处存在弹性边界。

下面的通用刚度给出了桩单元的实际刚度。

对斜桩,用节点局部坐标轴计算斜向的刚度。

2.一般弹性支承分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。

其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度SDxSDySDzSRxSRySRz注在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6 x 6阶刚度矩阵中的6个对角线刚度值。

实际分配给节点的刚度值为6 x 6阶刚度。

3.面弹性支承输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。

并可同时形成弹性连接的单元。

该功能主要用于在根底或地下结构分析中考虑地基的弹性支承条件。

弹性连接长度:弹性连接单元的长度。

该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。

只受拉,只受压:选中选项指定弹性连接为只受拉或只受压单元。

4.弹性连接形成或删除弹性连接。

由用户定义弹性连接与其弹性连接的两个节点。

SDxSDySDzSRxSRySRz。

5.一般连接特性值建立、修改或删除非线性连接的特性值。

一般连接功能应用于建立减隔振装置、只受拉/受压单元、塑性铰、弹性支撑等模型。

一般连接可利用弹簧的特性,赋予线性或非线性的特性。

一般连接的作用类型分为单元类型和内力类型。

迈达斯学习总结

迈达斯学习总结

一.定义材料属性及构件截面二.建立轴网及布置构件(1)梁(弧形梁,选中线-建立曲线并分割单元)(2)柱(选中节点-扩展)(3)墙(选中线-扩展,墙开洞-分割单元)三.复制或定义层数据四.定义荷载:(1)静力工况荷载(2)定义楼面荷载类型将荷载转换为质量(3)楼面荷载分配(4)梁单元荷载(5)风荷载(两个方向,迈达斯中迎风面取楼层上下各半层)(6)添加反应谱数据(7)自重 将自重转换为质量五.结构边界条件柱低:约束所有方向嵌固层:约束X 、Y 方向平动和Z 方向转动恒载 DEAD 活载 LIVE 风载 WX 风载 WY一.定义材料属性及构件截面二.建立轴网及布置构件(1)弧形梁,选中线-建立曲线并分割单元次梁采用复制单元和移动, 或者拖放功能(2)柱:选中柱节点—单元扩展(3)墙(选中线-扩展,墙开洞-分割单元)墙开洞口用分割:三.复制或定义层数据四.定义荷载(1)静力工况荷载(2)定义楼面荷载类型(5)风荷载(6)添加反应谱数据(7)自重五.结构边界条件柱低:约束所有方向嵌固层:约束嵌固层周边X、Y方向平动和Z方向转动关于计算结果的对比问题:1.表格结果中层间位移角双向地震找不到按照公式通过单向地震计算2.表格结果中层间偶然偏心的位移角与PKPM相差较大3.设计计算书中位移比是哪个工况的,与表格结果对不起来4.表格结果中位移比偶然偏心与PKPM相差较大5.表格结果中位移比Y方向位移比与PKPM相差较大6.为什么表格结果中位移比、位移角有位移X和位移Y,并且每项下面又分了EX和EY工况7.荷载工况中定义了偶然偏心,设计计算书中仍然无偶然偏心的结果8.EX=EQ1=ECCX(RS)9.计算书中侧向刚度比是EX和EY工况的?10.表格结果中还是分了X和Y,并且每项下面又分了EX和EY工况11.定义虚面单元选A。

MIDAS入门-支座模拟

MIDAS入门-支座模拟

MIDAS 中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。

2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。

还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁” 左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在在利用midas 做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m ,如果定义支座轴向刚度,大概在106~107次KN/m 左右。

浅谈Midas

浅谈Midas

浅谈Midas摘要]:近年来,无梁楼盖因其净空高度大,楼板厚度大防渗水等优势在地下车库中广泛应用。

由于施工场地的限制,车库顶板往往作为堆载场地和临时行车道,设计中未考虑施工行车荷载,施工单位必须对设计配筋进行计算复核,确定支撑回顶方案。

[关键词]:无梁楼盖;有限元;支撑回顶1 引言无梁楼盖结构形式因其内部没有梁净空大,楼板较厚,自防水性能好等优势在地下车库中广泛应用。

受施工场地限制,车库顶板往往作为施工堆载场地和混凝土罐车等施工机械的行车道使用。

结构设计中通常将车库顶板的施工荷载按照5KN/m2考虑,堆载荷载如果超过此值就需要做计算校核。

施工中的行车道荷载,设计时并未考虑,需要施工单位根据行车道荷载的大小、路径进行受力分析,与原设计配筋进行比较,最终确定支撑回顶方案。

本文以一具体工程实例,详细介绍利用madis Civil软件对支撑回顶进行有限元分析计算,确保结构安全。

2 2 工程实例2.1工程概况项目名称:山湖郡苑;项目地点:天津市蓟州区;项目总建筑面积260731m2,地下建筑面积56942m2,地上建筑面积203789m2;地下车库顶板采用无梁楼盖结构形式,柱网尺寸为8.4mx8.4m,顶板厚度为400mm,柱帽平面尺寸为2.8mx2.8m,柱帽厚度为300mm。

行车道走车荷载为55吨,主要技术指标如图所示[作者简介]:张利民,硕士,中级工程师,土建工程师图1 车辆荷载的主要技术指标2.2 行车道路径优化原则1)多利用施工道路,少利用车库顶板2)尽量布置在消防车道处3)宜尽量布置在柱帽处。

4)尽量避开后浇带,无法避开时,行车道应横穿后浇带,与后浇带平行时不宜布置在同一柱间内优化前后的部分行车道布置如图:图2 行车道优化前图3 行车道优化后2.3 初步确定支撑回顶方案根据以往项目经验,初步确定支撑回顶方案,本项目行车道宽度为4m,采用48x3.5钢管,立杆间距为1.2x1.2米,支撑宽度为6米。

midas支座的模拟方法

midas支座的模拟方法

MIDAS中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。

2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。

还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在利用midas做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m,如果定义支座轴向刚度,大概在106~107次KN/m左右。

Midas自己使用问题总结

Midas自己使用问题总结

Midas Gen自己使用问题总结注意:Midas Gen使用操作内容绝大部分都可以在“程序主菜单-帮助”系统中查到,非常方便。

一、零散问题总结1、Midas中的质量MIDAS中转换“质量”分两种,一种是“自重”,一种是“其他荷载”,前者在“模型-〉结构类型”中,后者在“模型-〉质量-〉将荷载转换成质量”中。

在MIDAS/Gen中,“模型 > 质量 > 将荷载转换成质量...”中不能将单元的自重转换为质量。

如果要做动力分析(包括地震动力分析),将结构的自重转化为质量,必须要在结构类型中设定相关条目。

即:可以通过“模型-〉结构类型-〉将结构的自重转换为质量”将模型中的单元质量自动转换为动力分析或计算静力等效地震荷载所需的集中质量。

2、Midas“由荷载组合建立荷载工况”该项目将荷载组合中的各荷载工况的组合建立为新的荷载工况。

对非线性单元(如索、只受拉或只受压单元)由于其非线性特性,单纯将各荷载工况的分析结果进行线性组合(荷载组合)是错误的,此时应该使用该功能将荷载组合(如1.2D+1.4L)定义为一个荷载工况作用于结构上,方能得到正确的分析结果。

路径:从主菜单中选择荷载 > 由荷载组合建立荷载工况...或者….从树形菜单中选择静力荷载 > 由荷载组合建立荷载工况...3、“刚域效果”与“设定梁端部刚域”刚域效果:自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

路径:从主菜单中选择模型 > 边界条件 > 刚域效果...或者从树形菜单的菜单表单中选择模型 > 边界条件 > 刚域效果设定梁端部刚域:该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在“主菜单中的模型>边界条件>刚域效果”只能考虑梁柱直交时的效果。

MIDAS GTS理论分析_2

MIDAS GTS理论分析_2

第二篇MIDAS/GTS的岩土分析第二篇 MIDAS/GTS的岩土分析岩土的有限元分析模型包含节点、单元、边界条件。

节点决定模型的位置,单元决定形状和材料特性,边界条件决定连接状态。

岩土分析就是为了分析岩土及与岩土连接的结构在荷载作用下的反应。

岩土分析因为岩土材料特性、地下水以及地形等因素的不确定性,所以其分析结果受输入的条件的影响较大。

因为岩土的构成非常复杂,所以完全真实地模拟岩土材料的刚度特性是非常困难和不现实也是不经济的。

在明确分析目的的情况下,适当简化分析模型是必要的。

例如,模拟埋深较大的隧道时,将上部覆土高度内的岩土都用有限元网格来模拟是不经济的。

此时可模拟适当范围内的岩土,将上部覆土按外部荷载输入也是比较经济的方法。

另外,使用有限元方法模拟岩土时,用户应对有限元的理论和分析方法具有一定程度的了解,这样在模拟岩土时才能合理简化和模拟。

另外,应根据分析的目的选择单元的类型以及确定模型的范围。

在设计中如果关心的是位移、应力以及支护的内力,则应该将模型的范围扩大一些,单元也应该细分一些。

但是像安全鉴定等探讨岩土结构的安全性时,则可以将模型缩小一些,外部边界条件也可以使用弹簧来模拟。

做特征值分析时,为了避免产生局部振型的产生,应尽量简化模型。

特别是在初步设计阶段(preliminary design phase)可从简单的模型开始分析,逐渐增加复杂度直到得到比较理想的结果。

建立数值分析模型时主要考虑事项如下:决定节点位置时,主要考虑结构的几何形状、材料、截面类型、荷载状态等需要节点位置的因素的影响。

需要建立节点的位置如下:第二篇MIDAS/GTS的岩土分析A. 需要输出分析结果的位置B. 需要输入荷载的位置C. 材料变化的位置或规划的边界D. 应力变化较大的位置E. 岩土或结构形状变化位置线单元(桁架单元、梁单元等)虽然不受单元大小的影响,但是面单元和实体单元受单元大小、形状、分布的影响,所以对应力变化较大或应力集中位置应细分单元。

关于 midas软件中一些名词的详细解释

关于 midas软件中一些名词的详细解释

一.名词解释1.单元刚度矩阵eF=e k e 表示由单元杆端位移求单元杆端力的方程,成为局部坐标系中的单元刚度矩阵。

矩阵e k称为单元刚度矩阵。

一般单元刚度矩阵是6X6的方阵,其中每个元素称为单元刚度系数,表示单元杆端位移所引起的杆端力。

2.单元坐标系:在杆件上确立的坐标系x y,其中x轴与杆件重合。

整体坐标系:在复杂结构中,各个杆件的杆轴方向不同,各自的局部坐标系也不同。

为了便于整体分析,而确定的一个统一的坐标系。

用xy表示。

3影响线:当单位集中荷载沿结构移动时,表示某一指定量变化规律的图形,成为该量值的影响线。

4徐变系数:问题总结一.有限元基本原理1.有限元分析的基本步骤:结构离散-----建立单元刚度矩阵-----单元组集成平衡方程-----引起等效节点力和位移边界条件----求解节点位移-----由位移求应变-----由应变求内力。

2.单元刚度如何得到3.空间梁单元具有6个自由度,其单元刚度矩阵的阶数,其中每一刚度系数的含义4.结构的变形、位移和反力是基于整体坐标系还是单元坐标系,单元的应力、内力是基于整体坐标系还是单元坐标系。

5.在梁单元上施加的非节点荷载,如何等效为节点荷载静力等效,指原荷载于节点荷载在任何虚位移上的虚功都相等。

6.在结构分析中,需要设置节点的原则7.在结构分析中,需要设置细分单元的情况8.在单元划分时,应注意事项二.单元类型1.在结构有限元分析时,主要有哪些单元类型桁架单元只受拉单元索单元只受压单元梁单元/变截面梁单元平面应力单元板单元平面应变单元平面轴对称单元空间单元2.什么是平面应力单元,平面应力单元的单元坐标系是如何规定,平面应力单元与平面应变单元的区别平面应力单元只能承受平面方向的作用力,利用它可以建立在单元内均匀厚度的薄板。

单元坐标是由X.Y,Z 三轴构成的,是满足右手螺旋法则的空间直角坐标系系统。

而平面应变单元只能用于线性静定结构分析中,它一般作为坝,或隧道等结构的分析。

最新midas入门支座模拟资料

最新midas入门支座模拟资料

MIDAS中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。

2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。

还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在在利用midas做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m,如果定义支座轴向刚度,大概在106~107次KN/m左右。

MIDAS-时程荷载工况中几个选项的说明

MIDAS-时程荷载工况中几个选项的说明

MIDAS-时程荷载工况中几个选项的说明动力方程式如下:在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。

另外,正如哲学家所言:运动是绝对的,静止是相对的。

静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。

0.几个概念自由振动: 指动力方程中P(t)=0的情况。

P(t)不为零时的振动为强迫振动。

无阻尼振动: 指[C]=0的情况。

无阻尼自由振动: 指[C]=0且P(t)=0的情况。

无阻尼自由振动方程就是特征值分析方程。

简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。

非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。

任意荷载: P(t)为随机荷载(无规律),如地震作用。

随机荷载作用下的振动为随机振动。

冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。

1.关于分析类型选项目前有线性和非线性两个选项。

该选项将直接影响分析过程中结构刚度矩阵的构成。

非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。

当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。

只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。

如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。

2.关于分析方法选项目前有振型叠加法、直接积分法、静力法三个选项。

这三个选项是指解动力方程的方法。

关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。

midas建模

midas建模

midas建模建立新项目并命名及保存定义单位体系订制相应工具条本模型处于整体坐标系的x-z平面,即x方向为杆系长度方向,z 方向为竖直方向。

定义材料和截面在‘材料’工具栏添加材料包括规范类型和数据库。

在‘截面’工具栏中选择适合的截面类型。

输入节点和单元在X-Z坐标面内定义原点(建立节点(0,0,0)单选节点1,等间距的复制和移动节点建立单元(在单元工具栏新建输入边界条件参考地质资料对桥梁的边界条件进行模拟和定义输入荷载查看结果1.建立一个模型的第一步就是要建立符合你需要的单位体系,一般用KN,M,可以在软件右下角直接进行设置,如下图:也可以在工具→単位系中进行设置,如下图:2.定义材料和截面定义材料→特性→材料特性值→材料,截面,因为是铁路桥,所以我们材料规范选择TB05(RC)—《TB10002.3-2005铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》截面输入时应设置相应单位。

(在首先建立模型的时候,可以直接应用MIDAS给定的规范数据库中的材料来定义,但是在实际的工程中,要根据实际的情况来设置一些参数,如泊松比、弹性模量、线膨胀系数等。

这个时候要用自定义材料参数来定义。

)截面定义:截面定义有许多种方法,可以采用调用数据库中截面(标准型钢)、用户定义、采用直接输入截面特性值的数值形式、导入其他模型中已有截面。

参考图纸,对于有收坡比的桥墩,可以采用将变截面转化为变截面组来实现。

变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端;并命名(注:各个截面的截面号不能相同)。

变截面组就是变截面赋予单元,进入模型窗口,将做好的变截面拖给对应的单元即可。

变截面设定:特性→截面特性值→添加→变截面→输入i.j截面数据变截面组设定:单元→变截面组→在单元列表中选中需要赋予变截面特性的单元,输入组名称(随便输入就好,只要自己好记,并不和其他变截面组名称重复就行)3.建立节点:首先要明白节点是有限元模型最基本的单位,节点不代表任何的实际桥梁结构只是用来确定构件的位置。

Midas自己使用问题总结

Midas自己使用问题总结

Midas Gen自己使用问题总结注意:Midas Gen使用操作内容绝大部分都可以在“程序主菜单-帮助”系统中查到,非常方便。

一、零散问题总结1、Midas中的质量MIDAS中转换“质量”分两种,一种是“自重”,一种是“其他荷载”,前者在“模型-〉结构类型”中,后者在“模型-〉质量-〉将荷载转换成质量”中。

在MIDAS/Gen中,“模型 > 质量 > 将荷载转换成质量...”中不能将单元的自重转换为质量。

如果要做动力分析(包括地震动力分析),将结构的自重转化为质量,必须要在结构类型中设定相关条目。

即:可以通过“模型-〉结构类型-〉将结构的自重转换为质量”将模型中的单元质量自动转换为动力分析或计算静力等效地震荷载所需的集中质量。

2、Midas“由荷载组合建立荷载工况”该项目将荷载组合中的各荷载工况的组合建立为新的荷载工况。

对非线性单元(如索、只受拉或只受压单元)由于其非线性特性,单纯将各荷载工况的分析结果进行线性组合(荷载组合)是错误的,此时应该使用该功能将荷载组合(如1.2D+1.4L)定义为一个荷载工况作用于结构上,方能得到正确的分析结果。

路径:从主菜单中选择荷载 > 由荷载组合建立荷载工况...或者….从树形菜单中选择静力荷载 > 由荷载组合建立荷载工况...3、“刚域效果”与“设定梁端部刚域”刚域效果:自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

路径:从主菜单中选择模型 > 边界条件 > 刚域效果...或者从树形菜单的菜单表单中选择模型 > 边界条件 > 刚域效果设定梁端部刚域:该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在“主菜单中的模型>边界条件>刚域效果”只能考虑梁柱直交时的效果。

MidasCivil-软件介绍及菜单详解

MidasCivil-软件介绍及菜单详解

一,Midas/Civil 软件介绍及菜单详解
屈曲分析控制 : 输入结构屈曲分析的荷载工况及相关数据。
模态数量:输入需要计算的屈曲模态数量
控制参数:输入子空间迭代法的迭代次数和收敛误差 屈曲分析荷载组合:输入屈曲分析时的荷载工况(组合) 和组合系数 屈曲分析荷载组合:用于屈曲分析的荷载(如自重) 可变:考虑增减的荷载 不变:不考虑增减的荷载
*提供中国、美国、英国、德国、欧洲、日本、韩国等国家的材料和截面数据库, 以及混凝土收缩和徐变规范和移动何在规范。
*提供桁架、一般梁/变截面梁、平面应力/平面应变、只受拉/只受压、钩、索、 板、实体单元等工程实际时所需的各种有限元模型。
*提供静力分析、动力分析、静/动力弹塑性分析、几何非线形分析、优化索力、 屈曲分析、移动荷载分析(影响线/影响面分析)、支座沉降分析、施工阶段分析、 联合截面施工阶段分析等功能。
考虑自重:考虑自重时选择此项。
一,Midas/Civil 软件介绍及菜单详解
非线性分析控制: 选择非线性分析计算方法和收敛控制条件
构、边界及荷载。 5,输入边界条件:定义结构的外边界条件以及结构内部的连接。 6,输入荷载:包括施工荷载、永久荷载、活荷载、温度荷载、车辆荷载、支座沉降、预应
力荷载等。 7,输入钢束特性值:定义预应力钢束的特性的种类(15-7,15-9等)
输入钢束形状:定义主梁预应力钢束形状 输入钢束预应力荷载:输入预应力钢束的张拉力,常按钢绞线强度的0.75倍计入。 8,定义施工阶段:选择合适的结构组、边界组和荷载组定义施工阶段 9,输入移动荷载数据:输入活荷载信息,包括汽车荷载和人群荷载。 10,输入值沉降荷载数据:输入边界的支座沉降情况。
一,Midas/Civil 软件介绍及菜单详解

Midas自己使用问题总结

Midas自己使用问题总结

Midas Gen自己使用问题总结注意:Midas Gen使用操作内容绝大部分都可以在“程序主菜单-帮助”系统中查到,非常方便。

一、零散问题总结1、Midas中的质量MIDAS中转换“质量”分两种,一种是“自重”,一种是“其他荷载”,前者在“模型-〉结构类型”中,后者在“模型-〉质量-〉将荷载转换成质量”中。

在MIDAS/Gen中,“模型> 质量> 将荷载转换成质量...”中不能将单元的自重转换为质量。

如果要做动力分析(包括地震动力分析),将结构的自重转化为质量,必须要在结构类型中设定相关条目。

即:可以通过“模型-〉结构类型-〉将结构的自重转换为质量”将模型中的单元质量自动转换为动力分析或计算静力等效地震荷载所需的集中质量。

2、Midas“由荷载组合建立荷载工况”该项目将荷载组合中的各荷载工况的组合建立为新的荷载工况。

对非线性单元(如索、只受拉或只受压单元)由于其非线性特性,单纯将各荷载工况的分析结果进行线性组合(荷载组合)是错误的,此时应该使用该功能将荷载组合(如 1.2D+1.4L)定义为一个荷载工况作用于结构上,方能得到正确的分析结果。

路径:从主菜单中选择荷载> 由荷载组合建立荷载工况...或者….从树形菜单中选择静力荷载> 由荷载组合建立荷载工况...3、“刚域效果”与“设定梁端部刚域”刚域效果:自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

路径:从主菜单中选择模型> 边界条件> 刚域效果...或者从树形菜单的菜单表单中选择模型> 边界条件> 刚域效果设定梁端部刚域:该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在“主菜单中的模型>边界条件>刚域效果”只能考虑梁柱直交时的效果。

midas单元对流边界

midas单元对流边界

Midas单元对流边界1. 简介Midas单元对流边界是一种数值模拟方法,用于求解流体力学问题中的对流边界条件。

该方法基于有限元分析,利用数值计算技术模拟流体在边界上的运动和传输过程。

通过精确建模和求解对流边界条件,可以更准确地预测物理系统中的流体行为。

2. 原理Midas单元对流边界的原理基于Navier-Stokes方程和质量守恒方程。

这些方程描述了连续介质中的质量、动量和能量守恒。

Midas单元对流边界通过将物理问题离散化为有限数量的节点和单元,并在每个节点上施加适当的边界条件来求解这些方程。

在Midas单元对流边界中,首先需要建立一个有限元网格模型。

该网格由一系列节点和相邻节点之间的连接构成,形成了一组有限大小的单元。

每个节点上定义了速度、压力、温度等物理量。

接下来,在每个时间步长内,根据当前状态和已知初始条件,使用离散化方法将Navier-Stokes方程转化为代数方程组。

这些代数方程描述了节点上物理量的变化规律。

然后,通过求解这个代数方程组,可以得到下一个时间步长内节点上物理量的近似解。

这样,就能够模拟流体在边界上的运动和传输过程。

Midas单元对流边界的核心思想是将对流边界条件转化为离散点上的代数方程。

这样,在求解整个问题时,可以同时考虑边界和内部节点之间的相互作用。

这种方法能够更准确地描述流体在边界上的行为。

3. 应用Midas单元对流边界广泛应用于各种工程领域,特别是涉及流体力学问题的领域。

以下是一些常见应用案例:3.1 空气动力学在航空航天工程中,Midas单元对流边界可用于模拟飞机、导弹等空气动力学行为。

通过精确建模飞行器表面的气动特性,并将其与环境中的气体相互作用考虑在内,可以更好地预测飞行器在不同条件下的飞行性能。

3.2 汽车工程在汽车设计和优化中,Midas单元对流边界可用于模拟空气动力学和热传导过程。

通过精确建模汽车表面的气动特性和热传导特性,并考虑车辆与环境之间的相互作用,可以更好地改善汽车的燃油效率、降低空气阻力和提高车辆性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Midas各种边界条件比较
Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比较,各种边界条件的具体使用参照MIDAS帮助文件。

1.定义一般弹性支承类型
SDx-SDy
整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。


一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。

在典型的建筑结构中,分析模型不包括桩基础。

而是假定在基础底面或桩帽处存在弹性边界。

下面的通用刚度给出了桩单元的实际刚度。

对斜桩,用节点局部坐标轴计算斜向的刚度。

2.一般弹性支承
分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。

其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度
SDxSDySDzSRxSRySRz

在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6 x 6阶刚度矩阵中的6个对角线刚度值。

实际分配给节点的刚度值为6 x 6阶刚度。

3.面弹性支承
输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。

并可同时形成弹性连接的单元。

该功能主要用于在基础或地下结构分析中考虑地基的弹性支承条件。

弹性连接长度:弹性连接单元的长度。

该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。

只受拉,只受压:选中选项指定弹性连接为只受拉或只受压单元。

4.弹性连接
形成或删除弹性连接。

由用户定义弹性连接及其弹性连接的两个节点。

SDxSDySDzSRxSRySRz。

5.一般连接特性值
建立、修改或删除非线性连接的特性值。

一般连接功能应用于建立减隔振装置、只受拉/受压单元、塑性铰、弹性支撑等模型。

一般连接可利用弹簧的特性,赋予线性或非线性的特性。

一般连接的作用类型分为单元类型和内力类型。

单元类型一般连接在进行分析过程中,用更新单元刚度矩阵直接反映单元的非线性。

内力类型的一般连接不更新单元刚度矩阵,而是根据非线性的特性计算出来的内力置换成外部荷载,间接的考虑非线性。

单元类型的一般连接提供的类型有弹簧、线性阻尼器、弹簧和线性阻尼器3种类型的连接单元。

内力类型的一般连接提供的类型有粘弹性消能器(Viscoelastic
Damper)、间隙(Gap)、钩(Hook)、滞后系统(Hysteretic
System)、铅芯橡胶支承隔震装置(Lead
Rubber
Bearing
Isolator)、摩擦摆隔震装置(Friction
Pendulum
System
Isolator)等六种类型的连接单元。

6.一般连接
添加或删除一般连接。

由用户定义一般连接及其一般连接的两个节点。

一般连接特性值:选择非线性连接的特性。

当需要建立或编辑非线性连接的特性值时,可以点击右面的,将弹出非线性连接特性值对话框。

7.释放梁端约束
输入梁两端的梁端释放条件(铰接,滑动,滚动,节点和部分固定),或替换或删除先前输入的梁端释放条件。

8.设定梁端部刚域
定义GCS或梁单元局部坐标系下梁两端的刚域长度或考虑节点偏心。

该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在主菜单中的模型>边界条件>刚域效果只能考虑梁柱直交时的效果。

9.刚性连接
强制某些节点(从属节点)的自由度从属于某节点(主节点)。

包括从属节点的刚度分量在内的从属节点的所有属性(节点荷载或节点质量)均将转换为主节点的等效分量。

10.刚域效果
自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

11.有效宽度系数
在计算梁截面应力时,对截面强轴的惯性矩(Iy)的调整系数。

该功能主要使用于预应力箱型梁的剪滞效应(shear lag)分析,即考虑上下板的有效宽度(受压区)后,对截面惯性矩进行相应的调整,最后进行应力计算。

该功能对内力计算没有影响。

我建模的时候用节点支撑模拟每根桩基的边界条件,根据地质资料计算出每个节点的值输入,计算结果吻合桩的变形形状及下沉量。

节点弹性连接来模拟实际接触,但建模时因为把体简化成线而脱开的节点。

也可以模拟梁的横向联系。

刚性连接(其他程序叫主从节点)模拟橡胶支座等边界条件比较好。

我在实用过程中发现同一个节点主从2次以上要报错,还有就是主从后在下一施工阶段钝化了,运行的时候要报错。

以上是我最近使用的一点感受。

望各位指教!
[midas] midas弹性连接与主从约束的区别
两者各有千秋——
相同点:两者都可以作为刚臂,都考虑附加弯矩作用。

不同点:弹性连接刚性——连接两点的的所有自由度耦合,相当于
100x100m断面的钢梁的刚度;可以在任何分析中使用,没有限制条件。

! O" V) v( c! F) d8 ^; ^
主从约束刚性连接:注意区分主、从关系,刚度为无限大,可以指定某个和某几个自由度的耦合,可以在任何分析中使用,但在施工阶段分析中只能激活,不能钝化。

/ j( T2 H/ m7 R9F! T
任何弹性连接实质上都是一种单元,因此其刚度也会影响结构的整体刚度,所以在用一般弹性连接模拟支座时建议使用主从刚性连接(具体模拟方法我在本论坛上发了贴子)处理主梁和支座间的连接关系。

如果仅以节点支承(一般支承或弹性支承)模拟支座,那么只能用弹性连接刚性来处理主梁和支座间的刚臂连接。

总之在具体应用上,依据具体情况做选择。

( @# w9 y* n1 k6 [6 a/ n* |3 J
MIDAS多支座模拟注意事项: {/ r2 E% o. k. S! E; p1 e3 W
% Y p8 ~! ? }$ F1 K
单支座模拟时,我们在支座实际位置建立节点,定义约束内容,然后用刚性弹簧(弹性连接的刚性类型)连接主梁节点和支座节点。

但在模拟多支座时,尤其是支座数量多于2个时,这样的模拟方法就不对了,会出现靠近主梁的支反力特别大的情况。

多支座时正确的模拟方法如下:; ]7 G8 [6 F2 e" } e
1、要求模拟出支座的高度情况,在支座底部采用一般支承进行全约束(D-ALL,R-ALL);;`8 J+ w$ Z' _* i5 h. @
2、用一般弹性连接模拟支座(注意弹性连接的刚度是按照弹簧的局部坐标输入,输入支座的各个自由度的实际刚度);/ J- W* T2 Z. G, F4 M
3、主梁节点为主节点,各支座顶部节点为丛属节点建立主从约束刚性连接。

$ Y. I$ D" ~3 h-z, n9 x( ]
4、额外的操作:对于弯桥建模时,支座的约束方向通常是沿桥的径向和切向,可以通过修改弹性连接的beta角来实现。

相关文档
最新文档